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Abstract— We investigate modeling and recognition of object
manipulation actions for the purpose of imitation based learning
in robotics. To model the process, we are using a combination
of discriminative (support vector machines, conditional random
fields) and generative approaches (hidden Markov models). We
examine the hypothesis that complex actions can be represented
as a sequence of motion or action primitives. The experimental
evaluation, performed with five object manipulation actions
and 10 people, investigates the modeling approach of the
primitive action structure and compares the performance of
the considered generative and discriminative models.

I. INTRODUCTION

In artificial systems, imitation has been frequently used for
automated programming and control of robots, for finding
more natural ways for interacting with robots and task
learning in general. Imitation has also been viewed as the
capability to acquire new skills by observation based on some
existing behavioral repertoire, [1]. In [2], it has been shown
that an action perceived by a human can be represented
as a sequence of clearly segmented action units. These
action units can then serve as the basis for building up the
behavioral repertoire. Thus, the action recognition process
may be considered as an interpretation of the continuous
human behaviors which, in its turn, consists of a sequence
of action primitives such as reaching, picking up, putting
down. The notion of actions and action primitives is thus
of significant importance for building structures that directly
link sensory and motor systems of artificial systems since
they define the necessary mapping for the implementation
of the perception-action mechanism.

In this work, we study the problem of modeling and recog-
nition of actions and action primitives using Support Vector
Machines (SVM), [3], Hidden Markov Models (HMM), [4]
and Conditional Random Fields (CRF), [5]. To start with,
SVM is used to model and recognize individual action
primitives. Actions, built from a set of action primitives, are
then modeled using HMMs and CRFs and their performance
is evaluated and compared. We also evaluate the plausibility
of using CRFs for recognition of composite actions. The
measurements are based on four magnetic sensors where
each of the sensors provide a complete pose estimate. The
contributions are:

• We investigate modeling strategies for object manipula-
tion actions that are very similar to each other (grasping,
pushing, moving). Most of the current work on arm/hand
action recognition concentrates on actions that are easy
to discriminate (waving, pointing).

• We implement, evaluate and compare both generative
and discriminative approaches while most of the re-
ported work concentrates on one of the approaches.

• We consider the problem of recognition both on the
primitive and on the composite action level.

• Our measurements are based only on four magnetic
sensors while most other systems use complex motion
capture systems.

II. RELATED WORK

There is a large body of work on the problem of hu-
man action recognition from images or from 3D positions
on the human body, [6]. Examples from computer vision
community include [7], where actions are represented as a
sequence of key postures. Segmentation is then performed
implicitly by searching the observation sequence for key
postures that then are used for recognition. The key postures
are represented as topological edge maps extracted from
video frames.

An alternative approach is to avoid the segmentation
problem altogether by employing a discriminative action
recognition approach. For example, [8] use conditional ran-
dom fields (CRF) for recognition of full human body actions.
This method for modeling sequential data is similar to HMM
but has the advantage that no explicit model of the sequence
of observations has to be learned, thereby rendering explicit
data segmentation unnecessary as well. The downside of
CRF, as with any discriminative approach, is however the
inability to generalize to previously unseen action examples
when the detailed imitation of the pose is needed.

In terms of the adopted theoretical framework, support
vector machine (SVM) has been applied to several different
application areas such as visual and speech data modeling
and recognition. One of the early works on SVMs, [9],
presented a drawback of the method when working with
sequential data, namely, that SVM lacks a way of handling
the time dependencies in the data. In order to use time
dependent sequences as SVM input, variable length time
sequences can be either normalized to same length before
applying the SVM. Another approach is to embed dynamic
time warping (DTW) directly into the SVM kernel function
[10]. Third, probably the most common way to handle the
“time problem” is to combine a SVM with Hidden Markov
Models (HMM) [9], [11], [12]. SVM is still used to classify
single points or brief time windows, but the output of the
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SVM is then used an input to a HMM which then finds the
most probable path or sequence in consideration of time.

From the point of view of imitation learning or “learning
by showing”, the primitives are an attractive option since they
can alleviate mapping motion from humans to robots which
differ in their embodiment. In addition, having a common
vocabulary of primitives can aid in task understanding and
planning as the task can be then described as a sequence of
events.

