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Abstract— This paper describes a novel approach for incre-
mental learning of human motion pattern primitives through
on-line observation of human motion. The observed motion
time series data stream is first stochastically segmented into
potential motion primitive segments, based on the assumption
that data belonging to the same motion primitive will have
the same underlying distribution. The motion segments are
then abstracted into a stochastic model representation, and
automatically clustered and organized. As new motion patterns
are observed, they are incrementally grouped together based
on their relative distance in the model space. The resulting

representation of the knowledge domain is a tree structure,
with specialized motions at the tree leaves, and generalized
motions closer to the root. The tree leaves, which represent
the most specialized learned motion primitives, are then passed
back to the segmentation algorithm, so that as the number
of known motion primitives increases, the accuracy of the
segmentation can also be improved. The combined algorithm is
tested on a sequence of continuous human motion data obtained
through motion capture, and demonstrates the performance of
the proposed approach.

I. INTRODUCTION

Learning by observing and imitating humans is an attrac-

tive proposition for humanoid robots, taking advantage of the

similarity in body structure between humanoids and humans.

Many algorithms have been proposed in the literature [1],

[2]. However, most of the approaches thus far consider off-

line learning, where the data is collected, segmented and

sorted into the motion groups to be learned a priori. However,

a robot which is an inhabitant of the human environment

should be capable of continuous learning over its’ entire

lifespan. The robot should be able to segment and classify

demonstrated actions on-line during co-location and possible

interaction with the (human) teacher.

In order to extract motion primitives during on-line obser-

vation, several key issues must be addressed by the learning

system: automated motion segmentation, recognition of pre-

viously learned motions, automatic clustering and learning of

new motions, and the organization of the learned data into

a storage system which allows for easy data retrieval. Since

data is being processed autonomously, in an on-line system,

later stages of the process must be robust to errors in the

preceding steps. We propose a combined approach for on-line

segmentation and clustering of whole body human motion

patterns. The observed motion time series data stream is

first stochastically segmented into potential motion primitive

segments, based on the assumption that data belonging to
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the same motion primitive will have the same underlying

distribution. The segmented motions are then passed to an

incremental clustering algorithm which forms a tree repre-

sentation of the learned motions, and abstracts each motion

type into a generative model. The learned motion primitives

are then passed back to the segmentation algorithm, so

that, as the motion is viewed repeatedly over time, both

the segmentation performance and the model of the motion

primitive improves.

A. Related Work

The first requirement of autonomous motion learning is the

segmentation of the incoming data stream into appropriate

segments, representing potential motion primitives. Existing

data segmentation algorithms can be divided into two broad

categories: unsupervised algorithms which require no a-

priori knowledge of the motion data to be segmented, and

algorithms which make use of a-priori specified motion

primitives to perform the segmentation.

In the first category, some assumption is made about the

underlying structure of the data at a segmentation point.

For example, several algorithms have been developed for

segmenting motions based on the velocity properties of the

joint angle vector [3], [4], [5]. In Pomplun and Matarić [3],

a segment is recognized when the root mean square (RMS)

value of the joint velocities falls below a certain threshold.

In this case, the assumption is that there will be a pause in

the motion between motion primitives. In Fod et al. [4], it is

assumed that there is a change in the direction of move-

ment accompanying a change between motion primitives.

Therefore, a segmentation point is recognized when a Zero

Velocity Crossing (ZVC) is detected in the joint angle data,

in a sufficient number of dimensions. However, with all the

velocity based approaches, it becomes more difficult to tune

the algorithm as the number of joints increases.

Koenig and Matarić [6] develop a segmentation algorithm

based on the variance of the feature data. The algorithm

searches for a set of segment points which minimize a

cost function of the data variance. In a related approach,

Kohlmorgen and Lemm [7] describe a system for automatic

on-line segmentation of time series data, based on the

assumption that data from the same motion primitive will

belong to the same underlying distribution. The incoming

data is described as a series of probability density functions,

which are formulated as the states of a Hidden Markov

Model (HMM), and a minimum cost path is found among the

states using an accelerated version of the Viterbi algorithm.
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Janus and Nakamura [8], [9] apply this approach to human

motion capture data.

