
  

  

Abstract—The purpose of this research is to accurately 

classify the speech signals originating from the front even in 

noisy home environments. This ability can help robots to 

improve speech recognition and to spot keywords. We therefore 

developed a new voice activity detection (VAD) based on the 

complex spectrum circle centroid (CSCC) method.� It can 

classify the speech signals that are received at the front of two 

microphones by comparing the spectral energy of observed 

signals with that of target signals estimated by CSCC. Also, it 

can work in real time without training filter coefficients 

beforehand even in noisy environments (SNR > 0 dB) and can 

cope with speech noises generated by audio-visual equipments 

such as televisions and audio devices. Since the CSCC method 

requires the directions of the noise signals, we also developed a 

sound source localization system integrated with cross-power 

spectrum phase (CSP) analysis and an expectation- 

maximization (EM) algorithm. This system was demonstrated 

to enable a robot to cope with multiple sound sources using two 

microphones. 

I. INTRODUCTION 

Since we expect intelligent robots to participate widely in 

the near future society, effective interaction between them 

and us will be essential. For the purposes of natural 

human-robot interactions, they should firstly localize voices 

and faces in social and home environments to find and track 

their communication partners because people usually talk 

while looking at robots. Therefore, localization and tracking 

systems for voices and faces have been extensively studied 

and developed [1-3]. 

Robots then need a Voice Activity Detection (VAD) system 

that helps them to recognize speech well and correctly [4-8]. 

Although various voice activity detection (VAD) algorithms 

have been applied to such applications as speech recognition, 

speech enhancement, and speech coding, conventional VAD 

algorithms work poorly in extremely noisy environments and 

are unreliable in the presence of non-stationary or broad band 

speech-like noise [4-6]. Therefore, researchers have 

introduced multi-channel algorithms to improve VAD 

performance by exploiting the spatial selectivity [7,8]. 

Specifically, Le Bouquin et al. assumed that the spatial 

correlation between the disturbing noises was weak for all 

frequencies of interest while the speech signals were highly 
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correlated [7]. However, this technique based on coherence 

function is usually difficult to cope with vocal noises 

generated by television sets or audio devices. Recently, 

although Hoffman et al. estimated the target-to-jammer ratio 

(TJR) using the generalized sidelobe canceller (GSC) as a 

measure for VAD [8],� this way requires relatively many 

microphones and the training of adaptive filter coefficients to 

accurately estimate TJR. 

In this paper, using two microphones, we developed a 

method that can accurately classify the speech signals 

originating from the front even in noisy home environments. 

It is realized by comparing the spectral energy of observed 

signals with that of target signals separated by complex 

spectrum circle centroid (CSCC) [9] method. The CSCC 

method which has recently been proposed�utilizes geometric 

information of the target signal that should be received at the 

front of microphones and the observed signal obtained by 

microphones in a complex spectrum plane. It actually 

requires at least three microphones which are disposed on a 

straight line. However, since the form of a microphone array 

is difficult to be equipped with systems of various shapes 

such as robots, we used a new way that makes the CSCC 

method estimate the target signals using only two 

microphones. This method can reduce noise in real time 

without training beforehand and also achieve high 

performance. Although our VAD based on the CSCC method 

can only classify front target signals, this system may be 

suitable to communicate with someone because people 

usually talk while facing the communication target. The 

allowable range of target signals for our VAD is within about 

±8°where 0°is the front of two microphones, the sampling 

rate is 16 kHz, and the distance between two microphones is 

0.15 m (refer to Equation 3). This is because the target 

signals are available as long as the delay of arrival (DOA) 

between two microphones does not occur. 

In addition, to use the CSCC method, we need two sound 

directions for noise and target signals. However, localizing 

several sound sources usually requires an array microphone 

and some methods require impulse response data. Thus, 

using two microphones, we developed a method based on 

probability for estimating the number and localization of 

sound sources. For our method, we first need to accumulate 

cross-power spectrum phase (CSP) analysis [10] results for 

three frames (shifting every half a frame). Then, the 

expectation-maximization (EM) algorithm [11] is used to 

estimate the distribution of the accumulated data. It can 

localize two sound sources using only two microphones, and 
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it does not need impulse response data. 

