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Abstract— This paper proposes a methodology to measure the
effectiveness of a human-robot team as part of an adjustable
autonomy system. The effectiveness measure is aimed at deter-
mining an appropriate autonomy level prior to the system’s
deployment. Two competing goals need to be traded off:
maximising robot performance while minimising the amount
of human input. The relative importance of the two goals
depend on the mission priorities and constraints which are
taken into account. The proposed methodology is applied to
a human-robot communication system developed for task-
oriented information exchange. The robot uses a decision-
theoretic framework to act autonomously and to decide when
to request input from human operators. The latter is achieved
by computing the value-of-information an operator is able
to provide which is compared to the cost of obtaining the
information. For our system, the cost parameter represents
the autonomy level to be determined. We demonstrate how
an appropriate autonomy level can be found experimentally
using a navigation task. In our experiment, the robot navigates
through a set of simulated worlds with human input being
generated by a software component. The results are used to
find appropriate autonomy levels for three example missions
and a subsequent user study.

I. INTRODUCTION

Fully autonomous robots are still a vision of the future.

Combining the strengths of humans and robots to achieve a

task cooperatively is becoming a popular paradigm [2][3][5].

Adjusting a robot’s autonomy by allowing human input

is one way to achieve the combination. The underlying

assumption is that robot performance increases with more

human input.

Robot performance and the amount of human input re-

quired to achieve the performance are two metrics used

in this paper to measure team effectiveness as a function

of robot autonomy. The objective is to find an appropriate

autonomy level for an Adjustable Autonomy (AA) system

prior to its deployment. The autonomy level acts as a design

parameter which determines under what circumstances the

AA system adjusts its autonomy online. To find an appropri-

ate autonomy level, two competing goals need to be traded

off: maximising robot performance while minimising human

input.

The relative importance of the two goals is dictated by

the priorities and the constraints of the mission. Examples

for mission priorities are safety and efficiency, examples for

mission constraints are the number of humans and robots

available and communication bandwidth. To incorporate mis-

sion priorities and constraints, the two metrics mentioned
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above are weighted accordingly and summed up into a

single scalar. The scalar can be interpreted as a mission-

specific measure of human-robot team effectiveness. It can

subsequently be used to find the appropriate autonomy level

for a given mission scenario. We define autonomy level as a

mission-specific parameter which determines the degree of

autonomy the robot has during its deployment.

The methodology described above is split into five steps:

1) Identify robot performance metrics for a given task.

2) Experimentally obtain robot performance values and

number of human-robot interactions as a function of

the autonomy level.

3) Identify the constraints of the mission such as available

resources (e.g. number of humans and robots), and

mission priorities (e.g. safety, efficiency).

4) Combine robot performance metrics and the number

of human-robot interactions into a scalar called team

effectiveness using a weighted sum. Weights are chosen

based on the constraints found in the previous step.

5) Select the autonomy level with the highest team effec-

tiveness value for the mission.

The methodology is applied to a communication system

developed for task-oriented information exchange [8]. The

system fuses information from humans and robots to yield

better informed decisions. Human operators are treated as

a resource which needs to be managed carefully. Keeping

the number of required interactions at a minimum has two

advantages: humans will give higher quality input, and the

number of robots that can be operated simultaneously will

increase.

Our communication system makes use of probabilistic

representations commonly used in robotics to model sensing

and action uncertainties. Typically, sensors make observa-

tions to update the representation’s probability distributions.

We extend this by letting human operators contribute ob-

servations on a higher abstraction level [7] exploiting human

cognitive abilities. An operator is thus treated as an additional

information source.

Decision theory is used to compute decisions for the

robot given all available evidence. Evidence is gathered from

sensors and human operators: using Value-Of-Information

(VOI) theory, it is possible to calculate the expected gain

in consulting an information source which comes at a cost.

