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Abstract— In this paper we describe a study of the human
pilot control behavior in a planar goal directed flight task. The
experimental data was collected using a miniature helicopter in
an indoor flight test facility. To provide insight into the human’s
control behavior we developed a technique to extract extremal
fields from the family of collected trajectories. These fields
describe the spatial distribution of the vehicle states and cost-
to-go, including their statistical distribution, which provides
information about the variability of the pilot’s control behavior
over the task domain. Once extracted we can compare these
fields to the value functions obtained from the task’s equivalent
optimal control problem. The comparison of the human-
extracted and the computed value function maps suggests that
on average, the human acts similarity to an optimal control
policy. The results also suggests that a simple mass-point model
used for our analysis, and motivated by the hypothesis that
the pilot acts as a dynamic inverse controller, is sufficient to
explain the pilot’s performance at the planning level. We use
these results to develop hypotheses about human planning and
control processes and discuss their biological plausibility based
on control-theoretic interpretations. We plan to use the new
insights from this framework to help design more capable and
versatile algorithms for autonomous vehicle control, as well as
help design man-machine interfaces that enable a more natural
link with the operator’s internal control and planning processes.

I. INTRODUCTION

Human pilots excel in controlling vehicles with com-

plex dynamics like helicopters. Trained pilot can seamlessly

execute maneuvers from a broad repertoire to negotiate

challenging three dimensional environments under often

disturbed and uncertain conditions. These skills speak for

tightly integrated planning and control processes; the pilot

essentially seems to incorporate the vehicle into his own

spatial behavioral unit.

Trajectory planning is a classic problem in robotics and

control theory, and is one of the key capability needed for

autonomous vehicles. For agile vehicles, existing method-

ologies are still far from enabling performance levels akin to

human pilots. We know little about the exact principles and

processes underlying of human control skills. Piloting is an

intensive form of exercise for the brain’s control, perceptual,

and cognitive processes therefore human flight experiments

are a rich source of psycho-physical information. Human

pilots have mostly been studied in relation to issues of

handling qualities, yielding models that describe the pilot’s

role as a regulator [1]. More recently pilot’s control strategies

during acrobatic maneuvers have been studied [2]. Simple

maneuvers in highly nonlinear regime were successfully

modeled and then reproduced experimentally using hybrid

control schemes [3]. Studying the human pilot in tasks that

involve planning as well as control could provide insight into

fundamental questions of implementation and integration of

both the planning and control processes and, at the same

time, could help better understand the biological underpin-

nings of human piloting skills.

In the following, we describe a framework to analyze

the human planning and control behavior from an optimal

control standpoint. We use a miniature remote-controlled

(RC) helicopter in a specially designed indoor flight test

facility. To exercise the pilot’s control skills, we use a simple

yet challenging goal-directed control task. The problem is

characterized by the nonlinear vehicle dynamics and the

multi-dimensional trajectory state-space (x, y planar coordi-

nates, heading ψ and velocity v). To provide insight into

the human’s planning and control behavior we performed

the experiment over a range of initial conditions and re-

peated each experiment several times to provide sufficient

statistical significance. To have a basis to evaluate the pilot’s

performance we use the solution for the corresponding time

optimal control problem. Instead of comparing the trajectory

data directly, we introduce a framework based on spatial

distribution of the states and costs. These maps can be

related to the concept of extremal fields and value functions

providing an insight into the control behavior of the human

operator from an optimal control standpoint.

II. BACKGROUND AND MOTIVATION

Model-based, trajectory optimization, provides a rigorous

mathematical approach to formulate the combined planning

and control problem. However, optimal control techniques

are computationally expensive and also provide no natural

way to account for a geographical environments in its global

form. Historically, the theory and technologies have been

developed to tackle aerospace problems where the environ-

ment is trivial and largely known and the conditions are

relatively stationary. The typical applications include: rocket

guidance, spacecraft orbit transfers, and airplane automatic

landing [4], [5]. Highly interactive guidance tasks in partially

known and even dynamic environments require to updating

the trajectory continuously in real-time to account for the
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latest information about the environment, the current vehicle

state and compensate for disturbances and uncertainties in

vehicle behavior.