The rest of this paper is organized as follows. Section II 

describes the sound source localization that we developed. 

Section III describes sound classification using Gaussian 

Mixture Model (GMM) and also the VAD system based on 

the CSCC method. In Section IV, we applied our VAD to a 

humanoid robot and did experiments to detect the intervals of 

specific keywords in noisy environments. Section V 

concludes this paper. 

II. SOUND SOURCE LOCALIZATION 

For sound source localization, the latest systems for robots 

mostly use one of three methods: head-related transfer 

function (HRTF) [1,12,13], multiple signal classification 

(MUSIC) [2,14], and CSP [10,15]. HRTF and MUSIC 

typically need impulse response data and an array of 

microphones in order to localize several sound sources. 

Impulse response data must thus be measured for every 

discrete azimuth and/or elevation before these methods can 

be applied to robots. Even though a lot of microphones and 

impulse response data would improve localization 

performance, they would also increase the calculation time. 

Furthermore, configuring the microphones in the robot 

would be problematic. 

In contrast, CSP does not need impulse response data and 

can accurately determine the direction of a sound using only 

two microphones. Using CSP with two microphones can 

locate only one sound source each frame even if several sound 

sources are present. This is because CSP obtains the sound 

localization information from the spatial correlation between 

two signals. Besides, CSP is usually unreliable in noisy 

environments. To overcome these weaknesses, we developed 

a new method based on probability for estimating the number 

and location of sound sources. First, the CSP results for three 

frames (shifting every half frame) are collected. Then, an EM 

algorithm [11] is used to estimate the distribution of the data. 

In this way, our method can localize several sound sources 

using the distribution of CSP results and can reduce the error 

in sound source localization. 

A. Cross-power Spectrum Phase analysis (CSP) 

The direction of a sound source can be obtained by 

estimating the Time Delay Of Arrival (TDOA) between two 

microphones [3]. When there is a single sound source, the 

TDOA can be estimated by finding the maximum value of the 

cross-power spectrum phase (CSP) coefficients [10] derived 

by 
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where k and n are the number of samplings for the delay of 

arrival between two microphones, si(n) and sj(n) are signals 

entering into the microphone i and j respectively, FFT (or 

IFFT) is the fast Fourier transform (or inverse FFT), * is the 

complex conjugate, and �is the estimated TDOA. The sound 

source direction is derived by 
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where � is the sound direction, v is the sound propagation 

speed, Fs is the sampling frequency, and dmax is the distance 

with the maximum time delay between two microphones. The 

sampling frequency of our system was 16 kHz. 

B. Localization of multiple sound sources by EM 

Figure 1 (A) shows the sound source localization events 

extracted by CSP according to time or frame lapses. We can 

see events that lasted 192 ms are used to train the EM 

algorithm to estimate the number and localization of sound 

sources. We experimentally decided that the appropriate 

interval for the EM algorithm was 192 ms [15]. Figure 1 (B) 

shows the training process for the EM algorithm to estimate 

the distribution of sound source localization events. Figure 1 

(C) shows that the EM training results indicate the refined 

localizations of sound sources by iterating processes (A) and 

(B) in the same way. The interval for EM training is shifted 

every 32 ms. 
 

 
Fig. 1. Estimating localization of multiple sound sources. 

 

Here, we explain the process of applying EM algorithm. 

Figure 2 describes the process in Figure 1 (B) in detail. In (A) 

of Figure 2, as the first step of EM training, sound source 

localization events were gathered for 192 ms. Next, Gaussian 

components defined by using equation (4) for training the 

EM algorithm were uniformly arranged on whole angles.  
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where �k is the mean, �2
k is the variance, �k is a 

parameter vector, m is the number of data, and k is the 

number of mixture components. At that time, in (A) of Figure 

2, the � and � parameters in Gaussian components are the 

respective center and radius values of each component. Then, 

the sound localization events are applied to the arranged 

Gaussian components to find the parameter vector, �k, 
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describing each component density, P(Xm|�k), through 

iterations of the E and M steps. This EM step is described as 

follows: 

