
  

  

Abstract— Information about driver’s driving skill can be 
used to adapt vehicle control parameters to facilitate the specific 
driver’s needs in terms of vehicle-performance and driving-
pleasure. This paper presents an approach to driving skill 
characterization from a pattern-recognition perspective. The 
basic idea is to extract patterns that reflect the driver’s driving 
skill level from the measurements of the driver’s behavior and 
the vehicle response. The preliminary experimental results 
demonstrate the feasibility of using pattern-recognition 
approach to characterize driver’s handling skill. This paper 
concludes with the discussions of the challenges and future 
works to bring the proposed technique to practical use. 

I. INTRODUCTION 

ehicle driving is a process of driver-vehicle interactions. 
Satisfactory driving experience depends not only on the 

static design of good ride-and-handling systems of the 
vehicle, but also on the driver’s dynamic interaction to 
operate and control the vehicle. During the vehicle 
operation, many tasks related to driver-vehicle interactions 
take place, from the most direct control of vehicle motion 
(the primary task) to the planning of vehicle guidance and 
navigation, as well as to all other auxiliary vehicle controls, 
such as the operation of the in-vehicle infotainment systems 
(the secondary tasks). Fig. 1 shows a high-level model of 
driver-vehicle interactions. Each task requires various 
degrees of driver’s attention and mental capacity as well as 
physical responsiveness to execute.  In general, they are all 
related to driver’s capability to operate the vehicle. 

Our research focuses on the innermost loop in Fig. 1. In 
the context of our research, the driving skill is defined as the 
capability of basic lane tracking and speed maintenance 
through various vehicle controls, including but not limited to 
speed control, lateral control, skid control, and disturbance 
control. While characterizing the driving skill is not a simple 
issue, the benefit of having such information for vehicle 
control is rather significant. Given the same vehicle and 
under the same situation, the vehicle maneuver and its 
performance can differ due to driver’s capability of 
controlling the vehicle, including driver’s intrinsic ability 
and the amount of workload imposed by the secondary tasks. 
If a driver’s driving skill can adequately evaluated while the 
vehicle is being driven, vehicle control parameters can be 
adapted to facilitate the specific driver’s needs in terms of 
vehicle-performance and driving-pleasure.  

There have been significant activities in the field of driver 
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response modeling in the past few decades, the primary goal 
of which was to generate vehicle control signals or 
commands so as to drive the vehicle automatically [1-4]. 
Very few research activities have been reported in explicitly 
evaluating a driver’s driving skill. The objective of this 
research is to take the first step in the quantitative 
characterization of driver’s driving skill.  

This paper documents some preliminary results on driving 
skill characterization for lateral control, a small piece in the 
complicated picture of driver-vehicle interactions as 
illustrated in Fig. 1. To reduce the compound effects, in this 
research, we assume that the driver is fully concentrated on 
the primary task, and no other secondary vehicle control 
tasks are taking away his or her attention. 

II. PROPOSED METHOD 

We study the direct relationship between the driving skill 
level, and the measurements of driver’s behavior and/or 
driving conditions, i.e., information of the vehicle and the 
driving environment. This relationship is modeled as a 
mapping, whose inputs are the measurements of the driver’s 
behavior, such as steering control, and/or the driving 
condition, such as the lane position and the traffic level. The 
output of the mapping is the driving skill level, which can be 
either categorical (i.e. high, average, and low) or numerical 
(such as a rating from 1 to 10). This mapping is usually 
called a recognizer in the pattern-recognition domain. It can 
be established by a rich set of algorithms backed by the 
extensive pattern recognition research [5][6]. For the 
preliminary research reported here, we only consider driver’s 
behavior as the input to the recognizer, as shown by the 
double arrow in Fig. 2. 