This principle is used to decide whether an operator should

be queried for an observation. In our system, the cost of ob-

taining information represents the aforementioned autonomy

level. Both terms are used interchangeably throughout the

rest of this paper.
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The influence of the autonomy level on robot performance

and the number of human-robot interactions is experimen-

tally determined using a navigation task as an example.

The robot navigates through a set of simulated worlds

while higher-level human input is simulated by an external

software component. The output of the experiment is a team

effectiveness graph which is used to select an autonomy level

for three example missions.

The remainder of the paper is structured as follows.

Sec. II reviews related work. Sec. III describes the human-

robot communication system which is demonstrated using

a navigation task in Sec. IV. Results from applying the

proposed methodology to that task are presented in Sec. V.

Finally, Sec. VI concludes and lists future work.

II. RELATED WORK

Others have addressed the problem of finding metrics to

evaluate human-robot systems more formally [3][13][10]. In

their work, one of the goals of measuring the effectiveness of

a human-robot team is to enable the prediction of an appro-

priate number of robots a user can effectively operate for a

given task (“Fan-Out”). In contrast, we measure effectiveness

to determine an appropriate autonomy level for an adjustable

autonomy system.

Crandall et al. propose a set of metric classes applicable

to all parts of a human-robot system: operators, individual

robots, and the overall team [3]. The methodology proposed

in the Introduction falls in the metric class of Interaction

Efficiency measuring, among other things, how human input

affects robot performance.

The fields of Adjustable Autonomy (AA) and Mixed

Initiative Control aim at bridging the gap between full human

control and full autonomy. The fundamental questions in

these fields are how to decide when to relinquish control

and on what criteria to base that decision [12]. In many

AA systems, the human operators are in charge of switching

between a set of predefined discrete modes which imposes

a significant responsibility on the operator as pointed out

in [2].

In contrast, the approach advocated here is to let the

robot decide when to query operators for input based on the

uncertainty in the robot’s beliefs. This can be seen as a robot-

initiated shift to lower autonomy at runtime. How often this

shift occurs depends on the previously set autonomy level

(a design parameter). How to find an appropriate autonomy

level is experimentally demonstrated in Sec. V.

Our human-robot communication system is most closely

related to Fong’s Collaborative Control which, like our

approach, treats humans as a resource for robots [5]. Bidirec-

tional communication in the form of a human-robot dialog

is used to exchange information of different types such as

commands, queries and responses. The main difference to

our work is the chosen approach: while Fong uses no specific

underlying mathematical method, we cast the problem of

collaborative control in a decision-theoretic formulation. This

allows a quantitative analysis of the system as presented in
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Fig. 1. Influence Diagram (ID) representation for a navigation task. Ovals
are chance nodes, squares are decision nodes, and diamonds are utility
nodes. Grey nodes represent information sources: dark/light grey nodes are
observed by the robot/human.

this paper whereas Fong focuses on qualitative measures and

usability [5].

Using VOI theory to decide what information source to

query has been applied to a wide range of applications,

e.g. distributed sensor management [9]. To the best of our

knowledge, this work is the first to apply VOI theory to

human-robot communication.

III. HUMAN-ROBOT COMMUNICATION

This section explains the mathematical background of

our human-robot communication system. A probabilistic

representation lies at the heart of the approach.

A. Decision-Theoretic Models

A probabilistic representation should encode the rela-

tionships between random variables qualitatively (model

structure) and quantitatively (model parameters), and allow

efficient inference. A class of graphical models fulfilling

these requirements are Bayesian Networks (BNs) [11]. BNs

encode beliefs about the world states represented as chance

nodes. Chance nodes are either observed (in which case they

are also called evidence nodes) or unobserved (in which case

they contain probability distributions). Nodes that can be

observed are referred to as information sources in this paper.

BNs can be extended to Influence Diagrams (IDs) to

model decision making under uncertainty [6]. IDs are gen-

erally able to represent information about the current state,

possible actions, the state resulting from the action, and the

utility of that state [11].

