
Embedded Auditory System for Small Mobile Robots

Simon Brière, Jean-Marc Valin, François Michaud, Dominic Létourneau

Abstract— Auditory capabilities would allow small robots
interacting with people to act according to vocal cues. In our
recent work, we have demonstrated AUDIBLE, an auditory
system capable of sound source localization, tracking and
separation in real-time, using an array of eight microphones and
running on a laptop computer. The system is able to localize and
track up to four sources, while separating up to three sources in
real-time in noisy environments. Signal processing techniques
can be quite computer intensive, and the question of making it
possible for this system to run on platforms that cannot carry
a laptop computer onboard can be raised. This paper reports
our investigation of the appropriate compromises to be made to
AUDIBLE’s implementation in order to port the system on an
embedded DSP (Digital Signal Processor) platform. The DSP
implementation is fully functional and performs well with minor
limitations compared to the original system i.e., limitations on
sound source duration and on the number of sources that can be
processed simultaneously. Results demonstrate that it is feasible
to port AUDIBLE on embedded platforms, opening up its use
in field applications such as human-robot interaction in real
life settings.

I. INTRODUCTION

Localizing sound sources in our surroundings, or under-

standing somebody talking while moving in a crowd, are

common in human interactions in real life. For a robot,

however, such ability is not easily reproduced, having to

deal with ambient noise and mixed sound sources. In the

recent years, interest on artificial robotic audition has grown

continuously, as it can be seen from the increasing number

of robots exploiting such sense such as COG [1], SIG and

SIG2 [2] and Spartacus [3], [4].

AUDIBLE is the name of the audition system used on

Spartacus, developed to solve the problems of simultaneous

sound sources localization, tracking and separation (SSLTS)

[5], [6], [7], [8]. The system works in real-time using eight

microphones, and is able to localize, track and separate

simultaneous sound sources [9]. AUDIBLE was tested and

demonstrated in various environments, such as the AAAI

2005 [3] and 2006 Mobile Robot competitions [10].

AUDIBLE is designed from ground up to run on a regular

laptop, and requires most of its processing power. With lim-

ited processing capabilities on a robot, AUDIBLE takes up

Support for this work is provided by the Natural Sciences and Engineering
Research Council of Canada, the Fonds Québecois de la Recherche sur la
Nature et les Technologies, the Canada Research Chair program and the
Canadian Foundation for Innovation.

S. Brière, D. Létourneau and F. Michaud are with the
Department of Electrical Engineering and Computer Egineering,
Université de Sherbrooke, 2500 boul. Université, Sherbrooke,
Québec CANADA Simon.Briere@USherbrooke.ca

Francois.Michaud@USherbrooke.ca

Dominic.Letourneau@USherbrooke.ca

Jean-Marc-Valin is with the CSIRO ICT Centre, Sydney AUSTRALIA
Jean-Marc.Valin@USherbrooke.ca

resources that cannot be used for other robotic tasks, such as

vision. Adding a dedicated laptop requires space and energy,

adds weight and increases cost, requirements that are not

always easily met, especially for compact-size robots used

for instance for vacuuming (e.g., Roomba from iRobot inc.)

or to study human-robot interaction with autistic children or

with toddlers [11]. Having the robot localize and track vocal

cues would increase the interaction level with the persons

involved. Separating multiple sound sources could provide

cleaner audio stream to embedded speech recognition system

(such as the Sensory Voice Direct II Toolkit), for improved

performance. Our long-term objective is to have a compact,

light, cheap and low power consumption SSLTS system to

make such capabilities work on small mobile robots.

In this work, we investigate porting AUDIBLE on a DSP

(Digital Signal Processor) board. The porting process is not

straightforward, and design choices must be made affecting

specific elements in AUDIBLE’s implementation to allow the

DSP version to work. The paper briefly explains the original

system, putting in perspective the design choices required

to build a functional embedded version of AUDIBLE. It

also presents the design choices made when porting it to a

DSP and the observed performance of these design choices.

Finally, perspectives on how to improve this implementation

are also outlined.

II. ORIGINAL AUDIBLE SYSTEM

The AUDIBLE system, illustrated in Fig. 1, is composed

of a sound source localization subsystem that detects, lo-

calizes and tracks sound sources in the environment, and a

sound source separation subsystem that uses the localization

information to separate each source. The sampling rate used

in the original system is 48 kHz. Speech recognition is

not done by the system itself, but occurs at a subsequent

stage. More specifically, AUDIBLE acts as a pre-processing

module that provides sound source localization information

and separated audio streams to other decisional modules.