III. MODELING ACTIONS

In the work presented here, we consider five different
object manipulation actions: a) pick up an object from a
table, b) rotate an object on a table, c) push an object forward,
d) push an object to the side, and e) move an object to the
side by picking it up. To include variation in the actions,
each action is performed in 12 different conditions, namely
on two different heights, two different locations on the table,
and having the demonstrator stand in three different locations
(0, 30, 60 degrees), see Fig. 1. All actions are demonstrated
by 10 people.

Fig. 1. Experimental setup.

The movement is measured using a Nest-of-Birds mag-
netic tracker. The test subject is endowed with four sensors
each registering their full 3-dimensional pose with respect to
a reference, see Fig. 1. The sensors are located on: a) chest,
b) back of hand, c) thumb, and d) index finger. The chest
sensor is used to provide a reference to the demonstrator
position while the back of the hand can be used as a reference
for the thumb and index finger. The measured sequences have
been annotated by hand such that the current action primitive
is known for training.

A. Support vector machines

Support vector classification aims at separating data
classes, mapped into a high dimensional feature space, by
hyperplanes with a maximal margin to the classes. A hyper-
plane represents the decision boundary of the classifier with
feature vectors on one side belonging to one class and vectors
on the other side to another one. To represent complex
decision boundaries, the mapping (kernel) from the original

11111111︸ ︷︷ ︸
ap

22222︸ ︷︷ ︸
gr

7777777︸ ︷︷ ︸
rm︸ ︷︷ ︸

grasping an object

111111︸ ︷︷ ︸
ap

2222︸︷︷︸
gr

555555︸ ︷︷ ︸
rt

7777︸︷︷︸
rm︸ ︷︷ ︸

rotating an object

Fig. 2. Example output of the SVM classifier.

feature space to the high dimensional space is nonlinear. In
this work, a standard SVM with Gaussian kernel is used.

In our work, we apply SVM classification to multiple
classes each representing an action primitive class. For this
purpose, we adopt one-against-one approach. In other words,
by denoting the number of classes by k, k(k−1)/2 classifiers
are trained using all pairs of classes. To classify a sample
from an unknown class, it is classified by all classifiers, and
each result is a vote for the class. Majority voting is then
used to decide the class of the sample. The one-against-one
approach has been found very successful with SVMs but it
suffers from increased number of individual classifiers when
the number of classes is very high.

The output of the SVM is then a sequence of classified
primitive actions at each time instant. In Fig. 2 we show an
example of two concatenated actions: grasping and rotating
an object. A grasping action is composed of three primitives
(approach, grasp and remove), while the rotation is composed
of four primitives (approach, grasp, rotate and remove hand).
In terms of lengths, a real grasp ,am be composed of
30 approach, 20 grasp and 50 “remove hand with object”
primitives. Our SVM implementation uses 7 different classes,
which correspond to the 7 primitive actions: approach, grasp,
rotate, push forward, push side, remove and remove with
object. It is worth mentioning the difference between a
primitive and an action: a primitive is our basic unit, like a
letter in a word, while an action is a composite of primitives,
like a word.

B. Markov chain and hidden Markov models

To model the temporal dependencies of actions, the first
approach we adopt are time-homogeneous Markov chain
models where the state transition probabilities are invariant
over time. As a short reminder, denoting the state i by ωi,
the time evolution of states can then be described using the
state transition probabilities P (ωj(t + 1)|ωi(t)) = aij . The
states themselves are hidden, not directly observable. Instead,
in each state, an observation x(t) is made. The observation
depends only on the current state according to a selected
probabilistic model, that is, P (x(t)|ωi(t)) = P (x|ωi). If
the set of observations X is discrete and finite, X =
{x1, . . . ,xM}, the observation probabilities can be written
more shortly as P (xj |ωi) = bij . Finally, the probability of
starting in state ωi can be defined as πi = P (ωi(1)). Thus,
the parameters can be collected to matrices A and B and a
vector π.