IDs extend BNs by adding decision and utility nodes.

Decision nodes represent choices available to the decision-

maker (a set of possible actions). Utility nodes encode

a utility function: the usefulness of the consequences of

decisions using a scalar called utility.

An example of an ID is shown in Fig. 1 which is the model

used for the experiment presented in Sec. V. It encodes

a robot’s low-level decision model which chooses driving

actions based on the beliefs of the chance nodes, and the

utility functions. In this example, two decisions are made: in

which direction to move (decision node Direction), and with

what speed (decision node Speed).

Each decision node has several discrete actions: choices

for Direction are {left, right, straight} while choices for
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Speed are {stop, slow, fast}. The best decisions are the ones

which maximise the expected utilities which are defined by

the two utility nodes.

More formally, consider a decision node D and let e de-

note the set of observations (evidence). A rational decision-

maker chooses the action d which maximises the expected

utility (EU):

d = argmax
D

EU(D|e) (1)

B. Value of Information

Rather than taking the action d in Eq. 1, a decision-maker

might have the choice of consulting one of its information

sources {I1, ..., Im} in order to generate a more informed

decision. Consulting an information source Ii is equivalent

to obtaining the state of that chance node. We assume that

only a single information source is consulted at any given

time which is referred to as myopic information gathering [4].

In our example, grey nodes represent all information sources

with light grey nodes representing human-observable nodes.

It is possible to calculate what we can expect to gain from

consulting the information source before observing that node

by using its belief given all current evidence P (Ii|e) [4]. The

expected utility of the optimal action (EUO) after having

observed Ii is

EUO(Ii,D|e) =
∑

Ii

P (Ii|e)max
D

EU(D|e, Ii) (2)

The value of observing Ii is called the Value Of Infor-

mation (VOI). It is calculated as the difference between the

expected utility after having observed Ii and the currently

available maximum expected utility:

V OI(Ii,D|e) = EUO(Ii,D|e) − max
D

EU(D|e) (3)

For the representation shown in Fig. 1, the outcomes of the

decisions are independent of the chance nodes in the model,

i.e. decision nodes have no chance nodes as children. For

this special case, it is straightforward to compute Eq. 3 (H

denotes the parents of the utility node U ):

V OI(Ii,D|e)=
∑

Ii

P (Ii|e)max
D

(

∑

H

P (H|Ii, e)U(D,H)

)

−max
D

(

∑

H

P (H|e)U(D,H)

)

(4)

Computing the VOI is relevant for intelligent information

gathering systems where the goal is to maximise the amount

of information collected [16]. Consulting an information

source comes at a cost, so a sensible strategy is to consult

that source only if the expected benefit is higher than the

cost C(Ii):

V OI(Ii,D|e) − C(Ii) > 0 (5)

An experimental methodology to find an appropriate cost

parameter C was proposed in Sec. I and is applied to a

navigation task in Sec. V.

C. Using VOI to Adjust Autonomy

This section explains how VOI is used to query human

operators and therefore adjust the robot’s autonomy online.

In our approach, humans are treated as information sources

which can be queried for observations. VOI theory is used

to determine under what circumstances to query operators

which can be seen as an online shift to lower autonomy.

Whether an autonomy shift is triggered during a mission

depends on the robot’s current probabilistic beliefs and the

cost parameter of Eq. 5.

In the simplest case (as discussed here), the cost parameter

is fixed prior to a mission. If the cost parameter value is

high, the robot relies more on its own perceptual capabilities,

asks fewer questions, and is more autonomous by definition.

Setting the cost parameter can thus be seen as fixing the

autonomy level which was defined in Sec. I.

IV. NAVIGATION APPLICATION

This section demonstrates the human-robot communica-

tion system using a mobile robot navigation task. The

implementation was designed to provide a flexible testbed

for multiple experiments, one of which is reported in Sec. V.