In the second class of segmentation algorithms, motion

primitives are specified by the designer a-priori, and seg-

mentation is based on the comparison between the known

motions and the incoming data. For example, in Takano

and Nakamura [10], [11] the known motion primitives are

encoded via short HMMs. Segmentation points are then

decided based on the error between the motion data predicted

by the HMM and the actual observed motion data. If the

error increases above a certain threshold, a segment point is

declared.

Once the data is segmented into motion primitive ex-

emplars, the motion primitives must be clustered and ab-

stracted. Breazeal and Scasellati [1] and Schaal et al. [2]

provide reviews on motion learning by imitation. As noted by

Breazeal and Scasellati, the majority of algorithms discussed

in the literature assume that the motions to be learned are

segmented and clustered a-priori, and that the model training

takes place off-line. For example, Billard et al. [12] use

HMM models for motion recognition and generation. The

Bayesian Information Criterion (BIC) is used to select the

optimal number of states for the HMM. However, all the

exemplar motion patterns are acquired and grouped before

the training begins, and the number of motions to be learned

is specified a priori.

Kadone and Nakamura [13], [14] describe a system for

automated segmentation, memorization, recognition and ab-

straction of human motions based on associative neural

networks with non-monotonic sigmoid functions. However,

the abstracted motion representation can only be used for

subsequent motion recognition, and cannot be used for

motion generation.

Kulić et al. [15], [16] have been developing algorithms for

incremental learning of motion pattern primitives through

long-term observation of human motion. Human motion

patterns are abstracted into a stochastic model representation,

which can be used for both subsequent motion recognition

and generation. The model size is adaptable based on the

discrimination requirements in the associated region of the

current knowledge base. As new motion patterns are ob-

served, they are incrementally grouped together based on

their relative distance in the model space. The resulting

representation of the knowledge domain is a tree structure,

with specialized motions at the tree leaves, and generalized

motions closer to the root.

B. Proposed Approach

The aim of our research is to develop robots which can

learn motion primitives on-line while observing and interact-

ing with a human partner. Therefore we seek a segmentation

method which can begin processing the incoming data in an

unsupervised manner, similar to the approach of Janus and

Nakamura [8], but which can improve its performance over

time, as more motions become clustered and abstracted as

motion primitives. The learned motion primitives can be used

to improve the segmentation performance.

We use a modified version of the Kohlmorgen and Lemm

[7] algorithm for unsupervised segmentation of on-line hu-

man motion data, and then input the extracted segments into

an automated clustering and hierarchical organization algo-

rithm [15], [16]. The segmentation algorithm uses a Hidden

Markov Model to represent the incoming data sequence,

where each model state represents the probability density

estimate over a window of the data. The segmentation is

implemented by finding the optimum state sequence over the

developed model. The clustering algorithm uses a variable

structure Hidden Markov Model based representation to

abstract motion patterns as they are perceived. Individual

motion patterns are then clustered in an incremental fashion,

based on intra model distances. The resulting clusters are

then used to form a model of each abstracted motion prim-

itive, which can be used for subsequent motion generation.

As the observed motion primitives become known, the seg-

mentation algorithm is modified to include permanent states,

representing the known motion primitives. The permanent

states are then used together with the temporary states gen-

erated from the current observation window to generate the

optimum state sequence which represents the segmentation

result. Therefore as more motion primitives become known,

they are also used to improve the segmentation results. This

paper presents the combined segmentation and clustering

approach, which can be used to autonomously extract motion

primitives from continuous on-line observation of a human

demonstrator. The proposed approach is robust to initial

errors in segmentation, and quickly abstracts the motion seg-

ments, such that both the segmentation and motion represen-

tation components together converge to improve performance

over time. Section 2 summarizes the segmentation algorithm,

Section 3 overviews the clustering method, while Section 4

describes the combined approach. In Section 5, the results

of experiments verifying the algorithm on a continuous

stream of human motion capture data is reported. Section

6 concludes the paper.