Recent work has focused on developing computationally

more efficient trajectory optimization techniques that can be

implemented in real time. One concept is to break down the

trajectory optimization problem into an online and an offline

portion. The framework of model predictive control (MPC)

implemented in receding horizon (RH) fashion provides a

formal way to implement such a control scheme [6]. It has

been explored for controlling nonlinear systems [7], [8],

[9], and more recently has been applied to online trajectory

optimization [10], [11], [12]. In this approach, the trajec-

tory is optimized online over a finite time-horizon, based

on a prediction model and the current vehicle state. The

computation is repeated as the vehicle progresses through

the environment. To ensure stability of this control scheme,

the discarded tail of the trajectory has to be accounted for

by its cost to go. For sake of performance (in the sense of

optimality), the cost-to-go should be a good approximation

of the actual cost of the discarded portion of the trajectory,

i.e., the cost-to-go should be an approximation of the optimal

value function (VF). For the computation of a cost-to-

go function, heuristic techniques based on geometry [10]

and cell decomposition [12] (akin to Navigation Functions)

have been used. Recently more exact solutions based on

approximations of the spatial value function (SVF) have been

explored [13]. The accuracy of these SVF directly influences

the agility with which a vehicle can negotiate complex spatial

environments.

A. Human spatial control behavior

The development of approximation techniques for tra-

jectory optimization raises questions about how the brain

performs spatial control tasks and if optimization principles

play a role in these processes. Optimality has been pro-

posed as a fundamental principle in movement planning,

control, and estimation [14], [15]. Optimal feedback control

principles have been used to explain the coordination of

movements and the tradeoff between movement variability

and task performance [16]. However, little is known about

how optimization principles may play a role in more complex

spatial behaviors.

The research in spatial behavior goes back to O’Keefe’s

work demonstrating that spatial information is encoded by

networks of neurons in the hypocampus (so-called place

cells) [17]. Such neuronal maps are believed to be used

for navigation and spatial reasoning and decision making.

Recently, so-called grid cells have been identified that are

believed to act as grid-like reference system that would

support the spatial mapping process [18]. These new findings

provide a more detailed picture of how spatial information

is learned and encoded, however, little is known about how

these maps may be used in complex spatial control tasks.

Simple, goal-directed navigation can be explained using

theories of reinforcement learning [19] and computational

models based on these maps have been implemented on

Fig. 1. Illustration of the experimental setup based on our indoor flight test
facility. The pilot control inputs are recorded simultaneously to the vehicle
6-DOF data. (The eye tracking device will be used in future experiments.)

a simple mobile robot [20]. However, these results are far

from reproducing the spatial control skills demonstrated by

humans and other animals.

III. EXPERIMENTAL SETUP

We use a control-theoretic analysis of human spatial

control performance to provide clues about how different

processes (spatial representation, planning, and online con-

trol) are integrated and implemented. To implement and

evaluate planning and control algorithms as well as to

perform experiments with the human operator exercising his

spatial control skills we use an indoor flight experimental

facility [21]. The facility uses miniature RC helicopters

which can operate in all three dimensions and can exhibit

a broad range of dynamic behaviors [22]. These attributes

make them a unique tool to collect psychomotor data. When

operated by a human pilot, only the fingers are involved

minimizing the involvement of the typical bio-mechanical

component. Finally, we designed experiments that can be

easily formulated as an optimal control problems.

A. Experimental facility

The experimental facility consists of: (1) the RC heli-

copter; (2) a motion tracking system; (3) an input device

(RC transmitter); and (4) the data acquisition system. The RC

helicopter in our experiment is a small off-the-shelf Blade

CX (34.5 cm rotor diameter and 200 g). It is controlled

by a standard four-channel radio transmitter. Thanks to the

vision based motion tracking system the required on-board

electronics is limited to the standard 4 axis receiver.

