
Abstract—This paper proposes a robust method to estimate 
sound direction for mobile robot interface. In contrast to other 
methods, the proposed method estimates sound direction at 
intervals of short time to deal with deterioration by movement 
of sound source or robot. The two methods, discrete Kalman 
filter and time delay of arrival (TDOA) using generalized 
cross-correlation (GCC), are combined by quantifying 
reliability of TDOA. The combination prevents the 
deterioration by low power of signals, noise, and reverberation 
because discrete Kalman filter efficiently filters out such effects. 
The result of experiments, in which mobile robot estimates 
azimuth angle with three microphones, shows that the proposed 
method provides robustness on estimating sound direction even 
if the sound source or robot is moving during estimation 
procedure.  

I. INTRODUCTION

ECENTLY, robots have more commercial applications as 
it becomes more intelligent and human-like. Especially, 

human-like activity and interface is more important to 
domestic robot, and therefore human and robot interaction 
(HRI) has been widely researched enormously [1-6].  

Among the researches, we think sound localization or 
sound direction estimation is very helpful for robot to interact 
with human. Because robots are designed to use multiple 
users and assumed to move automatically, the first interaction 
between human and robot will be the calling for attention (Fig. 
1). After calling procedure, the sound direction estimation 
can be used to improve the speech recognition process or 
speaker identification as a means of spatial filter.  

Three possible approaches are mainly used to estimate 
sound direction. 1) Maximizing the steered response power of 
a beamforming [6]. 2) Estimating high resolution spectral 
density [7]. 3) Using time delay of arrival (TDOA) [5]. The 
first method is very robust to noise and interference, the 
second is easy to interpret with probability density for 
multiple sound sources, and the third has low computational 
cost that means it can be operated in real time.   

However, the state-of-the-art algorithms for estimating 
sound direction have not considered deteriorations by 
movement of sound source and robot seriously. If a mobile 
robot with differential drives is turning when a user calls the 
robot, then the movement will decrease the performance of 
sound direction estimation.  
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This paper proposes a robust method to estimate sound 
direction for mobile robot interface. A mobile robot equipped 
with three microphones estimates direction of arrival (DOA) 
of sound at intervals of short time to deal with deterioration 
by movement of sound source or the robot.  

Fig. 1 (a) The calling procedure for attention of robot (b) 
After calling procedure, continuous tracking of speaker 
can improve the performance of speech processing. 

As a result of estimating DOA of sound at intervals of 
short time, some unreliable estimation can be occurred. The 
main causes are low power of signals, noise, and 
reverberation. Practically, the unreliable DOA estimation 
may produce unexpected behaviors and it is the motivation of 
robust methods such as averaging multiple results [5] and 
rejecting after outlier detection [11].  

We get hint from rejecting after outlier detection to 
address the robustness problem. Two values, the maximum 
peak and ratio of the values of the first and second largest 
peak in the GCC function, can be selectively used to detect 
outliers. Based on the values, we suggest the reliability 
network to quantify the confidence of result of TDOA.  

The grid based method determines a most probable DOA 
using three GCC estimation results, and finally Kalman filter 
predicts DOA using the quantified reliability and the 
estimation result from the grid method. By modeling the 
measurement noise using quantified reliability, the Kalman 
filter prevents the deterioration by estimating at intervals of 
short time.  

The remainder of this paper is organized as follows. 
Section II reviews the principle of the DOA estimation 
between two microphones and discrete Kalman filter to give 
backgrounds for the paper. Section III provides the 
description of the proposed method. Section IV reports the 
experimental results of the proposed method which shows the 
robust characteristics in the estimation of the DOA. Finally, 
the concluding remark is given in section V.  
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II. BACKGROUND

This section describes two techniques to provide the 
backgrounds of the paper. The first is estimating DOA of 
sound using two spatially separated microphones. The second 
is discrete Kalman filter which are widely used to estimate 
unknown state with noisy data. More detailed descriptions 
can be found in the literatures [5], [12].  

Fig. 2 The relationship between DOA  and time lag :
The DOA  can be directly calculated by the time lag .

A. DOA Estimation 
Fig. 2 describes the DOA estimation of sound with two 

spatially separated microphones. In the case, TDOA method 
(estimating time delay between two microphones), which has 
very long history in signal processing, is generally used and 
the DOA of sound is estimated by directly calculating 
following trigonometrical function  

1cos
m

c
d

,  (1) 

where c  is the sound velocity and md  is the distance 
between microphones [5], [8], [9].  

The cross-correlation [8] between two signals is mainly 
used to determine the estimated time delay 

1 2 1 2( ) [ ( ) ( )]s sR E s t s t , (2) 

where  1( )s t  and 2 ( )s t  are signals emanating from same 
remote source, and E  denotes expectation.  