II. PROBABILISTIC SEGMENTATION WITH SCAFFOLDING

STATES

The Kohlmorgen and Lemm [7] segmentation algorithm

is based on the assumption that data belonging to the same

motion primitive will have the same underlying probability

distribution. The incoming data stream is first embedded into

a higher-dimensional space,

~xt = (~yt, ~yt−1, . . . , ~yt−(m−1)τ ), (1)

where ~y1, ~y2, ~y3, . . . is an incoming data stream to be

analyzed, m is the embedding dimension and τ is the delay

parameter. Next, the density distribution of the embedded

data is estimated over a sliding window of length W , via

a standard density estimator with multivariate Gaussian ker-

nels, centered on the data points in the window { ~xt−w}W−1
w=0 .

pt(x) =
1

W

W−1
∑

w=0

1

(2πσ2)d/2
exp(− (x − ~xt−w)2

2σ2
), (2)
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where σ is a smoothing parameter calculated proportional

to the mean distance between each ~xt and its d nearest

neighbors.

As more data are observed, the distance between succes-

sive data windows can be calculated based on the integrated

square error between two probability density functions. This

distance can be calculated analytically in the case of mixtures

of Gaussian density functions:

d(pt1(x), pt2(x)) =
1

W 2(4πσ2)d/2

W−1
∑

w,v=0

[exp(− ( ~xt1−w − ~xt1−v)2

4σ2
)

− 2exp(− ( ~xt1−w − ~xt2−v)2

4σ2
)

+ exp(− ( ~xt2−w − ~xt2−v)2

4σ2
). (3)

The analysis is carried out by defining a Hidden Markov

Model over a set S of sliding windows. Each window

corresponds to a state of the HMM. For each state, the

observation probability distribution is defined as:

p(pt(x)|s) =
1√
2πς

exp(−d(ps(x), pt(x))

2ς2
), (4)

where p(pt(x)|s) is the probability of observing the win-

dow represented by pt(x) in state s.

The basic algorithm is modified to take advantage of

known motions. Known motions could be provided manually

from the user, or through the use of an automated clustering

technique [15], [16].

The known motion is first encoded into a window rep-

resentation by embedding the data in the same manner as

the input data, as described in Equation 1. Since exemplar

motions can be of different durations, the exemplar data can

span over multiple windows. Once the exemplar data has

been embedded, the distance between the known motion(s)

and the current temporary states is calculated as the minimum

over all the distance measures between the temporary state

and each window in the known motion.

Dk(st, sp) = max
i=1:nsp

D(pt, ppi) (5)

Dk(st, sp) is the distance between temporary state st and

known motion sp,nsp is the number of windows for the

known motion described by sp, and D(pt, ppi) is the distance

between two windows as shown in Equation 3. Temporary

states for which the distance between the state and one of

the known motions is small are identified as known motions,

termed permanent states.

The structure of the HMM is then modified to bias the

model to prefer permanent states over temporary states. The

state transition matrix A is modified such that transitions

to a permanent state are more likely then transitions to a

temporary state. The modified state transition matrix is given

by Equation 6.

aij =















k
C if i = j;

1
C if i 6= j and i ∈ St;

Ks
C if i 6= j and i ∈ Sp.

(6)

where Ks is a factor favoring a transition to a permanent

state over a transition to a temporary state, 1 < Ks < k, and

C is a normalizing constant ensuring that each row of the

state transition matrix sums to 1.

In addition, known motion patterns are used to modify the

variance of the observation function of the known states and

extract information about which degree of freedom is most

active during the motion. The relative activity of each degree

of freedom is calculated as follows:

jact
i =

1

Tp

Tp
∑

t=0

(ji(t) − j̄i)
2 (7)

where jact
i is the activity of each degree of freedom, Tp is

the length of the known motion sequence, ji(t) is the value

of DoF i at time t, and j̄i is the average value of the DoF

over the entire known motion sequence.