The motion capture system consists of 6 high-resolution

MX-40 gray-scale cameras from Vicon Systems. We use the

ViconIQ software running on a PC to process the information

received from the cameras and generate the 6 degrees of

freedom (DOF) motion tracking data. The four pilot inputs

are recorded simultaneously and integrated into a single data

stream.
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Fig. 2. (left) Trajectory segments from the experiment. The subject has
to fly the helicopter from 11 starting locations (shown by the circles) to
the goal state situated at the origin (0,0) and specified by a lateral position
offset Wy , a velocity magnitude tolerance Wv , and a heading tolerance
Wψ). (right) Trajectory segments computed based on the equivalent optimal
control problem.

Retro-reflective spherical markers are placed on the vehi-

cle. The geometrical configuration of the markers is provided

to the tracking software which then treats it as a rigid body.

The markers tracking accuracy is about 0.02 pixels which

corresponds to about 40 µm in our experimental space of

7x7 meters. This level of resolution can be achieved at a

sampling frequency up to about 100 Hz. The infrastructure

is described in more details in [21].

B. Spatial control experiment

For this first study, we defined a planar goal directed

guidance task. For this task illustrated in Figure 2, the pilot

has to control the vehicle from multiple initial positions

arranged along the edge of a rectangular space to a goal

state. The goal state is given by: coordinate xgoal = (0, 0),
velocity vgoal = 1m/sec and heading ψ = 0deg.

Tolerances were used to define an acceptable range of

variation (the goal set): lateral position tolerance (Wy =
±.3 meters), final speed magnitude tolerance (Wv = ±0.5
m/sec), and final heading tolerance (Wψ = ±30 deg). These

values were chosen based on the skills of our pilot at

performing this particular task.

For the initial state, the pilot had to start the trajectory

from a stationary hover above one of the specified initial

positions (within a circle of .25m radius). The initial heading

was left open. Since there is significant variability in the

human performance, several recordings were made for each

starting location.

C. Processing and selection of the trajectories

Following the data collection, the trajectory data was

processed to extract the set of trajectory segments used for

the analysis. This selection process involves removing faulty

trajectories (in particular data losses) and trajectories that

do not satisfy the task specifications (outside the goal state

region). The data was processed automatically using our

segmentation script.

IV. OPTIMAL CONTROL FRAMEWORK

The family of optimal trajectories going from different

initial points to the goal set is known as a field of extremal

in calculus of variations [4]. This field describes the control

behavior over a region of the planning space. Associated with

each point in this field is a value of the performance objective

minimized by the optimal control action: the optimal value

function V (x)∗. From this perspective, our collected trajecto-

ries represent the field of extremals from the human operator.

We can evaluate the performance of the human operator by

comparing its corresponding field with that of the equivalent

optimal control problem.

A. Optimal Value Function

Given an optimal control problem described by a perfor-

mance objective J(x) and a goal state xgoal, the optimal

value function V ∗(x) gives the optimal cost to reach the

goal (cost-to-go) from a given state x.

The value function is the solution of the Hamilton-Jacobi-

Bellman (HJB) differential equation; a solution to the HJB

differential equation represents a sufficient condition for

optimality [23].

Most problems of practical interests, however, have no

analytic solutions to the HJB equations. The discrete-time

equivalent, the functional equation of dynamic programming

(DP), is typically used in engineering problems [24].

Since the optimal value function V ∗ fully characterizes

the control problem (including the system dynamics and

the performance objective) we can regard V ∗(x) as the

information needed to perform a particular control task.

Hence it is natural to ask whether the human brain encodes

something akin to a Value function.

B. Optimal control trajectories

To have a baseline for our analysis we compute the value

function for the equivalent optimal control problem corre-

sponding to the task. Since there is no analytical solution to

the HJB equation we compute the optimal trajectories (field

of extremals) for the start-end conditions obtained from our

experimental data. We will then be able to extract a value

function for both the experimental data and the computed,

optimization based data using the same cell averaging tech-

nique.

1) Helicopter model: At the level of the spatial control

task, the only variables that are needed explicitly to de-

scribe the behavior are the inertial frame positions x, y, the

body velocity v, and course angle ψ. Yet the helicopter

has complex dynamics which require the coordination of

four physical control inputs up = [δlon, δlat, δped, δcol]
′. Its

dynamic behavior is described by at least a 10th order system
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(three translational velocities, Euler angles and rates, and the

lateral and longitudinal rotor flapping states [22]).