A. Sound Source Localization

The sound source localization subsystem is described in

[7], [9]. It consists of an initial localization step based on the

steered response power algorithm and a tracking step that is

performed using particle filtering. For the steered response

power algorithm, the source direction is initially searched on

a 2562-point spherical grid. The direction can be searched

efficiently using only N (N − 1) /2 sums per grid point :

direction = argmax
d

N−1
∑

i=0

i−1
∑

j=0

Ri,j

(

lookupi,j [d]
)

(1)

2008 IEEE International Conference on
Robotics and Automation
Pasadena, CA, USA, May 19-23, 2008

978-1-4244-1647-9/08/$25.00 ©2008 IEEE. 3463

Fig. 1. Overview of AUDIBLE

where lookupi,j [d] is a lookup table that returns the time

delay of arrival TDOA between microphones i and j for

the searched direction d and Ri,j is the relevance-weighted

phase transform (RWPHAT) [7], [5], which is computed as:

Rij(τ) =
L−1
∑

k=0

ζi(k)Xi(k)ζj(k)Xj(k)∗

|Xi(k)| |Xj(k)|
e2πkτ/L (2)

where ζi(k) is the Wiener gain for frequency k that takes

into account both the noise and reverberation. Once a sound

source is found using (1), it is possible to find subsequent

sources, by forcing

Ri,j

(

lookupi,j [direction]
)

= 0,∀i,∀j (3)

The search process is repeated to find a preset number

of sources, which leads to false detections when fewer

sources are present. The search in (1) is based on the far-

field assumption (large distance to the array) with a grid

that provides a maximum error of 2.5◦ (best case), which

corresponds to the radius covered by each of the 2562 regions

around its center.

It is however possible to improve the resolution by per-

forming a refined search, constrained to the neighborhood of

the first result found. In this second search, we can include

the distance. While this distance estimate is not reliable

enough to be useful, it helps improve the direction accuracy.

In addition to the refining stage, most floor reflections can

be eliminated by having the search exploit the fact that a

reflection always has the same azimuth as the direct path,

but with a higher absolute elevation.

The direction information found by the steered beam-

former contains a large number of false positives and false

negatives. Moreover, (1) is memoryless and is thus unable to

keep track of sources over time, especially when there are

gaps in the localization data for a source. For this reason, we

use a particle filtering stage. The choice of particle filtering is

motivated by the fact that taking into account false positives

and false negatives makes error statistics depart significantly

from the Gaussian model. Each source being tracked is

assigned a particle filter and each observed direction in (1)

is assigned to a tracked source using a probabilistic model

[7]. By using the simple sample importance resampling (SIR)

algorithm, it is possible to use 1000 particles per source while

maintaining a reasonable complexity.

B. Sound Source Separation

The sound source separation subsystem [6], [9] is also

composed of a linear sound source separation algorithm,

followed by a non-linear post-filter. The initial linear source

separation is achieved using a variant of the Geometric

Source Separation (GSS) algorithm [12] that operates in real-

time and with reduced complexity [6].

The GSS algorithm alone cannot completely attenuate the

noise and interference from other sources, so a multi-source

post-filter is used to improve the signals of interest. The post-

filter is based on the short-term spectral amplitude estimator

originally proposed by Ephraim and Malah [13]. Unlike

the classical algorithm, the noise estimate used is the sum

of two terms: stationary background noise and interference

from other sources. The interference term is computed by

assuming a constant leakage from the other sources [14].

III. EMBEDDING AUDIBLE ON A DSP

A. Hardware

The first task in porting the original system consists of

selecting the embedded platform. Standard control processors

(like PICs from Microchip) do not have enough computa-

tional power to process AUDIBLE’s algorithm, and computer

processors require a lot of electrical power to work. On the

other hand, FPGA (Field-Programmable Gate Array) can

be used to implement parallel algorithms, but it is hard

to estimate the number of gates required for AUDIBLE,

and the cost quickly increases with large number of gates.

Therefore, the more promising option for this first embedded

implementation is to use processors designed specifically for

signal processing, i.e., DSP.

Because AUDIBLE’s algorithm uses a lot of floating-

point operations, we chose to use a floating-point DSP,

more specifically the TMS320C6713 Texas Instruments DSP.