Considering the realistic finite observation time, the cross 
correlation can be estimated by  
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T
s sR s t s t dt

T
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where T  represents the observation interval. Generally, in 
order to improve the accuracy of the delay estimate ˆ , it is 
desirable to prefilter 1( )s t  and 2 ( )s t  prior to the integration 
in (3). This generalized method is called as generalized 
cross-correlation (GCC) and defined as follows 
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( ) 2ˆˆ ( ) ( ) ( )g j f
s s g s sR f G f e df , (4) 

where, 
1 2

ˆ ( )s sG f  is the estimated cross power spectral density 

and 
1 2

ˆ( ) ( )g s sf G f  is the cross power spectrum between the 
filtered signals.  

 In the literature, GCC with PHAT weight filter provides 
the best performance in the noisy and reverberant 
environment [9].  
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Therefore, the DOA can be calculated by (1) with time 
delay ˆ with the maximum peak in the GCC-PHAT function 

1 2

( )ˆ arg max ( )g
s sR , (6) 

where ( )g f  is given by (5).  

B. Discrete Kalman Filter 
The discrete Kalman filter is widely used to address the 

general problem of trying to estimate the state nx  with 
the measurement mz  using following relationship 

1 1 1k k k k

k k k

x Ax Bu w
z Hx v

, (7) 

where, w  and v  are the process noise and measurement 
noise respectively, and assumed to have normal probability 
distribution (0, )N Q  and (0, )N R  respectively. The matrix 
A specifies how the state evolves in a step, matrix B relates to 
the control input u  to the state x , and matrix H relates the 
state to the measurement.   

The discrete Kalman filter algorithm minimizes the effect 
of w  and v  in recursive manner and predicts the state using 
(7). The detailed procedure is very similar to recursive least 
square procedure as described in following paragraphs. 

Let ˆkx  denote a priori estimated state at step k  using 

knowledge of the process prior to step k , and ˆkx  denote a

posteriori estimated state at step k  given observation kz .
Then, a priori and a posteriori estimated error covariance can 
be defined as 
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where ˆk k ke x x  and ˆk k ke x x .
The Kalman filter updates a priori state and error 

covariance based on previous state, input, and error 
covariance 

1 1

1

ˆ ˆk k k
T

k k

x Ax Bu
P AP A Q

 (9) 

Based on a priori state and error covariance, the Kalman 
filter updates a Kalman gain K, a posteriori error covariance, 
and computes a posteriori state ˆkx
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By (9) and (10), the Kalman filter accomplishes 
minimization of a posteriori error covariance, and a
posteriori state ˆkx  is the optimal prediction for given 
measurements.  

Note that the matrix R in (10) is the measurement noise 
error covariance matrix and is used to compute Kalman gain 
K. The Kalman gain K determines the effect of the 
observation kz  in prediction of a posteriori state, and 
therefore the matrix R affects the rate of update based on the 
current observation kz .

III. ROBUST SOUND DIRECTION ESTIMATION SYSTEM 

Fig. 3 describes the proposed method that estimates DOA 
using three spatially separated microphones. Three signals 
are extracted during time interval , and three TDOAs are 
estimated by GCC –PHAT function. Using three TDOAs, a 
DOA is estimated by grid based method, and discrete Kalman 
filter predicts DOA based on the grid based estimation and 
the quantified reliability.  We divide whole procedure into 
three major steps. First step is called as ‘Time Delay 
Estimation’, second step is called as “Direction of Arrival 
Estimation’, and third step is called as “Robust Direction of 
Arrival Estimation”. Briefly, we call the steps as step 1, step 2, 
and step 3.   

Fig. 3 The block diagram of the robust sound direction 
estimation system 

A. Configuration of Hardware System 
Before explaining three major steps, we describe the 

configuration of hardware system. Three microphones are 
used to estimate the azimuth angle for a single sound source. 
For geometrical advantage, the distance between each 
microphone pair is set to the identical value 0.32md m ,

and therefore three microphones forms a regular triangle. In 
each microphone, the arrival sound is received in the 16bit 
raw data with sampling rate 16sf kHz . For each interval 

, the estimation of time delay is processed when all signal 
powers exceed the threshold values.  

B. Time Delay Estimation (Step 1) 
The time delay estimation is basically calculated by the 

GCC-PHAT as described in section II. However, the method 
sometimes produces unreliable result when the DOA is 
estimated at intervals of short time. Therefore, the system 
should measure the confidence of the estimation from the 
GCC-PHAT. In the literatures, several measures have been 
suggested to detect outliers to suppress the effect from it [11].  

We use two simple measures to quantify the reliability of 
GCC-PHAT result. First measure is the value of the 
maximum peak ( Pm ) in the GCC function. Second measure 

is the ratio ( rm ) of the values of the first and second largest 
peak in the GCC function. These two measures have slightly 
different characteristics in the noisy and reverberant 
environment.  