The objective of the work presented here is to model ac-
tions based on motor primitives. Motor primitives correspond
to individual states of the HMM. A typical approach for
using HMMs in recognition is to build a single HMM for
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each class to be recognized and then determine the class of an
unknown sample by using the maximum likelihood method.
In our work, we take another approach and represent the
whole set of actions with a single HMM, such that different
paths through the HMM correspond to different actions.
This is because many actions contain similar parts and since
the HMMs are not considering dependencies between the
observations as such, we believe that this model may account
for some of the problems caused by this. A simple example
is shown in Fig. 3. Here, both rotating and pushing an object
both require first the hand to approach the object.

As mentioned earlier, a hypothesis followed in this work is
also that more complex actions can be modeled using a set of
motor primitives. Thus, instead of making a choice between
several HMMs, the most probable path through the HMM
is sought. The path is found by the Viterbi algorithm [4], a
dynamic programming based algorithm for determining the
maximum likelihood path through a HMM given a sequence
of observations (x(1),x(2), . . .). It finds the state sequence
(ω(1), . . .) for which P (x(1), . . . ,x(T )|ω(1), . . . , ω(T )) is
maximal. We employ the computationally tractable solution
based on defining it recursively.

Fig. 3. Modeling two actions (rotate, push) using primitives.

For initial learning of the HMM parameters, an alternative
approach to the traditional Baum-Welch learning is adopted.
We assume that the training data is labeled, that is, for each
time step, the current motor primitive is known. Then, the
transition probability matrix A can be directly estimated
from the training data, as if in the case of a Markov chain
model instead of a HMM. We use the maximum likelihood
estimate, in other words, the transition probabilities are
calculated directly from the training data. The output of
the SVM is used as the observations of the HMM. The
observation probabilities need also be estimated as it is not
expected that the classifier will be able to classify all samples
correctly. Maximum likelihood estimation using the known
correct classes is also used to estimate the observation prob-
abilities. Therefore, the observation matrix B corresponds to
the confusion matrix of the classifier.

1) Action modeling using HMMs: The hypothesis in the
modeling is that each of the manipulation primitives is
generic and that their number is limited. However, the best
applicable set of primitives is not known and one of the
goals of our previous work was to study how the manipu-
lation actions can be considered in terms of primitives. In
[13], we have investigated two different models of action
representation, see Fig. 4. Approach 1 considered each of
the manipulation actions as a primitive. In addition to the

manipulation actions, two assisting actions, approach and
remove are inherent in all action sequences (see Fig. 4). The
assisting actions alleviate the segmentation of the manipu-
lation part of the action. Approach 2 considered therefore
that the manipulation part of the action can be composed of
multiple primitives. The model on the right in Fig. 4 can be
chosen based on the knowledge that the rotation and moving
the object require grasping. Our working hypothesis in [13]
was that Approach 2 would be more effective in recognizing
actions compared to the first approach. In addition it would
allow learning of new actions based on the known primitives.
Considering both approaches, an action was represented by
a separate path through the left-to-right Markov model. We
have shown how the process of embedding new actions given
primitives can be formalized.

Fig. 4. (left) Approach 1: Actions as primitives; (right) Approach 2:
Composite actions.

C. Conditional Random Fields

A conditional random field, [5] is a stochastic process
for segmenting and labeling data; it is a discriminative
framework that describes the probability of having a set
of labels S given the set of observations O, P(S|O). It is
modeled as an undirected graph G = (V,E) where each
vertex is associated with a label Si. Only vertices connected
by an edge are conditionally dependent. Although the graph
can be as complex as desired, in this work we focus on
linear CRFs, where any vertex vi is connected to the previous
and the following ones (vi−1 and vi+1). Linear CRFs are
adequate when data is a sequence O = o1, . . . , on, and
then the resulting set of labels will be also a sequence
S = s1, . . . , sn. Each si is an element of a finite alphabet γ.