The use of a fixed-point DSP is also possible, but would

require more time to adapt the code for the processor. The

TMS32C6713 is a 225 MHz floating-point processor with

256 kBytes of internal RAM memory with L1 and L2 cache

support. According to the specifications, the processor is

rated at 1800 MIPS and 1350 MFLOPS, and its architecture

is optimized for audio processing, providing a bus to quickly

transfer data between memory and external interfaces.

To capture the signals coming from the microphones, syn-

chronized eight-channel analog-to-digital converters (ADC)

are required to provide aligned audio frames. A communi-

cation interface is also required to transfer the processed

data to a host system, typically a different computer on a

robot. With all these considerations in mind, we chose to

use a Lyrtech1 CPA-II board .This board has 24 bits analog-

to-digital converters supporting sampling frequencies from

32 kHz to 192 kHz. The board also provides 64 Mbytes

of external memory (SDRAM, running at 100 MHz). It has

a USB2 interface that provides the communication channel

needed to transfer the processed data to the host system.

The physical size of the CPA-II board is not an issue at

1http://www.lyrtech.com

3464

this point, since we could design a smaller board once the

software development on the DSP is completed.

B. Porting AUDIBLE on a DSP

The first step toward porting the original AUDIBLE im-

plementation to the DSP is to convert the original C++ code

into C code, which is better optimized by the DSP compiler.

It is also necessary to remove dependencies to specialized

libraries to carry out specific operations (e.g., FFTs), and

find an equivalent way of implementing them on the DSP.

Since the functions used in AUDIBLE are common in signal

processing, this is done with a library included with the DSP.

The second step is to verify the accuracy of the code

conversion. We use pre-recorded microphone signals that are

injected in the DSP using an emulator. At various stages of

the algorithm, the data coming out is validated to ensure it

is the same as the data processed by the original system.

The last step is to optimize the code for real-time process-

ing. In order to achieve real-time performance, a processing

loop has to be under 10.66 ms (sampling at 48 kHz) or

under 16 ms (sampling at 32 kHz). Optimization is done by

using specific functions for the DSP and by modifying the

loops to take advantage of the VLIW (Very Long Instruction

Word) architecture that allows faster parallel calculations. At

this stage, it becomes apparent that memory management is

a critical element on the DSP. Internal memory is fast but

limited, and external memory is slow but large. Since the

algorithm uses a lot of tables (e.g., a 71736-bytes table is

required to perform an accurate localization on a 2562 point

grid around each microphone), it is impossible to fit all the

code, the tables and the stack at the same time in the internal

memory.

Fig. 2. Memory mapping of AUDIBLE-DSP.

The memory mapping used is shown in Fig. 2. L2 cache

(64 kbytes) is enabled to accelerate repeated external mem-

ory access. The memory section containing the program

instructions (code section in the figure, around 93 kbytes) is

placed in the internal memory for quick and repeated access.

Because of the structure of the system, a large stack (around

42 kbytes) is used to allocate local variables. A section of the

internal memory (around 42 kbytes) is reserved for general

temporary buffers to speed some sections of the code. A

small section of the internal memory is reserved for the

interrupt vectors (512 bytes) and for the heap (2 kbytes).

The external memory is mostly used as an audio buffer, large

variables and for the large tables required by the algorithm,

which currently uses around 10 Mbytes.

Because external memory is needed to store large tables

that are accessed randomly – and thus cannot be properly

cached – and because code optimization was done at the

C level rather than at the assembly language level, the

DSP implementation could not meet the same real-time

performance of the original system, i.e., processing up to four

sources at the same time with a sampling rate of 48 kHz. To

allow the DSP implementation to process audio streams in

real-time, the following modifications had to be made:

1) Sampling rate: In the original system, a sampling rate

of 48 kHz was used. Using a 50% overlap for the separation

subsystem and a frame size of 1024 samples, the processing

is done in under 10.66 ms. In the DSP implementation, the

sampling rate is lowered to 32 kHz, giving 16 ms for the

maximum processing time between two 1024 samples frames

with a 50% overlap.

2) Number of localized and separated sources: The num-

ber of localized and separated sources is brought down to 2

instead of the original value of 4.

3) Directional refining: In the original system, a direction

refining process is done when a source is found, as described

in [7] and in Section II. This requires extensive calculations,

and has been removed from the DSP implementation.