1) E-step: The expectation step essentially computes the 

expected values of the indicators, P(�k|Xm), where each 

sound source localization event Xm is generated by 

component k. Given N is the number of mixture components, 

the current parameter estimates �k and weight wk, using 

Bayes’ Rule derived as 
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2) M-step: At the maximization step, we can compute the 

cluster parameters that maximize the likelihood of the data 

assuming that the current data distribution is correct. As a 

result, we can obtain the recomputed mean using Equation 

(6), the recomputed variance using Equation (7), and the 

recomputed mixture proportions (weight) using Equation (8). 

The total number of data is indicated by M. 
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After the E and M steps are iterated an adequate number of 

times, the estimated mean, variance, and weight based on the 

current data distribution can be obtained. 
 

 
Fig. 2. Process of EM algorithm for estimating sound sources. 

 

Then, in (B) of Figure 2, the weight and mean of Gaussian 

components are reallocated based on the density and 

distribution of the histogram data. Finally, in (C) of Figure 2, 

if the components overlap, each weight value of overlapping 

Gaussian components will be added. After that, if the weight 

value is higher than a threshold value, the system can 

determine the localization of the sound source by computing 

the average mean of the overlapping Gaussian components. 

In contrast, components with small weights are regarded as 

noise and will be removed. 

C. Experiments and Results 

To evaluate localization, we did an experiment observing 

conditions where two sound sources were 1.5 m from the 

head of a robot, and recorded female and male speech was 

simultaneously emitted from speakers for 7 sec at a 

magnitude of 85 dB. The symmetrical intervals between the 

two speakers were 60° (Experiment 1), 120° (Experiment 2), 

and 180° (Experiment 3) in Figure 3. The graphs show the 

results of sound source localization when there were two 

sound sources. The top graph plots the success rate, when the 

difference between the angle of speaker and observed angle 

was within 30°, for CSP with EM and HRTF and the bottom 

graph plots their average error. Our method, combining CSP 

and the EM algorithm, outperformed HRTF [1]. 
 

 
Fig. 3. Experimental conditions and results. 

III. VOICE ACTIVITY DETECTION 

A. Sound Source Classification by GMM 

Gaussian Mixture Model (GMM) is a powerful statistical 

method widely used for speech classification [5]. Here, we 

applied the 0 to 12th coefficients (total 13 values) and the � � 

to � 12th coefficients (total 12 values) of Mel Frequency 

Cepstral Coefficients (MFCCs) to GMM defined by Equation 

(9) and the weight as denoted by Equation (10). 
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where P is the component density function, L is the number 

of MFCC parameters, X is the value of the MFCC data of the 

0 to 12th and the � � to � 12th coefficients, and � is the 

parameter vector concerning each MFCC value. Moreover, to 

classify speech signals robustly, we designed two GMM 

models for speech and noise derived as 

( )( ) ( )( )log log
s s s n n n

f P X P Xθ θ= −         (11) 

where Ps is the GMM related to speech, and Xs is the 

MFCC data set at the t-th frame belonging to the speech 

parameters, �s. On the other hand, Pn is the GMM related to 

noise and Xn is the MFCC data set at the t-th frame belonging 

to the noise parameters, �n. Finally, if the final value, f, 

denoted as Equation (12), is higher than the value of the 

threshold to discriminate the speech signal from GMM, 

signals at the t-th frame will be regarded as speech signals.  

speech noisef threshold f> >                       (12) 

We used 30 speech data (15 males and 15 females) for the 

speech parameters to train the GMM parameters, and 77 

noise data generated in home environments such as the 

sounds of a door opening or shutting and those of electrical 

home appliances (e.g., a vacuum cleaner, a hair drier, and a 

washing machine) for the noise parameters. To verify the 

performance of GMM parameter training, we classified the 

sound sources using speech and noise data for training. As a 

result, we obtained a success rate for speech classification of 

95.5% and a success rate for noise classification of 72.8%. 