This activity value is then used to weigh the distance

computation when a permanent state is active.

Dw(pt1(x), pt2(x)) =
1

L2(4πσ2
k)d/2

L−1
∑

i,j=0

[exp(−W ( ~xt1−i − ~xt1−j)
2

4σ2
k

)

− 2exp(−W ( ~xt1−i − ~xt2−j)
2

4σ2
k

)

+ exp(−W ( ~xt2−i − ~xt2−j)
2

4σ2
k

) (8)

where Dw is the weighted distance and W is the vector

of weights, with each element proportional to the activity of

the corresponding degree of freedom. σw is the combined

variance computed over the entire known motion window.

The modified algorithm is outlined in Figure 1. In the

algorithm, Ct = 2ς2 log(k) represents the transition cost

of switching to a new temporary state state in the path,

while Cp = 2ς2 log(k/Ks) represents the transition cost of

switching to a permanent state in the path. cs(t) is the cost

of following the optimum path and ending in state s at time

t, and o(t) is the optimum cost at time t.
To prevent the state list from growing to infinity as the

number of data points observed increases, Kohlmorgen and

Lemm [7] propose removing states following a segment away

from that state. However, Janus [9] have found that this

approach leads to over-segmenting, as the considered data

range becomes too small (on the order of 5W ) and therefore

the algorithm becomes more prone to local minima. Instead,

Janus propose that the algorithm is run in batch-mode over

a larger, fixed number of windows, and that windows be

discarded in a FIFO manner. The Janus approach is adopted

herein.
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1: procedure ONLINEVITERBISCAFFOLDED

2: Initialize
3: c0 ← o0 ← d0,0 ← 0
4: if sp ∈ Sp s.t. (D(r, sp) < Dt) then
5: r = sp

6: Csw = Cp

7: dr,t = Dw(r, t)
8: else
9: r = st

10: Csw = Ct

11: dr,t = D(r, t)
12: end if
13: for t← 0, T − 1 do
14: Find optimum path ending in new state r
15: cr(t)← dr,t+

16:

(

0 , if t = 0

min (cr(t− 1), o(t− 1) + Csw) , else

17: if cr(t) < o(t) then
18: o(t) = cr(t)
19: end if
20: end for
21: for s← 0, S do
22: Compute min cost for each state at T
23: if s ∈ St then
24: cs(T )← D(s, T )+
25: min (cs(T − 1), o(T − 1) + Ct)
26: else
27: cs(T )← Dw(s, T )+
28: min (cs(T − 1), o(T − 1) + Cp)
29: end if
30: end for
31: o(T )← mins (cs(T ))
32: end procedure

Fig. 1. Scaffolded Segmentation Algorithm Pseudocode

III. INCREMENTAL BEHAVIOR LEARNING

Once the incoming time series data has been segmented

into potential primitives, each segment is sequentially passed

to the clustering module. In the proposed clustering approach

[15], [16], a hierarchical tree structure is incrementally

formed representing the motions learned by the robot. Each

node in the tree represents a motion primitive, which can be

used to recognize a similar motion, and also to generate the

corresponding motion for the robot. Within each local area of

the motion space, a standard clustering technique [17] is used

to subdivide motion primitives. A Hidden Markov Model is

used to abstract the observation sequences. The parameters of

the model form the feature set of the data. These features are

then used to define a distance measure between observation

sequences, which is used for clustering.

The algorithm initially begins with one behavior group

(the root node). Each time a motion is observed from the

teacher, it is encoded into an HMM and compared to existing

behavior groups via a tree search algorithm, and placed

into the closest group. Each time a group is modified,

local clustering is performed within the exemplars of the

group. If a a cluster with sufficiently similar data is found,

a child group is formed with this data subset. Therefore

the algorithm incrementally learns and organizes the motion

primitive space, based on the robot’s lifetime observations.