4) Particle filters: The number of particles used in the

particle filters is reduced empirically to 500 instead of the

1000 used in the original system.

5) Buffering: In order to keep up with real-time con-

straints even when the processing time is over 16 ms, we now

use a super-frame technique that mainly consist of buffering

frames and to process them when there is time. In the current

implementation, a buffer of 200 frames is used. If, however,

there is currently no sources being tracked and separated and

the number of buffered frames gets over a threshold set to

25, the buffer is flushed. This is done in order to provide a

good responsiveness of the system.

6) Position refreshing: In the original system, the posi-

tions of the sources were refreshed every 4 frames. This

is a costly operation in terms of computational processing,

and it is thus reduced to once every 5 frames on the DSP

implementation.

These parameters are set empirically, because our objec-

tive for now is to evaluate feasibility. Work is currently

underway to characterize in details the influence of each

parameters of the different subsystems.

IV. RESULTS

To correctly rigorously evaluate the performance of our

DSP implementation, we have to test each subsystem of

AUDIBLE: localization, tracking and separation. We also

have to collect information on the processing time of each

subsystem in order to identify time-critical portions of the

DSP implementation for future optimization. All tests are

done using the original system parameters, with no optimiza-

tion of the implementation’s parameters for the specific test

cases.

The experimental setup is shown in Fig. 3. Since some

of the tests involve recorded sounds, an amplifier and two

speakers positioned around the microphone array are used

as sound sources. The microphone array is mounted on a

3465

cube, and each microphone is attached to one corner of

the cube. Each microphone has a configurable gain. This

gain is adjusted so that each microphone has the same

amplitude with a given reference signal. The signal from

each microphone is connected both to the ADC of the DSP

board and to a capture card installed on a laptop.

Tests are conducted in a typical lab environment with

people working as usual. No effort was done to reduce

the background noise (ventilation system, chairs, computers,

people and printer). Therefore, tests were conducted in

noisy conditions, similar to what can be found in office-like

environments. Laptop 1 runs the original AUDIBLE system,

while Laptop 2 serves as a client system for the DSP. Laptop

2 is connected to the DSP using USB2. Each laptop records

the reported sources position over time and each separated

stream. Comparison of the two systems is possible because

both are connected to the exact same microphone array. Each

system having its own capture board, there is a different level

of noise added in the signals during the sampling process. It

is however assumed that this noise is negligible compared

to environmental noise, making the differences observed

between the original AUDIBLE system and the DSP system

attributable only to the setup that produced the results.

Fig. 3. Diagram of our experimental setup.

A. Processing Time

The first test on AUDIBLE-DSP measures processing time

in different conditions. The timings are calculated using the

internal DSP timer, averaged over a 5-second period. The

results are shown in Table I. “Source” refers to a source being

separated, while “filter” refers to a source being tracked. The

Best Case time refers to the moment when the localization

positions are not being refreshed (4 out of 5 frames). The

Worst Case time refers to the moment when the positions

are being refreshed (1 out of 5 frames). Some states are not

possible and are not displayed in the table. The Idle time,

tidle, is defined as the amount of time the system is not doing

anything over a 80 ms period (5 frames). The objective is

to have a positive tidle, since if the time is negative, the

system has to buffer the frames for later processing, thus

increasing the latency of the system. toverflow, the maximum

time before frame dropping occurs, can be calculated using

(4):

toverflow =
Buf · L · tmax

|tidle| · fs
(4)

where Buf is the buffer size (200 frames), L is the frame

length (1024), tmax is the maximum time available to process

TABLE I

PROCESSING TIME OF AUDIBLE-DSP

Status Best Worst tidle toverflow

Case (ms) Case (ms) (ms) (s)

0 source, 0 filter 8.5 25.6 20.4 ∞

0 source, 1 filter 8.5 29.1 16.9 ∞

0 source, 2 filters 8.5 33.3 12.7 ∞

1 source, 1 filter 12.2 32.8 -1.6 64
1 source, 2 filters 12.2 37.0 -5.8 17.7

2 sources, 2 filters 15.0 39.8 -19.8 5.2

TABLE II

DETECTION RELIABILITY

Sound Original system DSP

Hand clap 100% 65%
Voice 100% 100%
Noise 100% 100%

a frame (16 ms) and fs is the sampling rate (32 kHz).