B. Complex Spectrum Circle Centroid (CSCC) 

To cope with vocal noises originating from the sides, we 

applied sound source separation (SSS) to our VAD. Two 

methods are commonly used for SSS. One is geometric 

source separation (GSS) and one of its well-known methods 

is as an adaptive beamformer [16]. This requires many 

microphones and prior training of the post-filter coefficients. 

The other is blind source separation (BSS) and it is 

well-known in independent component analysis (ICA) [17]. 

ICA is normally unsuitable in environments where the 

number of sound sources is dynamically changed because it 

is needs the same number of microphones as that of sound 

sources in principle. Also, to achieve high performance, ICA 

usually requires a large number of sampling data and much 

executing time. Therefore, we used the CSCC method 

because it can reduce noise in real time without training 

beforehand and also achieve high performance. 

As seen in Figure 4, if the signals propagate as a plane 

wave, the spectrums of the signals observed using a 

2-channel microphone are given as 

( ) ( ) ( )1M S Nω ω ω= +         (13) 

( ) ( ) ( )2

j
M S N e

ωτω ω ω −= +     (14) 

where M1(w) and M2(w) are the spectrums of the observed 

signal, and S(w) and N(w) denote the respective spectrums of 

the target signal and the noise signal. The value��denotes 

the time delay between the two microphones in respect to the 

noise signal. 
 

 
Fig. 4. Signal propagating toward two microphones. 

 

As seen in Figure 5, S(w) is located at an equal distance 

from M1(w) and M2(w), and the distance is N(w). Subtracting 

Equation (14) from Equation (13) gives the value of N(w) as 
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ω ω
ω

−

−
=

−
       (15) 

 
Fig. 5. Process of estimating target signal spectrum using two channels. 

 

Figure 5 outlines the process used to estimate S(w) using 

two microphones. First, we draw a perpendicular bisector 

toward a straight line connecting M1(w) and M2(w) in a 

complex spectrum plane. Next, we draw a circle with the 

radius of N(w) shown in Equation (15) and its center at M1(w). 

The coordinates of each spectrum in Figure 5 are defined as 

1) The spectrum of the observed signal: 

( ) ( ) ( ) ( )1 1 1 2 2 2, ,  ,
x y x y

M M M M M Mω ω= =  (16) 

2) The candidate for the target signal spectrum: 
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x y x y
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3) The midpoint: 
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where subscript x and y correspond to the coordinates of 

the real and imaginary parts respectively. 
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The perpendicular bisector and the circle are given as 

( ) ( )
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The spectrum of the target signal, S(w), is located at the 

intersection of the perpendicular bisector and the circle. 

Hence, S1(w) and S2(w) are obtained  by solving the 

simultaneous formulae between Equation (19) and Equation 

(20). Actually, the CSCC method needs at least three 

microphones to estimate the accurate target signal. However, 

since we used only two microphones, we must choose the 

most appropriate spectrum from the two candidates for the 

target signal. Here, we chose the candidate whose spectrum 

power was smaller, since we considered that the power of the 

estimated clean signal would be smaller than that of the 

observed noisy signal. In the case in Figure 5, S1(w) was 

chosen as the target signal spectrum. 

C. Speech Classification based on CSCC 

To classify the speech signals of a communication partner 

who is in front of a robot’s face (i.e., speech signals arriving 

at two channels simultaneously without delay), we classified 

them after CSCC had reduced the noise signals that had 

arrived from the side of the robot’s face. In particular, to 

classify the interval of target signals using CSCC, we first 

had to obtain the various types of frame energies in the 

frequency domain. The frame energies in the frequency 

domain of all types are defined as 

1) The spectral frame energies of target and observed signals: 

( )target target
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2) The spectral frame energies observed from microphone 1 

and 2: 
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where w is the frequency value of FFT, N is the order of 

FFT, and Starget(w) is the target signal spectrum separated by 

CSCC. Here, M1(w) is the signal spectrum observed from 

microphone 1,  M2(w) is the signal spectrum observed from 

microphone 2, and C(w) is the observed signal spectrum 

calculated by Equation (18). 

Next, we can detect the interval of target signals coming 

from the front as follows. First, if there are noise signals 

coming from the side, the frame energy of the separated 

target signals will be less than that of the observed signals. 