The algorithm pseudocode is shown in Figure 3, while a

schematic of the incremental memory structure formation is

shown in Fig. 2.
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Fig. 2. Schematic Illustration of the Segmenting Algorithm. (a) initial state,
when only one group is present; (b) a child group forms when enough
similar examples are observed; (c) new observations are located into the
closest group based on the distance between the new observation and the
group model;

1: procedure INCREMENTALCLUSTER

2: Step1 Encode observation sequence Oi into an HMM λi

3: Step2 Search the behavior tree for the closest group λGj

to the current observation model λi, based on the inter-model
distance

4: Step3 Place λi into the closest group Gc

5: Step4 Perform clustering on all the exemplar motions
within Gc

6: Step5 If a sufficiently similar subgroup of motions is found,
form a new group Gn, as a child of Gc, containing the
observation sequences of the subgroup

7: Step6 Using the observations sequences of the new sub-
group, form the group model λGn

8: end procedure

Fig. 3. Segmenting Algorithm Pseudocode

This algorithm allows the robot to incrementally learn and

classify behaviors observed during continuous observation

of a human demonstrator. The generation of a hierarchical

structure of the learned behaviors allows for easier retrieval,

and the automatic generation of the relationships between

behaviors based on their similarity and inheritance. In addi-

tion, the robot’s knowledge is organized based on the type

of training received, so that the robot’s knowledge will be

most specialized in those areas of the behavior space where

the most data has been observed.

A. The Clustering Approach

Each newly acquired observation sequence is encoded into

a Hidden Markov Model. It is then compared to existing

groups (if any). Here, the distance between two models can

be calculated [18] by Equation 9.

D(λ1, λ2) =
1

T
[logP (O(2)|λ1) − logP (O(2)|λ2)] (9)

where λ1, λ2 are two models, O(2) is an observation

sequence generated by λ2 and T is the length of the
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observation sequence. Since this measure is not symmetric,

the average of the two intra distances is used to form a

symmetric measure. This distance measure is based on the

relative log likelihood that a generated sequence is generated

by one model, as compared to a second model. It represents

a Kullback-Leibler distance between the two models.

The repository of known groups is organized in a tree

structure, so that the new observation sequence does not need

to be compared to all known behaviors. The comparison pro-

cedure is implemented as a tree search. The new observation

sequence is placed in the closest node, if the distance to the

closest node is sufficiently small, based on the maximum

node distance, otherwise it is placed in the parent node of

the closest node.

Dthresh = KmaxGDDG
max (10)

Dthresh is the distance threshold at which a new ob-

servation sequence is considered for inclusion to a node,

KmaxGD is the multiplication factor applied and DG
max is

the maximum intra observation distance for the given node.

Once a new observation sequence is added to a group, a

clustering procedure is invoked on that group, to determine

if a subgroup may be formed. The complete link hierarchical

clustering algorithm is used to generate the hierarchical tree

structure within a group [17]. Clusters are formed based

on two criteria: number of leaves in the subgroup, and the

maximum proximity measure of the potential subgroup. To

calculate the maximum distance measure, the average and

standard deviation of the inter motion distances in the cluster

is calculated. The distance cutoff is then calculated as a

function of the distribution function:

Dcutoff = µ − Kcutoffσ (11)

where Dcutoff is the distance cutoff value (i.e., only clus-

ters where the maximum distance is less than this value will

be formed), µ is the average distance between observations,

and σ is the standard deviation among all the distances in

the node.

If a new subgroup is generated in Step 5, a new group

model is trained using the raw observation sequences from

all the group elements. The generated model is subsequently

used by the robot to generate behaviors. The group model

replaces the individual observations in the parent node. If

one of the group elements allocated to the new cluster is

already a group model, the generated motion sequence based

on that model is used for the training. In this case, a modified

form of the re-estimation formulas for multiple observation

sequences [18] is used. The algorithm is modified by over-

weighting the group models, in order to account for the

fact that there are multiple observation sequences stored in

the generated model, and therefore more weight should be

given to the group model, as compared to the individual

observation sequences.