At the use stage, we need to obtain the labeled sequence
with the highest probability given the set of observations O.
That probability is defined as

Pλ(S|O) =
exp

(∑
i∈1..N λi · f(s,O, i)

)
Zλ(O)

(1)

where Zλ(O) is a normalization factor of the form

Zλ(O) =
∑
s∈S

exp

( ∑
i∈1..N

λi · f(y, O, i)

)
(2)

Here, Λ = {λi, i ∈ 1..N} are the parameters that define the
CRF model (those that will we estimated at training), while
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f(s,O, i) are feature functions. Those features are used to de-
scribe the attributes of the data. The sequence of labels with
the highest probability is then found by arg maxsPλ(S|O).
Regarding training, we have a set T = {(O(i),S(i))}L

i=1.
Each S(i) is the correct labeling for the set of observations
O(i), and L is the number of training pairs. The goal of the
training algorithm is to estimate all the parameters Λ that
define the CRF model; there is one parameter per feature.
One way of determining these parameters is by maximizing
the log-likelihood function L(λ) =

∑L
i=1 log Pλ(S(i)|O(i))

1) Data representation and action modeling using CRFs:
First, the training data has to be labeled for the estimation of
the CRF parameters. The easiest way is to have an alphabet
of labels γ = {g_,r_,pf,ps,m_}; where each member of
γ represents one of the 5 actions presented in Section III.
All the observations that belong to the same action receive
the same label. This labeling approach, denoted as Format
1, was used to compare the performance of the CRF and the
HMM approach. We also perform recognition of continuous
actions where it is assumed that the observation sequence
is built of multiple actions denoted as Format 2. Here, the
label set is denoted as γ = {1, 2, 3, 4, 5, 6, 7} representing
the number of primitives. Table I shows an example of both
formats for an input sequence consisting of two actions, a
grasping and a rotation.

Once the CRF returns the most probable sequence, we
have to post-process it in order to obtain a sequence of
actions; with the first format this is trivial, since keeping
the label that received the majority of votes performs well
in most of the cases. For the second format, the approach
is more complex, as we still have a sequence of primitive
labels. Here, we make the use of regular expressions, as
our results can be seen as text strings. We match several
regular expressions and make appropriate substitutions; first
we make substitutions of the kind 1546→ r_ (full isolated
actions); second, 154 → r_ (actions without retreat); third,
actions without approach, and finally, actions without either
approach or retreat primitives, like 54 → r_. The order is
important, because if we first substitute 154 in the sequence
1546136, at the end we will have an isolated 6, which will
be considered as a mistake while in fact it is not. Table I
shows the final solution after this post-processing step.

Input sequence 1 2 5 5 5 7 7 1 1 5 5 7 4 4 6

CRF output, format 1 g_g_g_g_g_g_g_r_r_r_r_r_r_r_r_

CRF output, format 2 1 1 5 5 5 7 7 1 1 5 5 4 4 4 6

Final result g_ r_

TABLE I
FINAL RESULT FROM AN OUTPUT LABELED SEQUENCE

IV. SYSTEM DESIGN AND IMPLEMENTATION

We start by pre-processing the input data for noise removal
and continue with the SVM classification; the output is a
sequence of primitives that we use to feed a HMM and a
CRF. Two cases considered in the experimental evaluation

are i) comparison of the HMM and a linear CRF for action
recognition, and ii) the use of CRF for simultaneous seg-
mentation and classification of continuous action sequences.

A. Pre-processing

The following sensor measurements are used:
• position of the hand relative to the chest: x, y and z
• position of the index relative to the hand: x, y and z
• position of the thumb relative to the hand: x, y and z
• velocity of the hand: vx, vy and vz .

The hand and finger locations were transformed into the
chest reference frame. The position of both the thumb and
index was calculated with respect to the back of the hand.
The velocity was estimated by time differences between
two consecutive time instants. Each dimension was linearly
scaled to interval [0, 1].

B. Action recognition

The training data collected are representing ’isolated’
actions; we did not collect continuous sequences of actions.
The process of labeling complex continuous sequences of
actions for the purpose of using them as the input for
the CRF training would have to be done by hand, which
is a time-consuming task. Instead, we generate continuous
action sequences by concatenating primitive actions. While
an action always begins with an approaching an object, and
ends with a retreating of the hand in a movement involving
two consecutive actions on the same object, we do not
move away the hand after the first action and approach
again to the object, as the hand is already in the vicinity of
the object. This adds more complexity to the classification
system, as now when we mix actions and action primitives in
a sequence, some of them are very short (there are continuous
grasping actions with 5 observations) while others (mainly
rotations) are very long (some of them have more than 180
observations).