The navigation algorithm makes use of the representation

shown in Fig. 1. Many well-researched methods in machine

learning and knowledge engineering address the problem of

how to construct such a representation [11]. It is not the

focus of this work, and therefore both the structure and the

parameters are handcrafted for our representation. Since all

the nodes are discrete, the probability distributions and utility

functions are represented as tables.

At robot run-time, the representation is instantiated at each

time instance. Several steps are involved to yield driving

actions which are described next.

First, the robot determines the direction to the next way-

point which serves as evidence for the CommandedDirection

node. Then, obstacle states are extracted from the current

laser scan which serve as evidence for DirectionToObstacle

and DistanceToObstacle representing the direction and dis-

tance to the closest obstacle (if any).

The next step is to compute the VOI for all human-

observable nodes according to Eq. 3. Human-observable

nodes are children of the latent (unobserved) variables Ob-

stacleType (pushable or fixed) and SafeDirection/SafeSpeed.

Two types of human-observable nodes (novice/expert) are

used to represent the different levels of uncertainty in the

operators’ answers: in plain terms, how much the answers

can be trusted. Mathematically, the nodes encode conditional

probability distributions (CPDs) which we call Human Sen-

sor Models (HSMs).

HSMs are important for the VOI analysis: the more an

answer can be trusted, the more valuable it is. An example

is visualised in Fig. 2: the robot is in a “critical” situation

because there is an obstacle very close to its right which
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(a) Robot navigating in a maze
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Fig. 2. Robot in a “critical” situation: (a) it detected a close obstacle
to its right which is also the direction it is supposed to move (blue
marker points towards next waypoint, red arrows indicate current speed and
turnrate); (b) VOI analysis for this situation showing the VOI for all human-
observable nodes. The horizontal line represents the cost of consulting a
human operator. How to set this design parameter appropriately is the topic
of this paper.

is also the direction it is commanded to move (Fig. 2(a)).

The VOI analysis for this situation is pictured in Fig. 2(b)

showing the VOI for all six human-observable nodes. The

figure also shows that information from an expert is more

valuable than from a novice.

The horizontal line in Fig. 2(b) shows the variable cost

of obtaining information. An appropriate cost level will be

determined experimentally in Sec. V. In this scenario, two

bars exceed the cost: ObsTypExp and SafSpdExp, i.e. Eq. 5

is fulfilled for these two information sources. Thus, the robot

would consult an expert about the type of obstacle which is

the most valuable observation it can possibly obtain.

When a human observation is received, it is incorporated

into the representation as additional evidence. Finally, a

driving action is selected according to Eq. 1.

V. EXPERIMENT

This section follows the five steps of the methodology

proposed in Sec. I and applies it to the navigation task.

A. Performance Metrics (Step 1)

Two robot performance metrics are used here: the number

of successfully completed navigation tasks and the time

to complete each (successful) task. The two metrics are

proposed in [13] to measure effectiveness and efficiency of

a navigation task.

B. Experiment (Step 2)

1) Setup: To obtain a statistically relevant dataset, the

following approach is taken. Human answers are simulated

by running a software component which generates better

informed observations than the robot itself is able to produce.

This is achieved by restricting the robot’s laser scan to a field

1 2 3

4 5 6

7 8 9

10

Fig. 3. Ten environments of size 64m × 16m with randomly generated
obstacles.

of view of only 40 ◦ but allowing the “simulated human”

access to a 120 ◦ scan.

We argue that this is a valid approach since humans can

often extract more information from the same sensor data

by applying their rich perceptual capabilities. Humans can

also apply background information not available to today’s

robots. For the purpose of this experiment, human and robot

capabilities are artificially reduced.

The simulated human acts as an expert who, whenever

requested, is able to produce SafDirExp and SafSpdExp

observations based on a 120 ◦ laser scan. These two variables

correspond to the 5th and 6th bar in Fig. 2.