B. Motion Generation

Once a cluster node has been formed, the group model for

the node constitutes the abstraction of the motion primitive.

To generate a motion trajectory for the robot from the group

model, the deterministic motion generation method is used

[19]. In this method, at each time step, the state duration

is first estimated from the state transition model, and the

subsequent state is selected by a greedy policy. The output

observation vector is then generated by a greedy policy on

the output model. The resulting reference trajectory is then

low-pass filtered and passed to a low level controller, to

ensure that dynamic and stability constraints are satisfied.

IV. COMBINING SEGMENTATION AND CLUSTERING

Due to the fact that the segmentation algorithm begins

with no a-priori knowledge of the motion patterns, initially,

imperfect segmentation results are received by the clustering

algorithm. In addition, due to the fact that the data is

being segmented on-line, the incoming data stream being

analyzed by the segmentation algorithm may contain errors,

such as errors due to marker mislabeling, or temporary

marker occlusion. Our approach is based on the assumption

that errors in segmentation will be quasi random, such

that erroneous segments will be sufficiently dissimilar from

correct segments, and sufficiently dissimilar from each other,

as measured by Equation 9, so that they can be differentiated

by the clustering algorithm.

To aid the performance of the clustering algorithm, espe-

cially during initialization, when there are no known motion

primitives, the extracted motion segments are validated prior

to being passed to the clustering algorithm. Segments which

are too short, indicating a likely false positive error of the

segmentation algorithm, or segments which are too long,

indicating a likely false negative error, are excluded from

consideration by the clustering algorithm.

Once a potential motion primitive has been abstracted by

the clustering algorithm, the motion primitive is added to the

segmentation module as a known motion (i.e., a set of per-

manent states) and used to scaffold further segmentation, as

described in Section 2. To ensure that incorrectly abstracted

motions do not get passed to the segmentation algorithm, a

simple validation is performed on each abstracted motion.

Only leaf nodes are used as known motions, as these nodes

represent the most specific knowledge available to the clus-

tering algorithm at a given time. In addition, only motions

where the maximum group distance is lower than a specified

threshold are admitted. The combined algorithm is presented

in Figure 4.

V. EXPERIMENTS

The combined algorithm was tested on a human motion

data set consisting of 4 minutes of continuous whole body

motion data of a single human subject. During the data

sequence, the subject performs a variety of full body mo-

tions, including a walk in place motion, a squat motion,

kicking and arm raising. The subject performs a total of 138

different motions. In some cases, there is a pause between
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1: procedure COMBINEDSEGMENTATIONANDCLUSTERING

2: while 1 do
3: Observe Data Point
4: call ONLINEVITERBISCAFFOLDED

5: if SegPoint then
6: if ISVALID(Segment) then
7: call INCREMENTALCLUSTER

8: if ISVALID(NewMotion) then
9: Add/Replace new motion as permanent state

10: end if
11: end if
12: end if
13: end while
14: end procedure

Fig. 4. Combined Segmentation and Clustering Algorithm Pseudocode

motions, while other motions are fluidly connected. The

motion capture system [20] captures the Cartesian position of

markers located on the body (for example, shoulder, elbow,

wrist, hip, knee, etc.) with a sampling rate of 10ms, and

performs inverse kinematics computations to convert the

data to joint angle positions in real time. A 26 degree of

freedom humanoid model is used for the inverse kinematics

computations (20 rotational joint angles and 6 degrees of

freedom for the free body joint). The 20 element vector of

rotational joint angle data is then down sampled to 30ms per

sample, and passed to the segmentation algorithm.

In addition to errors due to incorrect state modeling, the

segmentation algorithm can also fail due to errors in the

incoming marker data, such as missing markers due to tem-

porary occlusion, and mislabeled markers. The conversion

from marker data to joint angle data via inverse kinematics

reduces the occurrence of the first error [9], since the inverse

kinematics acts as a kind of filter smoothing and incorporat-

ing raw marker data. However, if a large enough number of

markers is missing, the inverse kinematics may temporarily

fail to return correct data, resulting in segmentation errors.