There are two major engineering steps associated with the 
pattern-recognition approach of driving skill 
characterization. The first one is to identify the attributes that 
have the power to discriminate the driver’s driving skill. We 
call these attributes, discriminant features. Previous research 
shows that drivers with different skill levels vary in preview 
time, physiological limitations, such as transport delay, path 
planning ability, and etc. However, these parameters are not 
easily assessable and, therefore, are not suitable to be 
discriminant features directly. In general, there are two basic 
driving controls, i.e., directional (e.g. steering) and 
longitudinal (e.g. speed) control. Difference in driver’s 
handling skills is eventually reflected in the difference of 
these two basic driving behaviors. In this research, we use 
driver’s steering behavior, in particular, the coefficients of 
the discrete Fourier transform (DFT) of the steering wheel 
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angle, to identify driving skill level. 
The second major engineering step in the pattern-

recognition approach is to design the recognizer that infers 
driving skill level. One way to design the recognizer is to use 
heuristics and manually generate rules for recognition or 
inference. The other strategy is to use machine-learning 
techniques to derive the recognizer. In the latter case, 
depending on the particular technique used, the recognizer 
can be rules, regression functions, decision trees, neural 
networks, and etc. We focus on the second strategy in this 
research. 

A. DFT COEFFICIENTS AS DISCRIMINANT 
FEATURES 
To capture the temporal characteristics of driver’s limit-

maneuver handling, we conducted DFT on the steering wheel 
angle readings during test maneuvers.  

Fourier analysis decomposes a waveform signal into 
sinusoidal components and results in a representation of the 
signal in the frequency domain. The upper panel of Fig. 3 
shows the magnitude of DFT coefficients of an expert 
driver’s steering wheel angle readings during two double-
lane change (DLC) maneuvers. The magnitude of the DFT 
coefficients can be interpreted as the power (or the energy) 

of the components with different frequencies in the 
waveform signal. The two regions of emphasis (foments in a 
short phrase) around 0.5 Hz and 1.1 Hz imply that this 
driver’s steering behavior have two major components, a 
slow one at about 0.5 Hz and a faster one at about 1.1 Hz. In 
contrast to the upper panel of Fig. 3, the bottom panel shows 
the data of a low-skill driver. Compared to the expert driver, 
the low-skill driver does not produce the high-frequency 
foment, which makes sense because low-skill drivers are not 
prompt in steering the vehicle. This difference between 
expert and low-skill drivers gives us the chance to 
differentiate drivers with different skill levels. 
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Fig. 2.  The proposed approach for driving skill recognition. 
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Fig. 1. Multi-level structure of driver-vehicle Interactions  

(a) Data for an expert driver 

Fig. 3.  The magnitude of DFT coefficients of the steering 
wheel angle readings of drivers with different skill levels. 
Subject 9964 is an expert driver while subject 353 is a low-skill 
driver. Task 5 and 6 are double lane change on a wet and dry 
road, respectively. 
 

(b) Data for a low-skill driver 
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The analysis of the data from more subjects and more 
maneuvers confirms our findings. Also observed is that the 
first 30 DFT coefficients are good enough to characterize the 
difference of the driving skill. Therefore, these first 30 
coefficients are used as the discriminant features for the 
driving skill recognizer. Fig. 4 shows the data of different 
drivers in different driving scenarios.  

B. RECOGNIZER DESIGN 
The function of the recognizer is to discriminate drivers 

with different skill levels according to the discriminant 
features. We choose to use the feed-forward artificial neural-
network (FF-ANN) to be the recognizer. FF-ANN is one of 
the mostly well-studied neural-network architectures. It has 
been widely used in classification and control areas 
[5][6][7].  

Our goal is to find out a set of weights and biases, with 
which the FF-ANN can produce the desired output, i.e. the 
index of driving skill level, given a discriminant feature 
vector of a particular maneuver. The process of finding the 
weights and biases is called training. The training data is a 
set of discriminant features, e.g. the DFT coefficients of 
steering wheel angle, together with their labels, e.g. the 

actual driving skill level.  
In practice, we evaluate two recognizer configurations. 