This condition is defined in Equation (23). Second, as the 

definition of Equation (24), we can determine whether noise 

signals are coming from the side if the frame energy observed 

from both microphones is more than that of the observed 

signals.  

target/cE E threshold>       (23) 

 ( )1 2/ /Low m c m c Highthr E E E E thr< − <    (24) 

Finally, we have to classify whether the target signals are 

speech or not using Equation (12). 

D. Experiments and Results 

We used two metrics to evaluate our VAD in noisy 

environments. These were the speech hit rate (SHR) and 

non-speech hit rate (NSHR) defined as 

S

Sref

N
SHR

N
= ,    N

Nref

N
NSHR

N
=            (25) 

where NS and NRref are the numbers of all speech samples 

correctly detected and real speech in the whole database, and 

NN and NNref are the numbers of all non-speech samples 

correctly detected and real non-speech in the whole database. 
 

 
Fig. 6. Experiments and results of VAD based on CSCC. 

 

We conducted experiments under the following conditions. 

We used two omnidirectional microphones installed at the 

left and right ear positions of the humanoid robot SIG2 [15]. 

The distance between two microphones was 0.15 m. The 

sampling rate is 16 kHz and 1024-point FFT is applied to the 

windowed data with 512 sample overlap. As shown at the top 

of Figure 6, the target signals and noise signals were 1.5 m 
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from two microphones. The target signals were in front of the 

microphones, and the noise signals were at 30°, 60°, or 90° 

from the side. Two loud sounds were simultaneously emitted 

from two speakers for 30 sec. We used 10 speech data (for 5 

men and 5 women) for target signals, and 3 noise data 

(vacuum cleaner, television news, and contemporary pop 

music including vocals). The words of a numeral one to a 

numeral ten in Japanese were randomly recorded for each 

target signal data for 30 sec. The signal to noise ratios 

(SNRs) were -5, 0, 5, or 10 dB. 

Figure 6 shows the performance results for our VAD 

algorithm compared to G.729 Annex B VAD [6], which the 

International Telecommunication Union (ITU-T) adopted. 

The standard G.729B VAD makes a voice activity decision 

every 10 ms, and its parameters are the full band energy, the 

low band energy, the zero-crossing rate and the spectral 

measure.�Here, since G.729B is the one-channel-based VAD, 

we obtained the performance results for the G.729B VAD 

after averaging the results obtained by the left and right 

microphones. 

At vacuum cleaner noise in Figure 6, SHR of our VAD was 

similar to that of G.729B VAD and NSHR of our VAD was 

better than that of G.729B VAD. Especially, the G.729B 

VAD performed poorly non-speech detection accuracy 

(NSHR) with the vocal noise (music and TV news) while 

speech detection accuracy (SHR) was good (higher than 90%). 

This is because the G.729B VAD regarded noises containing 

vocal signals as speech signals. On the other hand, at noise 

containing vocal signals, SHR of our VAD was better than 

about 85% for all SNRs, and NSHR of our VAD was 

considerably better than that of the G.729B VAD. NSHR was 

better than 80% except for at -5 and 0 dB SNR for music noise 

and for at 30° at -5 and 0 dB SNR for TV news noise. Our 

system can thus usually be used at SNRs larger than 0 dB 

regardless of the kinds of noise signals. 

IV. VOICE ACTIVITY DETECTION FOR HUMANOID ROBOTS 

A. System Overview 

Figure 7 shows the overview of structure of our VAD 

system based on the CSCC method and the photograph of a 

humanoid robot called SIG2. The robot has two 

omni-directional microphones inside humanoid ears at the 

left and right ear positions. First, to use the CSCC method, 

the robot needs the direction of noise signals. Therefore, we 

localized sound sources by combining the CSP method with 

the EM algorithm as discussed in Section II. Then, after 

finding the direction of noise signals, the CSCC method can 

reduce the noise signals from the target signals. Also, as 

discussed in Section III, the robot is able to determine 

whether target signals exist or not and whether the target 

signals are voice or not through CSCC and GMM, 

respectively. Finally, after VAD has counted the voice frames 

for 192 ms, it can determine the appropriate interval for 

speech spoken by the communication partner. This process 

for VAD iterates every 32 ms. The computer we used 

followed this specification, Celeron 2.4 GHz, 512 M ram. 
 