However, no post-processing was performed on the marker

data, to ensure that the algorithm is robust in the presence

of these errors.

First, the segmentation algorithm was tested in a stan-

dalone manner, with known motion primitives manually

added. The basic algorithm achieves a correct segmentation

rate of about 86%, but also suffers from a high rate of

false positives (i.e., additional segmentation points inserted

in the middle of a single motion primitive). A section of the

segmented data stream is shown in Figure 5. In the figure,

the dotted lines represent the manual segmentation points.

The dashed line indicates the segmentation result generated

by the basic algorithm, while the solid line indicates the

segmentation result generated when 2 known motions (the

kick and the squat motion) are added. The y axis indicates the

action being performed, where ’RKE’ and ’RKR’ indicate

right kick extend and right kick retract, and ’SL’ and ’SR’

indicate squat lower and squat raise, etc. As can be seen from

Figure 5, the basic algorithm occasionally inserts incorrect

segments (for example between samples 7200 and 7300

around the start of the squat motion), and is not as effective
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Fig. 5. Segmentation Result Detail for the Stand-alone Algorithm

at correctly identifying the segment switching point of each

action, especially for those actions where few joints are

moving (for example, the segment point between squat lower

and squat raise around sample 7400). However, correctly

identifying these segment switching points is important for

observing and later imitating human action, as these switch-

ing points are frequently associated with goal states. For

example, the switching point of a reaching motion is the

location of the object being reached. Adding known motions

to the basic segmentation algorithm reduces false positives

and improves switching point segmentation for the known

motion primitives.

Next, the combined segmentation and clustering algorithm

was tested. To evaluate the performance of the algorithm

over time, the combined algorithm was tested in epochs, by

replaying the motion sequence from start in each epoch. To

facilitate the evaluation of the improvements in segmentation

as a result of the scaffolding, exemplar motions were added

at the start of each epoch, rather than immediately after the

motion is abstracted. Figures 6, 7 and 8 show the tree struc-

ture following the completion of epochs 1 to 3, respectively.

The segmented motions are labeled on the horizontal axis.

The first half of the label describes the motion type, where

’LA’ stands for Left Arm, ’RA’ stands for Right Arm, ’S’

stands for ’Squat’, ’K’ stands for Kick, and ’W’ stands for

Walk. The second half of the label describes the action being

performed during the primitive, for example, during the arm

motions, ’L’ stands for Lower and ’R’ stands for raise. Note

that the labels on the horizontal axis were not generated by

the algorithm, but were applied manually after analyzing the

segments and abstracted motion primitives contained in each

node.

After the first epoch, the algorithm has extracted 6 mo-

tions, as shown in Figure 6. The abstracted motion abstracted

from the group Right Arm Raise (’RAR’) is shown in Figure

9. One of the abstracted nodes, the Left Arm Lower (’LAL’)

group, contains two motions with improper segmentation

(i.e., only partial motion is present) as part of the group.

In the second epoch, as additional examples of this type

of motion are added to the node, a further specialization

occurs in the ’LAL’ node, adding a child node to the ’LAL’

node, as seen in Figure 7. The child node contains a more
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Fig. 9. Frames from the abstracted motion Right Arm Raise, after epoch 1

LAL/partial RAR SL WRS WLS WF

Epoch = 0

Leaf Groups Formed

Fig. 6. Motion hierarchy after the first epoch

LAL RAR SL KR WRS WLS WF

Epoch = 1

Leaf Groups Formed

Fig. 7. Motion hierarchy after the second epoch

accurate representation of the ’LAL’ movement, containing

only correctly segmented examples. Frames of the motion

generated from the leaf ’LAL’ node from epoch 2 is shown

in Figure 10. The algorithm also abstracts the Kick Retract

(’KR’) motion. The ’KR’ motion primitive is placed into the

same group as the Squat Lower (’SL’), since these are similar

(leg only) motions.