The one shown in Fig. 5 (a) is referred to as a two-step 
recognizer. With this configuration, the driving maneuver, 
such as double lane change, lane change in curve, left turn, 
and etc., is first identified based upon sensor information 
such as yaw, and lateral acceleration. Then the output from 
the FF-ANN corresponding to the particular maneuver is 
chosen as the system output. The other configuration, called 
an all-in-one recognizer, is shown in Fig. 5 (b), in which a 
single FF-ANN is used to handle various maneuvers. Since 
each FF-ANN of the two-step recognizer deals with the data 
specific to a particular maneuver, we expect the recognition 
performance to be better than that of the all-in-one 
recognizer. However, the latter one has a simpler system 
architecture than the former one, and does not rely on the 
performance of maneuver identification. 

III. SIMULATOR DATA 

We conduct the analysis on the data collected on a driving 
simulator test vehicle, a 2000 GM Silverado 2500/HD (3/4 
ton) 2WD pickup (Fig. 6). The simulator recorded a list of 
parameters such as vehicle position, steering wheel angle, 
forward speed, yaw rate, roll angle, lateral acceleration, 
longitudinal acceleration, at a rate of 50 Hz.  

The testing variables include two loading configurations 
(full load and no load), two tire/road surface conditions (web 
and dry), and two primary maneuvers (double lane change 
and lane-change in a curve) whose driving courses are 
constrained by cones as shown by the blue dots in Fig. 7. In 
summary, there are totally eight testing configurations of 
interest after combining the testing variables. 

Each test run was executed under one testing 
configuration, starting from about 50 meters before the first 
pair of the cones and ended at the last pair of the cones. The 
driving speed was fixed in each of the test runs. The driving 
subjects were asked to perform the maneuvers with steering 

 
(a) Data for Double Lane Change 

 
(b) Data for Lane Change in Curve 

 
Fig. 4.  The magnitude of DFT coefficients of the steering wheel 
angle readings of different drivers in different driving scenarios. 
The averages of the data from different runs are given in the far 
end of the figures. 
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Fig. 5.  Two recognizer configurations. (a) Two-step recognizer; 
(b) All-in-one recognizer. 
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control only. Twelve drivers participated in the simulator 
study. They ranged in age from 15 to 67 and included three 
basic skill designations (2 low-skill, 6 typical, and 4 expert). 
Each driver started with a low speed at about 8 m/sec in each 
testing configuration. The test speed was incremented by 
about 1 m/sec for each subsequent run. The increment 
stopped when the subject failed a run, which was defined as 
striking more than four cones, spinning out, or driving off the 
course. The expert drivers tended to fail at higher speeds 
than the typical and low-skill drivers did. 

There were cases when expert drivers did not maintain 
their skill level and failed in some runs. To accommodate the 
skill fluctuation factor, we do not use those expert drivers’ 
runs that involve one or more cone strikes. For typical and 
low-skill drivers, we use all the runs except for those 
involving vehicle spinning. We call the selected runs eligible 
runs. Table I shows the breakdown of the runs with respect 
to driver groups and maneuvers. 

IV. PRELIMINARY RECOGNITION RESULTS 

Various analysis has been conducted on the simulator data 
presented above. Reported here is an experiment in which 
we grouped typical and low-skill drivers together to test how 
well the recognizers may differentiate them from the expert 
drivers. 

We conducted a 1024-point DFT over the steering wheel 
angle readings starting from the first pair of cones in each 
run.  The first 30 DFT coefficients formed the feature vector 
for each run.  

A 3-layer topology was chosen for the FF-ANN 
recognizer. The input layer had 30 neurons holding the 30 
DFT coefficients for each maneuver. The hidden layer had 
40 neurons with the logsig transfer function. The output 
layer had one neuron with the linear transfer function, whose 
output was rounded to 1 and 2 to indicate expert driver and 
typical/low-skill driver, respectively. The Levenberg-
Marquardt algorithm was used for training. The whole 
training and testing was done using MATLAB neural 
network toolbox. 

A widely-used evaluation scheme, called cross validation, 
was adopted to evaluate the recognition performance of both 
the two-step recognizer and the all-in-on recognizer. To do 
cross validation, the training dataset is divided into subsets 
called folds. All the folds except one is used for training and 
the left-out fold is used for assessing the performance of the 
learned model. This process rotates through each fold and 
the average performance on the left-out folds is used as the 
performance measure of the algorithm. A cross validation 
process involves ten folds (ten subsets) is called a ten-fold 
cross validation. Cross validation makes sure that the data 
used for training the recognizer be disjoint from the data 
used for testing. 