C. Classification of continuous action sequences

In order to evaluate the performance of the CRF based
approach, we compare it with the ground truth data using
Needleman-Wunsch algorithm [14] to align the sequences.
This algorithm is based on the dynamic programming ap-
proach and it is commonly used to find the most probable
global alignment between two sequences of data. We want
to measure differences in terms of the number of inserted,
deleted and misclassified actions. After running the algo-
rithm, it returns both sequences aligned in the optimal way
and a score, which gives us the similarity or dissimilarity
between both sequences, depending on a set of predefined
parameters. In Figure 5, we show an example of the best
alignment of two sample sequences; the three possible types
of errors are labeled as D (Deletion), I (Insertion) and M
(Misclassification).

Two parameters must be set, one called a gap, associated
with the weight given to an insertion or a deletion, and S, a
similarity matrix. Sij (and Sji) indicates how similar symbols
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g_r_g_pfr_pspfg_ r_r_g_r_g_ps

r_g_pfr_ pfg_pfr_r_g_r_pfps
↑
D

↑
I

↑
M

Fig. 5. Best alignment of two sequences.

ti and tj are. Each ti belong to a finite alphabet T that con-
tains all the possible symbols that can be inside the sequences
to be compared; in our case T = {g_,r_,pf,ps,m_}. The
values for both parameters in this work are gap = 1 and

Sij =
{

1 if i 6= j
0 if i = j

With these parameters, the algorithm will return the sum
of insertions, deletions and misclassified actions found after
the alignment. Different metrics could be used to obtain a
numerical measure of how good the solution is; we have
chosen the F1-score:

F1 =
2PR

P + R

where P denotes precision and R denotes recall.

V. EXPERIMENTAL EVALUATION

We gathered the training data with 10 people, performing
all actions in 12 different conditions. For each action, there
are thus 120 different samples. Based on these, we generated
240 mixed sequences consisting of actions and primitive
actions. Prior to executing the actions, the demonstrators
were given only an oral explanation of the task; for this
reason, both the inter- and cross-personal variance in the
data is high. For SVM learning the training sequences were
segmented and labeled manually.

A. HMMs and CRFs for isolated recognition

We start with a comparison of recognition rates for action
modeling using HMMs and CRFs. Although we use input
sequences with only one action, that action can be either
with or without the approach/remove part. In our previous
work, [13] we have evaluated different structures of HMMs
for action modeling. Based on that, we kept the composite
action model that performed best. We note that this model is
applicable for recognition of both composite and primitive
actions since parsing through the model and state change
depends on the probability of observations. We performed
leave-one-out cross validation for all ten cases and averaged
the results. Tables II– IV show the results in form of
confusion matrices. We added a sixth column, ’unrec’, used
to count all the actions that could not be classified. For
instance, in some cases, the CRF returns a sequence with
two different labels having the same probability; in that case,
we assume that we cannot disambiguate.

The strength of the CRFs in being able to take sev-
eral observations into account, significantly improves the
recognition of grasping actions (g_). On the other hand,

g_ r_ pf ps m_ unrec

g_ 63.8 7.5 2.5 1.7 19.1 5.4
r_ 0 98.7 0 0 1.3 0
pf 2.1 0 94.6 0.8 0.8 1.7
ps 0 1.7 4.1 56.3 37.5 0.4
m_ 0 3.4 0 5.8 90.8 0

TABLE II
HMM RESULTS FOR INDIVIDUAL ACTION RECOGNITION.

g_ r_ pf ps m_ unrec

g_ 95.9 0.5 0.5 2.2 0.9 0
r_ 0 98.3 0.4 0 1.3 0
pf 1.7 1.7 92.9 3.7 0 0
ps 2.1 0.8 5 59.2 32.9 0
m_ 1.7 1.3 0 19.5 77.1 0.4

TABLE III
CRF RESULTS FOR INDIVIDUAL ACTION RECOGNITION AND FORMAT 1.

CRFs experience more difficulty in recognizing move-to-
side actions(m_) which is often confused with push-to-side.
The explanation is that the move-to-side action is explicitly
embedded in the HMM model and requires grasping primi-
tive action to occur before the actual side movement. When
parsing through a HMM model, the right route will be taken
and the probability of recognition move-to-side rather than
push-to-side will be higher. On the other hand, when training
the CRF, inter-and cross-personal variations in performing
these two actions affect the representation more significantly.
We have also performed the evaluation of the CRF based on
the format 2 of the data. The results are shown in Table IV.
A slightly improved performance compared to format 1 can
be seen.