Let us define ˆ , * , and the  as the estimation of 
GCC-PHAT, real time delay, and error threshold value. Then, 
the success rate of GCC-PHAT is defined as 

*ˆ(| | )thP e .  Consider a database that contains signals 

and real time delay * . Using the database, new training data 
can be built by recoding the conditional success rate for given 
measure 1m  and 2m  (success rate for the data of which both 

Pm , and rm  exceed the given measures) 
This paper suggests to use a single-hidden layer 

feedforward network to quantify reliability based on both Pm
and rm . The network is structured with ten sigmoid 
functional hidden nodes, each input neuron of it has input 
bias, and it has a linear output layer. The training data is 
newly built database that contains randomized given 
measures and corresponding conditional success rate. With 
the training data, the neural network is trained using variable 
projection method, which is modified Levenberg-Marquardt 
algorithm [13]. 

Fig. 4 The reliability estimation result with feedforward 
neural network. 
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An example of function approximation based on the 
trained neural network is shown in Fig. 4. This network is 
used to quantify reliability and named as ‘reliability network’. 
If the Pm  and rm  are both low, the success rate is under 0.5 
which means the estimated time delay is unreliable. While, if 
the Pm  and rm  are both high, the success rate goes to 1 
which means the estimated time delay is reliable. In the time 
delay estimation step, for each microphone pair (three pairs), 
the estimated time delay( ˆ )  and reliability( ) are computed. 
Using these variables, the DOA is estimated by geometrical 
interpretation.  

C. Direction of Arrival Estimation (Step 2) 
The DOA with two microphones can be calculated by (1) 

using time delay. However, the calculated DOA is not unique 
because it has always mirror DOA. Therefore, this paper 
suggests novel DOA estimation with three microphones.  

Fig. 5 direction of arrival estimation based on grid 
Method – stochastic approach 

Fig. 5 depicts the proposed strategy of DOA estimation. 
The objective is to estimate the direction of sound from center 
of microphones with three time delay estimations. Let the 
calculated DOA between microphone 1-2 be , the DOA 
between microphone 1-3 be , and the DOA between 
microphone 2-3 be . Then, the six candidates of DOA from 
the center can be determined, because each pair of 
microphones has two directions of DOA.  

1 2

3 4

5 6

30, 30
30, 30
90, 90

 (11) 

As shown in Fig. 5, three candidates are located in real 
direction of sound. We suggest the estimation based on 
stochastic analysis because some estimations of time delay 
are unreliable. Let us assume the probability of DOA of i th 
candidate with the reliability i  has normal distribution with 

mean i  and standard deviation (1 )i , where  is a 
user-defined penalty parameter for unreliability and 
represents the basic uncertainty of the system. Total 360 grids 
are generated to represent the estimated DOA with the 
resolution 1 . For the i th candidate, the probabilities of DOA 
in 30ik  grids are estimated and added to the grids. The 
final DOA is estimated by finding the grid with maximum 
probability value.  The computation cost of this procedure is 
just 366 calculations of exponential function.  

The reliability of the final DOA is just assessed by the 
mean value of the two largest reliability values dropping the 
lowest reliability. In the direction of arrival estimation step, 
the estimated DOA ( ˆ )  and reliability( ) are computed. 
Using these data, the robust DOA estimation is performed.  

D. Robust Direction of Arrival Estimation (Step 3) 
The robust DOA estimation uses the Kalman filter with the 

quantified reliability to reduce the effect of unreliable DOA. 
Let us assume that a robot or a human moves in constant 
angular velocity in the form of the Kalman state equation (7) 

(1)
1 1

(2)
1 1

0
,

0 0

1 0 ,

k k k

k k k

k
k k

k

x x w
y y w

x
z v

y

 (12) 

where x , y , and  are DOA, angular velocity of DOA, and 

estimation interval respectively. The process noise terms (1)
kw

and (2)
kw  are set to constant value, and therefore the 

processing error covariance Q  remains fixed. 
The robust DOA estimation starts with initial values of 0x ,

0y , and 0P  that are set to  

2
0 0 0

0
0 0

0
, ,

0 1
x v v

P
y v

 (13) 

where 0v  is set to large value because the initial error is 
unknown in the starting of estimation. First, the system 
processes the prediction step (9) with the state equation 
described in (12). After the step, the measurement error 
covariance R  is set as follows 

2[ (1 )] ,R  (14) 
where  is a user-defined penalty parameter for unreliability. 
Using (14), the measurement update step (10) is performed.  

As noted in section II, the covariance matrix R  is related 
to Kalman gain K . If the matrix R  is updated by  (14), the 
system estimates the DOA based on the prediction ˆkx   in (9) 
when the reliability  is small, while the system estimates 
the DOA based on the measurement when the reliability  is 
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large. If the design parameters , , and  are 
appropriately set, the system may estimate the DOA robustly 
based on the reliability measurement.  