For a skilled pilot it is reasonable to assume that the pilot

effectively acts as a dynamic inverse control law. This implies

that at the spatial planning level, the pilot abstracts out details

of the vehicle control. To compute optimal trajectories, we

use the dynamics of a simple mass point model:

ẍ = a cos(Ξ + θ) (1)

ÿ = a sin(Ξ + θ).

The control inputs are the acceleration magnitude a (which

can be negative when decelerating), and θ which represents

the angle between the current acceleration and course angle

Ξ.

The control performance of the pilot as a dynamic inverse

controller is captured by constraints on the acceleration and

velocity. The numerical values are based on actual flight test

experiments. The longitudinal and lateral acceleration limit

are given by the constraints: |a| ≤ 1.5m/sec2,|θ| ≤ 30deg),

and the limit on velocity magnitude (
√

ẋ2 + ẏ2 ≤ vmax =
2.5m/sec).

2) Optimal control problem formulation: The optimal

control problem for the trajectory planning task is formulated

as:

min
u

J(x) =

∫ tf

0

dt (2)

subject to

ẋ = f(x,u)

x(t0) = x0

x(tf ) = xgoal

u ∈ U

x ∈ X

where f is the vector differential equation representing the

vehicles equations of motion and U and X are the sets of

admissible controls and states, respectively, the acceleration

and velocity limits.

We generate two sets of trajectories. The first one assumes

fixed end state and optimal initial state for positions dis-

tributed evenly along the starting edge. The second set uses

the actual start/end states from the experiment. This enables

us to capture some of the variability inherent to the human

motor and sensing system. For example the lateral arrival

position has a mean E(y) = 0.066 m and standard deviation

σy =0.092 m (notice a slight shift to the right also visible in

the Figure 2). The optimal trajectories were computed using

an interior point numerical optimization tool [25].

C. Extracting value function and extremal maps

To extract the extremal fields from the family of ex-

perimental and computed (optimal control) trajectories, we

perform a spatial averaging. We discretize the x − y plane

using a regular grid with resolution dxy . For each spatial grid

point (i, j), we average the states and cost-to-go values for

all trajectory time samples that fall within a circular region

of radius rxy . The set of time samples Ki,j(n) for a grid

point (i, j) and trajectory n in the family is defined by:

Ki,j(n) = {k|di,j(n) ≤ rxy} (3)

di,j(n, k) = ‖(xn(kTs), yn(kTs)) − (xi, yj)‖ (4)

The field’s values are computed using a weighted average

where the weights are the normalized distances from the grid

point. For the velocity magnitude, we have:

v̄i,j = [
∑

Ki,j(n);n=1:N

w(n, k)i,jv(kTs)]/ (5)

∑

Ki,j(n);n=1:N

w(n, k)i,j

w(n, k)i,j = [1 − di,j(n, k)/rxy] (6)

For our study, the same averaging process is performed for

the course angle Ξ(i, j) and the cost-to-go value T (i, j). The

cost function in our interception task is travel duration to the

goal set. We evaluate the cost-to-go by determining the time

instant for each trajectory n when it reaches the goal state

tarr(n) and obtain the CTG value based on the time at the

current instant T = kT − tf .

When averaging we also compute the standard deviations

(σT , σv , σΞ). These statistics capture the variability in these

quantities which are important for the interpretation of the

results.

Figure 3 shows the field values that were extracted through

spatial averaging for the experimental and the optimal com-

puted trajectories. Figure 4 shows the corresponding statis-

tics. These results were computed for cells with edges dxy =
0.1m and circular averaging region rxy = 0.6m. These

settings provide sufficient spatial resolution and smoothness

based for our current number of trajectory segments, and

based on the sampling interval Ts = 0.02sec.