According to these results, the DSP system is able to

process 64 seconds of speech without frame dropping when

there is one source being separated and tracked, but is

only able to process 5.2 seconds while 2 sources are being

separated and tracked. There is an increasing delay in the

response of the system as the buffer is filling up, but the

system is still able to operate in real-time. Negative Idle times

indicate that the DSP implementation is dropping frames

in these conditions, which may affect the quality of the

separated streams and the precision of the position of the

sound sources. Using a bigger frame buffer would delay the

overflow, but would increase system latency.

Note that these times cannot be compared to the timing

of the original system. Since that system runs on Linux (a

non-real-time operating system), it is difficult to evaluate

precise execution time of specific functions because there is

no guarantee that a specific function will not be interrupted

by the system scheduler.

B. Detection

Only one loudspeaker is used for this test. We consider

sound source detection to be reliable if the system can

detect every sound sources in its vicinity and if it is able

to roughly localize it with a precision of 10◦ at distance of

1 meter. The loudspeaker is positioned on a 1-meter radius

circle centered in the middle of the microphones array. The

loudspeaker is placed at a height of 46 cm from the center

of the microphone array, which is the origin of the positions

reported by the localization system. The circle is divided

into 16 equal sections of 22.5◦ each, starting at 0◦. A pre-

recorded audio stream consisting of 30 sounds is then played

by the loudspeaker in each of the 16 positions on the circle.

The audio stream is made of three types of sounds: hand

clap, voice command (2 sec) and white noise burse (100

msec). Ten samples of these sounds occurring in sequence

make the test stream.

Table II summarizes the results. The original system

3466

TABLE III

LOCALIZATION ACCURACY DIFFERENCE BETWEEN THE DSP AND THE

ORIGINAL SYSTEM

Sound Azimuth Elevation

Hand clap -1.8
◦ -2.1

◦

Voice -1.9
◦ -2.6

◦

Noise -2.2
◦ -2.9

◦

Average -2.0
◦ -2.6

◦

obtains a perfect score for the detection of each sound type.

The DSP implementation also gets 100% detection for the

voice and noise sounds, but does not perform as well with

hand claps. This is caused by the position refreshing rate

which is set at 1 every 5 frames for AUDIBLE-DSP. This

statement has been verified by setting the refresh rate to the

original value, bringing back a perfect score in detecting hand

claps.

C. Localization

Using the same test setup of Section IV-B, two measures

are taken in these trials to characterize AUDIBLE-DSP’s

localization capability: the accuracy of the azimuth angle

of the detected sources, and the accuracy of their elevation.

The root mean squared error is calculated by evaluating

the difference between the angles returned by the DSP

implementation and the original system.

The results shown in Table III represents the difference

in localization accuracy between the DSP and the original

system. On average, the DSP implementation is less ac-

curate by 2.0◦ on azimuth and by 2.6◦ on elevation. The

difference between the accuracy of the two systems comes

mainly from the removal of the direction refining phase in

the DSP implementation. By doing so, processing time is

reduced, but so is accuracy. Considering that the original

system accuracy is around 1.1◦ (azimuth) and around 0.89◦

(elevation) [9] in a similar environment, the global error of

the DSP implementation can be estimated as 3.1◦ (azimuth)

and 3.5◦ (elevation). Nonetheless, the accuracy obtained is

sufficient for most applications and is similar to the human

ear’s accuracy [15], which ranges between 2◦ and 4◦ in

similar conditions.

D. Tracking

In this test, instead of using a static loudspeaker, two

persons are asked to walk at normal speed on a 2-meter ra-

dius circle around the microphones array, walking at normal

speed and reading standard French text at normal pace. The

tracking testing is done in two phases. In the first phase, the

persons start at a precise position (90◦ for the first person

and −90◦ for the second one), walk 90◦ to their right and

then 180◦ to their left. This allows us to find the accuracy

of the tracking in the case where the sound sources are not

crossing. In the second phase, the persons start at a precise

position (180◦ and 0◦) and one walk 180◦ to the left and the

other 180◦ to the right, crossing at 0◦.

Fig. 4. Tracking results with two person. In a), the non-crossing path test,
AUDIBLE to the top, AUDIBLE-DSP to the bottom. In b), the crossing
path test, AUDIBLE system to the top, AUDIBLE-DSP to the bottom.