Fig. 6 Mobile Robot Platform for the Experiment 

IV. EXPERIMENTAL RESULTS

The performance of the proposed robust DOA estimation 
system is described in this section. It is applied to small size 
mobile robot as shown in Fig. 6. The robot has 667MHz Via- 
Eden CPU based hardware and windows based software. The 
robot has DC-motor based differential drive and Pen/Tilt 
motion system.  

The performance is measured in terms of Field Of View 
(FOV) which represents the absolute difference between true 
and estimated sound direction. In the robot society, generally 
from 10  to 15  FOV is considered as a reasonable error. 

To illustrate numerical results, the proposed system is 
tested for two cases. One is the static case and the other is the 
dynamic case. The user-defined parameters , , and 
are set to 40, 10, and 60, which are found by intuitive trial and 
error method for all simulations. For convenience, the DOA 
estimation is called ‘step 2’, and the robust DOA estimation 
procedure is called ‘step 3’. Because the step 2 can be shown 
as a simple extension of conventional GCC-PHAT, the 
performance of the proposed system can be compared to the 
result in the step 2.  

The various estimation intervals s are checked to show 
the relationship between  and the performance of the 
system. The initial parameter values of the Kalman filter are 
set to as follows 

8100 90 4 2
,

90 1 2 1
P Q

A. Static Case 
To build up the static database, a robot is fixed in the center 

(0,0)  of the room and a human speaks to the robot without 
movement during short time (about 0.5 second). The speaker 
is located on ( cos( ), sin( )) , where  is the distance 
from the center (1, 2, 3, 4, and 5 meter) and is the angle 
from the baseline (0, 45, -45, 90, -90, 135, -135, 180) as 
shown in Fig. 7. The database is built up with three speakers.  

To build up the reliability network, total 1773 training 
pairs are made using the signals extracted from 20ms cases. 
The trained network produces 3.2514e-4 10-fold cross 
validation error and is used for static and dynamic cases.  

Fig. 7 Static Database Acquisition 

Fig. 8 The DOA estimation result from step 2 and step 3 
in the condition 20 , 3, 0ms .

All speech signals are sampled with 16 kHz sampling rate 
using 16 bit analog-to-digital converter. Because of existence 
of degenerative effects such as low power, noise, and 
reverberation, the estimated time delay becomes unreliable in 
some interval .
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Fig. 9 The relationship between the estimation interval 
and the performance of the system in all databases 
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Fig. 8 shows the result in static case when 20ms . The 
proposed method (step 3) controls the outliers well. The 
relationship between estimation interval  and the 
performance of the system is illustrated in Fig. 9. The figure 
shows that the robust DOA estimation by the Kalman filter is 
extremely helpful when the estimation interval  is small. 
To get the robust performance for FOV10, the estimation 
interval  should be larger than 0.2.  

B. Dynamic Case 
For the dynamic case, the database is built up with four 

different motions of the robot while a human talks to the robot 
in a fixed point as shown in Fig. 10. The values from encoder 
sensors are recorded during the motion and used for the 
ground truth of the DOA.  

Fig. 10 Building up the database for the dynamic case 

An example of the DOA estimation result (move 2) is 
shown in Fig. 11. The time interval is 40ms. The robot turns 
clockwise about 150  during about 4 seconds and the DOA 
estimation is successful even though the ground truth angle is 
continuously changed. The performance of the dynamic case 
is summarized in Table I. The proposed system provides the 
robust performance for four difference motions using the 
short interval estimation strategy. Even if the DOA is 
estimated at intervals of short time, the signal is not 
degenerated significantly by continuous delays.  
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Fig. 11 An example of DOA estimation when the 
estimation interval is 40ms (Move 2) 

TABLE I
THE PERFORMANCE OF DYNAMIC CASES ( 40ms )

STEP (FOV) MOVE1 MOVE2 MOVE3 MOVE4 

Step3 (10) 0.8704 0.8952 0.9359 0.9638 
Step3 (15) 0.8827 0.9758 0.9680 0.9783 
Step2 (10) 0.7654 0.8145 0.7500 0.7826 
Step2 (15) 0.8025 0.8468 0.8205 0.8189 

V. CONCLUSION

A robust sound direction estimation system is proposed in 
the paper using the Kalman filter based on reliability measure. 
The proposed technology is extremely useful when it finds 
and tracks a sound source at a distance within two meters as 
illustrated in the experimental result.  

The novelty of the paper can be found in the calculation of 
the measurement error covariance matrix to filter out 
unreliable DOA estimations in Kalman filter process. The 
proposed DOA estimation tracks very fast for the reliable 
signals such as loud or noiseless voice whereas track very 
slowly for the unreliable signals such as noise.  
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