V. RESULTS

From the extracted fields shown in Figure 3 we see that the

human planning and control behavior is consistent enough as

a function of space to result in smooth spatial distributions

both for the cost and for the state variables. Also, the cell

resolution is sufficient to capture the overall shape of the

distribution. By increasing the cell size we would loose

details about the shape of the distribution.

The speed distribution v̂ exhibits the typical bell-shaped

profile along the x- direction. Overall, the pilot is operating

the vehicle at a slower speed than the computed optimal

value. In particular there is a pronounced indentation in speed

left of the field’s diagonal. This area happens to be where

the pilot turns the vehicle toward the goal (see Figure 2). In

contrast, in the computed data the heading changes more

gradually as it moves toward the goal. This behavior is

visible in the heading distribution, where the average heading

is relatively flat compared to the computed data.

The time-to-go for the pilot data is larger than for the

optimal computed data. The difference of up to 1 sec is

not surprising given that the parameters (the acceleration

and speed constraints) used for the optimal control problem
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Fig. 3. Spatial distribution of the values extracted from the experimental
(left) and computed trajectories (right): the cost-to-go T (time to reach the
goal); the speed of the vehicle V ; and the course angle Ξ of the vehicle.
(The goal is at the upper left corner (0,0))

are based on the particular pilot’s best performance. The

computed data essentially represents a performance upper

bound based on the current skills of the pilot. We could

have easily generated an absolute upper bound (i.e. cost-to-

go T (x, y) lower bound) based on the vehicle physical limits.

This upper bound would indicate how well the pilot performs

based on the theoretical performance limit (note that these

do not account for the the human sensory and motor control

limitations).

The variability of the extracted values is described by the

standard deviation and shown in Figure 4. As expected, the

experimental data has more variability than the computed

data. The highest variability occurs on the task domain’s

diagonal for the course angle Ξ (up to 20 degrees) and on

the left side of it for the velocity v. I this area the goal state

is offset and rotated relative to the vehicle motion. From

a control perspective this area requires more coordination

between the longitudinal and lateral control inputs, thus the

performance will depend on the pilot’s skill level.
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Fig. 4. Spatial distribution of the standard deviation for the experimental
data (left) and computed trajectories (right): the cost-to-go σT (time to
reach the goal); the speed of the vehicle σV ; and the course angle σΞ of
the vehicle.

VI. CONTROL THEORETIC INTERPRETATION

The field of extremal extracted from the experimental tra-

jectories describe the operator’s “closed-loop” performance.

These fields, however, do not tell us how the human generates

the trajectories and implements the necessary control actions.

From a control theoretic standpoint, at least three different

forms of implementations could be used for such spatial con-

trol problems. Each form of implementation has implications

that can help us evaluate their biological plausibility. All

three forms are based on the assumption that at the “physical”

control level the human acts as a dynamic inverse controller.

Figure 5 illustrates this model. The vehicle dynamics are

described by P and P−1 is the dynamic inverse control law.

Based on current estimates of the vehicle position and state

x̂ = [x̂, ŷ, ψ̂, v̂]′ (obtained via the human sensory system),

the pilot generates the appropriate physical inputs up based

on the difference between the optimal state x∗(x) = [v∗, ψ∗]′

provided by the planning level policy and the current esti-

mated state.
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is computed at once; 3) in receding horizon predictive optimization, a local
trajectory is computed based on an approximation of the value function
map.

A. Possible Control Models

1) State Feedback policy: The fields are used as spatial

feedback policy maps. The maps provide information on the

optimal vehicle state values x∗(x) = [v∗, ψ∗]′, i.e. what

course and velocity the vehicle should be following, given

its current location x, y. The value function V ∗(x) provides

the time-to-go from that location to the goal, provided

the optimal policy were implemented all along the future

trajectory.

Such a feedback policy would require that the entire map

is available to to the human (as a form of knowledge).

While possible, it is not very realistic as a general strategy

considering its specificity to a particular task and conditions.

However, if a particular skill is used extensively, and the

different parameters that affect the map’s validity (dynamics,

end-state, disturbances) do not change much it may be a

plausible model for the control process.