 
Fig. 7. System overview for the keyword length detection. 

B. Experiments and Results 

The goal of this paper was to accurately detect the intervals 

of specific keywords generated from the front of the robot 

even in noisy home environments. This is because people 

naturally look at robot’s faces in order to communicate with 

them. If the robot is also able to classify the length of 

keywords that the communication partner spoke even in a 

noisy environment, this ability will help robots to improve its 

speech recognition and to spot the specific command for a 

keyword. To verify our system’s feasibility, we applied the 

VAD we developed to a humanoid robot, SIG2, and we 

recorded two commands, “sig” and “ohayogozaimas”, as 

specific keywords. The Japanese command for 

“ohayogozaimas” means “Good morning” in English. For the 

experiment, three sounds (vacuum cleaner, TV news, and 

pop music) were generated by the side speaker at 30°, 60°, 

and 90°. The target and noise signals were simultaneously 

emitted ten times at a magnitude of 90 dB every item on the 

Table I. Table I lists the experimental results that show the 

good performance of the robot in detecting the interval of two 

commands emitted by the front speaker. Detecting two 

commands was almost perfect except for the item at 30° and 

Cleaner. This is because GMM could not classify the speech 

signals well due to the close gap between speech and noise 

signals. In addition, the average intervals of detected 

commands were similar to original intervals for “sig” and 

“ohayogozaimas” whose lengths were about 1.5 and 1.8 sec, 

respectively. Also, the standard deviations of detected 

command intervals were usually within 0.1 sec. Figure 8 

shows snap-shots of the robot detecting intervals of specific 

keywords. A in Figure 8 shows that the robot has neglected 

noise signals generated from its side, and B and C in Figure 8 

show that the robot nodded when detecting the keywords with 
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the length for about 1.5 sec concerning “sig” (C shows when 

the robot detected the keyword length where noise signals 

have occurred). D in Figure 8, the robot tilted its head when 

detecting the keywords with the length for about 1.8 sec 

concerning “ohayogozaimas”. 
TABLE I 

THE RESULTS OF DETECTING COMMAND INTERVALS 

CMD “sig” (1.5 sec) “ohayogozaimas” (1.8 sec) 

Angle 30° 60° 90° 30° 60° 90° 

The success rate of VAD [%] 

Cleaner 50 90 100 50 100 100 

News 90 100 100 100 100 100 

Music 100 100 100 100 100 100 

The average intervals of commands detected by VAD [sec] 

Cleaner 1.38 1.52 1.55 1.68 1.71 1.89 

News 1.55 1.52 1.59 1.84 1.85 1.88 

Music 1.54 1.55 1.58 1.85 1.88 1.90 

The standard deviation of detected intervals [sec] 

Cleaner 0.054 0.06 0.138 0.094 0.221 0.06 

News 0.036 0.067 0.059 0.093 0.082 0.039 

Music 0.086 0.06 0.04 0.045 0.041 0.034 

 

 
Fig. 8. Snap-shots when the robot detects specific intervals of speech. 

V. CONCLUSION 

We developed the VAD system that enables robots to 

accurately detect the intervals of specific keywords or 

commands generated in front of them even in noisy home 

environments and confirmed that it performed well. Our 

system has some principle capabilities. First, the VAD we 

developed can classify the intervals of speech arriving from 

the front in real-time even where there is speech competing. 

Also, our results indicated that our system can reliably 

classify the intervals of speech in noisy environments larger 

than SNR 0 dB. Second, since it can work using only two 

channels and a normal sound card device, it can be used in 

various kinds of robots and systems. Our system combining 

the CSP method and the EM algorithm can localize several 

sound sources despite only having two microphones and does 

not use impulse response data. Finally, in the next step, we 

are considering adding a speech recognition engine to our 

VAD system because robots must also be able to recognize the 

meaning of keywords or commands. 
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