B. CRFs for continuous recognition

The second evaluation consisted in testing CRFs with
continuous sequences of actions, once more using the mixed
training sequences of composite and primitive action sam-
ples. For this purpose, we consider only the format 2 of the
data, as explained in Section III-C.1. CRFs are able to learn
a grammar if the training process is modeled suitably and we
can benefit from it in our case. For instance, they can learn
that having a grasping after a rotation is very common, but
that having two consecutive graspings is not probable. In our
experiments, we have constructed a few simple task models.
Each task is composed of 10 sentences, and each sentence
contains a random amount of actions, always between 3
and 10 where the actions are randomly chosen. For each
task, training and testing datasets have been made. We can
see each sentence corresponding to a specific tasks such
as, for example, serving somebody a coffee or setting up a
dinner table. Training data contains 10 samples of each task;
for each sample we have only used actions from the same
person, as this is what we anticipate will happen in realistic
applications. Test data consist of 300 sequences, each one
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g_ r_ pf ps m_ unrec

g_ 92.2 1.8 0.9 3.2 0.9 0.9
r_ 0 95 0.4 0 2.5 2.5
pf 2.1 0 91.9 3.4 0.9 1.7
ps 2.5 0 3.3 62.1 31.3 0.8
m_ 1.3 0.8 0 17.5 79.6 0.8

TABLE IV
CRF RESULTS FOR INDIVIDUAL ACTION RECOGNITION AND FORMAT 2.

following one of the tasks. For testing, actions inside the
task are chosen amongst all the people in the original dataset.
In short, we assume training with one person but test with
several. The overall averaged results are shown in Table V.

Since in the previous section we have observed that the
confusion between move to a side and push side is an
important problem, we attempted to analyze the system with
and without that specific action. Another feature analyzed
is what happens when two consecutive actions are equal;
the hypothesis is that if both actions are action primitives,
they will be mixed and then, the number of deletions when
estimating the final classification results will increase.

Test With m Repeat actions F1 score
1 No No 92.6
2 Yes No 84.8
3 No Yes 92.8
4 Yes Yes 85.2

TABLE V
CRF RESULTS FOR CONTINUOUS SEQUENCES

From the results in Table V, it can be seen that the
difference between having and omitting move-to-side action
is significant. The results also show that when we consider
repeated continuous actions results are worse which means
that the segmentation and recognition can be performed
simultaneously. The fact that they are even a bit better in this
case is that the training and test data are different compared
to the previous experiment.

Although comparing results for individual and continuous
recognition is not completely fair, as data representation
differs, we see that continuous recognition is still rather good.
Moreover, these results can be considered as a lower bound
of the results we would obtain in a real scenario. This is
due to the fact that many consecutive continuous actions are
mixed, and in the solution they appear as only one action. For
instance, a primitive grasping action followed by a primitive
rotation action on the same object can be considered as
a single composite rotation action. This suggests that, for
future work, a hierarchical model may be considered.

VI. CONCLUSIONS

We have presented a system for modeling and recogni-
tion of primitive and composite actions using generative
and discriminative machine learning approaches. We have

started by using support vector machines for primitive action
classification and integrated this with models that can take
care of the temporal aspects of actions, namely hidden
Markov models and conditional random fields. We have built
upon our previous work where only hidden Markov models
where considered for isolated action recognition - apart from
using the conditional random fields we are also investigating
their use in a continuous action recognition scenario. We
follow the assumption that we can build a system consisting
of different sensory primitives from which more complex
actions can be built. These sensory primitives should be
natural and easily used in programming motor primitives for
robots.

The experimental evaluation performed with seven prim-
itives and five composite actions is based on the training
data obtained with ten people in twelve different conditions.
The recognition rates on isolated actions show similar per-
formance between hidden Markov models and conditional
random fields, with latter having the capability of classi-
fying very short activities due to the ability of modeling
the dependence between the observations. In the case of
the continuous action recognition, conditional random fields
show high recognition rates.
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