The experiment is conducted using 10 environments of

size 64m × 16m with randomly generated fixed obstacles

as shown in Fig. 3. The robot is placed near the centre on

the far left of the world and a goal waypoint is generated

near the centre on the far right (with some randomness).

An episode is declared successful if the robot manages to

position itself within 1m of the goal before a timeout of

120s occurs. Timeouts occur if the robot hits an obstacle

and as a result gets stuck.

The evaluation uses 6 cost parameters which are uniformly

distributed over the range of possible VOI values. Each of

the 10 environments is traversed 5 times resulting in a dataset

of size 300. The experiment ran continuously for a total of

8.7 hours. All software components were implemented and

deployed using the Orca software framework [1].

2) Results: Fig. 4(a) & 4(b) show success rate and com-

pletion time as a function of the cost parameter. The success

rate drops off with increasing autonomy (fewer queries). At

cost 0, when the simulated human is queried continuously,

all 50 episodes are successful. At cost 50 the robot is

autonomous at all times (no queries) and completes the

course successfully in only 18% of the cases, on average.

The plot shows that robot performance increases if input

from an expert can be obtained.

The completion time is only measured for successful

episodes, i.e. when the robot did not hit an obstacle. Com-

pletion time is highest for cost 0 when the simulated human

is queried continuously. This is expected since the robot

carefully avoids all obstacles. The high variance at cost 0
is also expected since more time is needed to navigate in

more difficult environments.

At higher autonomy, the robot takes less time to reach its
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(c) Number of operator queries

Fig. 4. Team effectiveness metrics ((a),(b) robot performance; (c) number of interactions) as functions of cost, obtained experimentally. Variance in results
is due to the varying difficulty levels of the environments. Error bars indicate one standard deviation.

goal which seems surprising at first. However, the number

of successful episodes decreases as mentioned above, and

only environments with few obstacles along the centre are

traversed successfully. The robot is faster if it does not hit an

obstacle because it steers “blindly” towards its goal without

spending time to avoid obstacles.

Finally, Fig. 4(c) shows the number of operator queries

per second as a function of the cost. The number of queries

decreases gently first, then drops off steeply and finally goes

to 0 which represents fully autonomous operation. The steep

drop-off can be explained by the coarse representation used

in this experiment: obstacles are either far, close, or very

close. Situations in which obstacles are far away are much

more numerous than situations in which they are close. At

cost 30, the robot queries the human even in relatively safe

situations when obstacles are far resulting in many more

queries than at cost 40.

Even at high costs, the number of queries is too high for

a practical deployment with real humans. Obstacle tracking

and wall recognition algorithms can be used to avoid repeated

questions about the same obstacle (as done for the user study

reported in [8]). This functionality was turned off to simplify

the experiment without having any impact on the conclusions

to be drawn.

C. Identification of Constraints (Step 3)

Three mission scenarios are presented as examples for

step 3 of the proposed methodology:

1) Multiple operators, robot is expensive: this scenario

reflects the remote operation of an expensive robot, e.g.

in a search and rescue mission. We assume the robot’s

environment is inaccessible to humans, so operators cannot

physically intervene. It is also assumed that many human

operators can be contacted, experts as well as non-experts,

e.g. through a web application1.

2) Single operator, multiple robots: the second scenario

assumes a single operator who is in charge of multiple robots

at the same time. It is assumed that the operator can only

1Amazon’s Mechanical Turk [14], which is similar to our communication
system, was used in September 2007 to search for a disappeared plane [15].
Within three days up to 50,000 people joined in the effort (without success).

attend to one robot at the time. The operator’s capacity is

the limiting factor here.

3) Multiple operators, robot is expensive, limited commu-

nication bandwidth: this scenario is similar to scenario 1

with the additional assumption of a limited communication

bandwidth. An example application is a remote planetary

exploration mission.