The resulting paths are shown in Fig. 4. Naturally, the tra-

jectories tracked by the original system are smoother because

the localization refresh rate is greater. At the crossing point,

the DSP implementation also seems to confuse sound sources

for a short time. These are probably caused by the reduction

of the number of particles in the filters and the removal of

the direction refining phase in the localization subsystem.

However, even if the paths from the DSP implementation are

less precise, the tracking is efficient because both speakers

can clearly be tracked.

E. Separation

To characterize the separation subsystem, two fixed loud-

speakers were placed at the following locations: 0◦ and

−90◦, −90◦ and 135◦, 0◦ and 135◦. Three trials were con-

ducted with a stereo recording made of 100 four-digit strings

spoken by a mix of different speakers (half are female, half

are male). We perform the tests using two sources of data:

digits from the AURORA database [16] and recordings from

volunteers. The original AUDIBLE localization subsystem is

optimized for sampling rates over 20 kHz. Since separation

is linked to the accuracy of the localization, samples from the

AURORA databases (sampled at 8 kHz) are not well-suited

to characterize the system, while the speech recordings from

volunteers (sampled at 48 kHz) fits the optimization scheme

of AUDIBLE.

In both case, the stereo stream is made of two simul-

taneous four-digits strings, one on the left channel and

one on the right channel. The audio streams separated by

AUDIBLE (original and DSP) are then sent to NUANCE

automatic speech recognition (ASR) system2 running on an

external laptop. That way, the same ASR is used for both

systems and the results can thus be compared. NUANCE’s

parameters were adjusted so that speech recognition accuracy

on the individual digit strings (taken from AURORA and

from volunteers) is 100%. Therefore, the speech recognition

2http://www.nuance.com

3467

system is used here to assess the quality of the separation of

AUDIBLE in its original and DSP implementations.

TABLE IV

RECOGNITION ACCURACY OF THE SEPARATION SUBSYSTEM

Digit recognition rate

Tests Original DSP

M F Average M F Average

AURORA 84% 80% 82% 83% 80% 82%

(8 kHz)

Volunteers 95% 91% 93% 91% 88% 90%
(48 kHz)

Table IV shows the results of the separation subsystem

(separation plus post-filtering modules). The recognition rate

is calculated using each recognized digits in the strings,

not strings as a whole. Results are compiled for both male

(M) and female (F) voice recordings, and averaged over

the two. Both the original and the DSP implementations

work well with male and female voices, having at worst a

4% difference. With the 48 kHz samples corresponding to

real life samples, the original system has an average 93%

recognition rate and the DSP implementation has an average

90% recognition rate, which is still very good. In spite of

the design compromises made, the separation performance

of the DSP implementation is quite acceptable.

V. CONCLUSIONS AND FUTURE WORKS

By conducting this investigation on how AUDIBLE can be

ported on a DSP implementation, this paper reports that such

goal is feasible with acceptable localization, tracking and

separation performances, by decreasing the sampling rate of

the system to 32 kHz, using 500 particles for tracking with no

direction refining, processing two sources simultaneously and

using a super-frame technique to compensate for the limited

internal memory on the embedded platform. AUDIBLE-

DSP is capable to provide real-time localization, tracking

and separation of short speech commands and audible cues.

This study also contributes in outlining the influence of key

elements of AUDIBLE’s algorithm on localization, tracking

and separation performances. The original AUDIBLE system

was first designed with the objective of integrating the ap-

propriate processing modules so that the system could work

in real-time on a mobile robot operating in unconstrained

conditions. While demonstrating that the system could be

ported on an embedded platform to extend its usage to small

robots, we also characterize the effect of specific elements

of AUDIBLE’s algorithm on its performance. Therefore, our

paper also describes a methodology to conduct a comparative

study of such auditory systems, with data that could benefit

other comparative work.

Further works on the embedded system will aim at im-

proving the performances of the system. Surely, a floating-

point DSP with a larger internal memory would be beneficial.

But now that we have a first embedded implementation,

it may be worth investigating the combination DSP/FPGA,

or even only the use of a FPGA, to improve processing

speed and capabilities. Another option is to transfer the

system on a fixed-point DSP to take advantage of lower

power consumption, lower cost, higher internal clock and

larger internal memory that such a processor provides. An

embedded DSP solution (such as NUANCE’s VoCon SF)

could also be used for ASR. The main underlying objective

of such improvements is to eventually come up with small,

inexpensive and versatile auditory systems allowing to easily

benefit from the advantages of hearing on all kinds of robots

and systems operating in the real world.