2) Full-horizon optimization: In the full-horizon opti-

mization, a trajectory and corresponding control history is

“computed” at once (from scratch) based on current state,

task, and a model of the close-loop vehicle behavior. This

nominal trajectory can then be fed open-loop. From an

optimal control viewpoint this is a two-point boundary value

problem (BVP) which can be computationally expensive to

solve. In the event of large disturbances or significant model

miss-match, this nominal trajectory would not be valid and

a new solution would have to be computed.

Such a solution implies that the brain performs a large

optimization problem online. Such a process is plausible

for situations where the subject can utilize much of its

“online” processing resources (e.g. when training). However,

in challenging conditions, in the presence of significant

uncertainties (about the task or environment), the process

would have to be repeated almost continuously to update

the trajectory. In this case, the necessary “online” processing

may exceed the available resources.

3) Receding-horizon predictive optimization: In receding

horizon (RH) optimization, only a local trajectory need to

be computed (based on current state, task and a closed-

loop model) for a finite prediction horizon. To preserve

optimality and stability, the discarded tail of the trajectory

has to be accounted for. One way of achieving this is by

using a cost-to-go function that captures the cost of the

discarded tail. The lighter online computation required allows

to frequently update the trajectory and hence account for

evolving knowledge of the environment and task as well as

compensate for exogenous effects.

From a biological standpoint, this model is the most

general and provides the most versatility to deal with un-

certain and changing tasks and conditions. In fact, for long

prediction horizons and accurate internal closed-loop models,

the performance of the RH scheme should converge to that

of a full-horizon optimization. Conversely, for very short

horizons, the scheme becomes more like a state-feedback

policy.

VII. CONCLUSIONS AND FUTURE WORK

The extracted extremal fields show that the human perfor-

mance exhibits good spatial regularity. Further, the compari-

son with optimal control data suggests that for our particular

task the human pilot behaves similarly to a minimum-time,

optimal control policy. Moreover it shows that an idealized

mass-point model, motivated by dynamic inverse control,

is sufficient to explain the pilot’s control behavior at the

planning level. More generally, the results demonstrate that

the concept of extremal fields provides unique insight into

the control behavior as a function of space. This is key for

the type of spatial control tasks which are common to many

human or animal activities. In addition, this framework also

provides a spatial perspective on the statistical information.

For human control behavior, variability is a typical measure

of skill level [26]. The extremal field technique may be a way

to extend these notions by relating skill level to a measure

of optimality.

The value function is also representative of the information

needed to perform the task. Therefore, it may provide a

framework to study the information-theoretic aspects under-

lying human control performance. At the control level, it

should help us understand the type and amount of infor-

mation required to perform a particular task at a specified

performance level. Hence it may provide an alternative tech-

nique to the classic Fitt’s law measure of information [27].

For example, the spatial distribution of control behavior

make it easier to determine the human equivalent control

requirements (level of coordination, bandwidth) needed in

difference regions of the planning space. These could also

be used to develop new improved metrics to determine task

difficulty and skill level. A sensitivity analysis based on the

extremal fields would provide a rigorous way to investigate

how pilot sensory/control uncertainties affect performance.

For example, we can determine the cost penalty of inaccurate

position estimation or poor velocity tracking. Such insights

may provide additional clues on the principles at play in the

biological control processes.

We plan to explore these ideas by conducting additional

experiments. We plan to include more subjects to capture
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a wider range of skill levels. We also plan to incorporate

uncertainties and disturbances in our tasks. This additional

data will provide data to look further into the relationship

between task difficulty, skill level, variability, and to further

refine and validate our models of the human planning and

control processes.

Ultimately, we hope that our framework will help better

understand how the planning, control and sensing processes

are implemented and organized in the brain to enable the

pilot’s unique control skills. Here, the map-like structure of

the value function (being similar to other map-like represen-

tations used in the cognitive and neuro-sciences) may help

provide a platform to better link psycho-motor data with

biological models of the control and planning processes. This

knowledge should eventually help us design more capable

and versatile autonomous control algorithms as well as help

design man-machine interfaces that provide a more natural

link with the brain’s processes involved in human control

skills.
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