D. Parameter Selection (Steps 4 & 5)

Step 4 requires the combination of success rate, com-

pletion time, and the number of queries into a single

scalar which we call team effectiveness. The combination

is achieved by a weighted sum which is subsequently scaled

to a [0; 1] interval. The weights represent the relative impor-

tance of each variable and are set according to the mission

priorities and constraints identified in step 3.

For scenario 1, the completion time is of secondary

importance but the robot could be lost if it hits an obstacle. A

weight ratio of 3 : 1 : 1 is manually chosen emphasising the

importance of success over completion time and number of

queries. Fig. 5(a) shows the team effectiveness for all cost

parameters. The highest team effectiveness is achieved by

setting the cost parameter to 0.

For scenario 2, the weight ratio is chosen to be 1 : 1 :
3, reflecting the importance of minimising the number of

queries and thus the operator workload. The cost parameter

with highest team effectiveness is 50 for this case as shown

in Fig. 5(b). Selecting this parameter implies the acceptance

of a robot performance loss.

For scenario 3, the weight ratio is 3 : 1 : 1.5 which is

similar to scenario 1 but penalises human queries more to

avoid excessive communication. Fig. 5(c) shows the result:

the highest team effectiveness is achieved when cost 40 is

selected.

VI. CONCLUSIONS AND FUTURE WORK

This paper addressed the difficult problem of determining

an appropriate autonomy level for an Adjustable Autonomy

(AA) system. The chosen autonomy level determines under

what circumstances the AA system adjusts its autonomy

online. We proposed a methodology to measure the effective-

ness of a human-robot team prior to its mission deployment.
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(b) Weight ratio 1 : 1 : 3
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(c) Weight ratio 3 : 1 : 1.5

Fig. 5. Team effectiveness graphs generated by weighted sums of 3 variables (success rate, completion time, number of queries). Team effectiveness
values are scaled to [0; 1]. The most appropriate autonomy level is found by selecting the cost where team effectiveness is 1 (indicated by the red markers).
Three mission scenarios are shown: (a) multiple operators, robot is expensive; (b) single operator, multiple robots; (c) similar to (a) but penalising excessive
communication.

Two competing goals were identified: maximising robot

performance while minimising the amount of human input.

To trade off these goals, the constraints and priorities of the

mission were taken into account.

We applied the methodology to our human-robot com-

munication system which was developed for task-oriented

information exchange. The system makes use of common

probabilistic robotic algorithms and decision theory to yield

rational decisions. Value-Of-Information (VOI) theory is

used to determine when it is worthwhile querying human

operators who are regarded as information sources. How

much value an observation adds has to be compared to the

cost of obtaining the information. For our system, the cost

parameter is equivalent to the autonomy level.

The communication system and the proposed methodology

were demonstrated using a navigation task. The results

were used to find an appropriate cost parameter (autonomy

level) for three example mission scenarios. Results of this

experiment were also used as a guide to set the autonomy

level for a follow-up experiment – a user study [8]. In

the future, more user studies will be conducted to verify

the estimated autonomy levels shown in Fig. 5 on unseen

environments.

Experiments to identify human-robot systems are expen-

sive and time-consuming which was mitigated in this paper

by simulating human input. Future work will make use of

Design of Experiment (DoE) methods to determine which

experiments are most relevant. Another option is to develop

(partial) models of the overall human-robot system which

will also be addressed in the future.

In this paper, the goal was to find an appropriate cost

parameter offline which is subsequently fixed at mission run-

time. An interesting research avenue is to investigate the

online adaptation of the cost parameter based on a user model

of workload and expected time delays. This would result in

a system which adjusts its autonomy online based on both

the environment’s and the human operator’s states.

While only one-to-one interactions were demonstrated

here, we are confident that the communication system can

be applied to multi-robot multi-user systems. Future reseach

will investigate if the proposed methodology from this paper

can be extended to these more complex systems.
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