In the third epoch, the algorithm correctly abstracts 4

additional motions, Kick Extend (’KE’), Squat Raise (’SR’),

as part of the leg motions parent node, and Right Arm Raise

(’RAL’) and Left Arm Raise (’LAR’) as part of the root

node. Frames of the ’KE’ motion abstracted from epoch 3

are shown in Figure 11. Note that since the body joint is not

used during the clustering and segmentation, the body joint

is held in a fixed position when animating the generated

motions. In addition, a node is formed containing a series of

partial (incorrectly segmented) leg motions, labeled ’MISC’

in Figure 8. However, due to the fact that segmenting errors

tend to occur quasi randomly, the ’MISC’ node maximum

distance between exemplars is quite large compared to nodes

LAL RAR KR KE SR SL MISC WLS WRS WF RAL LAR

Epoch = 2

Leaf Groups Formed

Fig. 8. Motion hierarchy after the third epoch

comparing correctly segmented data, so that this node can

easily be excluded from being passed back to the segmenta-

tion algorithm, as described in Section 4.

As can be seen from these results, the algorithm quickly

and robustly extracts motion primitives in the presence of

segmentation inaccuracies. After 3 epochs, corresponding

to 12 minutes of observation data, all the presented mo-

tion primitives are correctly extracted. Extracted motion

primitives are also used to improve segmentation, so that

the performance of both the segmentation and clustering

improves over time.

Compared to the performance of the standalone cluster-

ing algorithm [15], [16] where the provided motions are

manually segmented, the combined algorithm results in a

deeper tree structure, as there is more variability between

the motions initially, due to the automated clustering. As the

clustering performance improves, a subgroup of more similar

motions forms (i.e., the correctly segmented motions), which

is then segmented and added as a leaf node, so that most

motion branches contain an upper level node, containing all

segment types, and the leaf node, containing the accurate

model. On the other hand, when using manually segmented

motions as input, only the leaf nodes tended to form, since

the variability between motions was much smaller. However,

at the leaf node level, the motions extracted were comparable,

and did not contain classification errors.

VI. CONCLUSIONS

This paper develops an approach towards fully au-

tonomous, on-line, long term incremental learning and hi-

erarchical organization of whole body motion primitives.

Motion primitives are autonomously segmented by building

a Hidden Markov Model over a window of previous obser-

vations, and finding the optimum state sequence over the
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Fig. 10. Frames from the abstracted motion Left Arm Lower, after epoch 1

Fig. 11. Frames from the abstracted motion Kick Extend, after epoch 2

model [7], [8]. The optimum state sequence is the desired

segmentation result. The segmentation results are further

improved by scaffolding the fully unsupervised segmentation

method with known motion primitives. Known motion prim-

itives are abstracted from the segmented data by an on-line,

incremental segmenting algorithm [15], [16]. Following the

observation of each new motion sequence, the observation is

placed into the closest motion grouping, based on the model

distance between the observation and the group model. The

modified group is then analyzed via clustering to extract

child nodes, i.e. new, more specific motion primitives. The

clustered motions are thereby incrementally organized into

a hierarchical tree structure, where nodes closer to the root

represent broad motion descriptors, and leaf nodes represent

more specific motion patterns. The tree structure and level

of specialization will be based on the history of motions

observed by the robot. The resulting knowledge structure

is easily searchable for recognition tasks, and can also be

utilized to generate the learned robot motions. The developed

algorithm is robust to segmentation errors, and quickly and

accurately extracts the presented motion primitives.
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[19] D. Kulić, W. Takano, and Y. Nakamura, “Representability of human
motions by factorial hidden markov models,” in IEEE International

Conference on Intelligent Robots and Systems, 2007, pp. 2388–2393.
[20] K. Kurihara, S. Hoshino, K. Yamane, and Y. Nakamura, “Optical

motion capture system with pan-tilt camera tracking and realtime
data processing,” in IEEE International Conference on Robotics and

Automation, vol. 2, 2002, pp. 1241–1248.

2598