REFERENCES

[1] R. Brooks, C. Breazeal, M. Marjanovie, B. Scassellat, and
M. Williamson, “The Cog project: Building a humanoid robot,”
Computation for Metaphors, Analogy, and Agents, vol. C. Nehaniv,
Ed. Spriver-Verlag,, pp. 52–87, 1999.

[2] M. Murase, S. Yamamoto, J.-M. Valin, K. Nakadai, K. Yamada, K. K.,
T. Ogata, and H. G. Okuno, “Multiple moving speaker tracking by
microphone array on mobile robot,” in Proc. European Conf. on

Speech Communication and Technology (Interspeech), 2005.
[3] F. Michaud, C. Côté, D. Letourneau, Y. Brosseau, J.-M. Valin,

E. Beaudry, C. Raievsky, A. Ponchon, P. Moisan, P. Lepage, Y. Morin,
F. Gagnon, P. Giguere, M.-A. Roux, S. Caron, P. Frenette, and F. Ka-
banza, “Spartacus attending the 2005 AAAI conference,” Autonomous

Robots (Springer), vol. 22(4), pp. 369–384, 2007.
[4] S. Brière, D. Létourneau, M. Fréchette, J.-M. Valin, and F. Michaud,

“Embedded and integration audition for a mobile robot,” in Proc. AAAI

Fall Symposium Workshop Aurally Informed Performance: Integrating

Machine Listening and Auditory Presentation in Robotic Systems, vol.
FS-06-01, 2006, pp. 6–10.

[5] J.-M. Valin, F. Michaud, and J. Rouat, “Robust 3D localization and
tracking of sound sources using beamforming and particle filtering,”
in Proc. Int. Conf. on Acoustics, Speech and Signal Processing, 2006,
pp. 221–224.

[6] J.-M. Valin, J. Rouat, and F. Michaud, “Enhanced robot audition based
on microphone array source separation with post-filter,” in Proc. IROS,
2004.

[7] J.-M. Valin, F. Michaud, and J. Rouat, “Robust localization and
tracking of simultaneous moving sound sources using beamforming
and particle filtering,” Robotics and Autonomous Systems, vol. 55,
no. 3, pp. 216–228, 2007.

[8] J.-M. Valin, S. Yamamoto, J. Rouat, F. Michaud, K. Nakadai, and
H. Okuno, “Robust recognition of simultaneous speech by a mobile
robot,” IEEE Trans. on Robotics, vol. 22(4), pp. 742–752, 2007.

[9] J.-M. Valin, “Auditory system for a mobile robot,” Ph.D. dissertation,
Université de Sherbrooke, 2005.

[10] F. Michaud, D. Létourneau, M. Frechette, E. Beaudry, and F. Kabanza,
“Spartacus, scientific robot reporter,” in Proc. AAAI Mobile Robot

Workshop, 2006.
[11] F. Michaud, T. Salter, A. Duquette, and J.-F. Laplante, “Perspectives

on mobile robots used as tools for pediatric rehabilitation,” Assistive

Technologies, Special Issue on Intelligent Systems in Pediatric Reha-

bilitation, vol. 19, pp. 14–29, 2007.
[12] L. C. Parra and C. V. Alvino, “Geometric source separation: Merging

convolutive source separat ion with geometric beamforming,” IEEE

Trans. on Speech and Audio Processing, vol. 10, no. 6, pp. 352–362,
2002.

[13] Y. Ephraim and D. Malah, “Speech enhancement using minimum
mean-square error short-time spectral amplitude estimator,” IEEE

Trans. Acoustics, Speech and Signal Processing, vol. 32, no. 6, pp.
1109–1121, 1984.

[14] J.-M. Valin, J. Rouat, and F. Michaud, “Microphone array post-
filter for separation of simultaneous non-stationary sources,” in Proc.

International Conf. on Acoustics, Speech, and Signal Processing, 2004.
[15] B. Rakerd and W. M. Hartmann, “Localization of noise in a reverberant

environment,” in Proc. International Congress on Acoustics, 2004.
[16] D. Pearce, “Developing the ETSI aurora advanced distributed speech

recognition frontend & what next,” in Proc. IEEE Automatic Speech

Recognition and Understanding Workshop, 2001.

3468