The correct recognition rate (CRR) of a driver skill 
recognizer is defined as, 
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for the expert driver group, and typical/ low-skill driver 
group, respectively. The first and second subscriptions of 

••n  are the actual driver group and the driver group labeled 

by the recognizer, respectively. For example, etn   represents 

the number of runs that are contributed by expert drivers and 
labeled by the recognizer as being contributed by 
typical/low-skill drivers. The overall correct recognition rate 
of the recognizer is defined as, 

 
(a)          (b) 

Fig. 7.  The driving paths for (a) double-lane change (b) lane-
change in curve. The red lines are samples of vehicle 
trajectories from the simulator dataset. 
 

TABLE I 
BREAKDOWN OF ELIGIBLE RUNS 

 Expert Typical Low-skill Total 
DLC 178 303 70 551 
LCIC 156 283 75 514 
Total 334 586 145 1065 

 
 

  

 
Fig. 6.  Silverado pickup cab on driving simulator. 
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Note that, mathematically, the overall CRR is not necessarily 
equal to the average of the CRRs of expert, typical/low-skill 
driver groups.  

Table II presents the recognition performance for the two-
step recognizer, which is not significantly different from the 
performance of the all-in-one recognizer as shown in Table 
III. Since we have four expert drivers and eight typical or 
low-skill drivers, the number of runs is not balanced between 
different driver groups. As we can observe from Table II and 
Table III, the group with more training data biases the 
overall performance of the recognizers. 

To alienate the effect of the unbalanced data, we randomly 
picked up four drivers from the typical and low-skill driver 
group, whose runs were joint with the runs by all four expert 
drivers to train and test the recognizers. This random 
selection was done ten times in order to reduce the sampling 
error. As shown in Table IV, the average CRR for expert 
drivers and typical/low-skill drivers are 76.4% and 81.8%, 
respectively for the two-step recognizer. Those for the all-in-
one recognizer are 74.0% and 83.5%, respectively. In both 
cases, the recognizer performance is more balanced, 
compared with the results based on the unbalanced data. 
While the overall CRR degrades a few percentage points to 
79.2% and 79.1% compared to the results in Table II and 
Table III, the performance based on balanced training data is 
probably more reliable.  

A deeper investigation to the errors made by the 

recognizer showed that driver 357 (an expert driver) tended 
to be mis-classified as a typical/low-skill driver. We plot the 
mean of the DFT coefficients of driver 357 against that of 
expert, typical, and low-skill drivers in Fig. 8. It can be seen 
from Fig. 8 that the steering wheel angle profile of driver 
357 is very close to that of the typical and low-skill drivers. 
After excluding driver 357 from the expert driver group and 
running the balanced training and testing again, we achieved 
average CRRs in the range of 85% to 90%, as summarized in 
Table  V. 

V. CONCLUSION AND FUTURE WORKS  

In this paper, we present a pattern-recognition approach to 
characterize driver’s driving skill. The preliminary results 
show that, using the DFT coefficients of the steering wheel 
angle as the discriminant features, the driving skill 
recognizers are reasonably effective in differentiating expert 
drivers from typical or low-skill drivers in general. However, 
an array of research issues are yet to be addressed in order to 
bring this technique into practical use.  

A. Additional Discriminant Features for pattern 
recognition 
The first issue is whether the DFT coefficients of steering 

wheel angle alone have sufficient discriminative power. The 
preliminary experiments show that one particular expert 
driver, driver 357, although possessing excellent driving 

TABLE II 
CONFUSION TABLE FOR THE TWO-STEP RECOGNIZER 

Actual \ Recognized Expert Typical/Low-skill CRR(%) 
Expert 210 123 63.3 
Typical/Low-skill 73 654 90.0 
Overall  81.5 

 
 

TABLE IV 
RECOGNITION PERFORMANCE FOR BALANCED TRAINING 

DATASET 
CRR (%) Balanced training 
 Two-step 

recognizer 
All-in-one 
recognizer 

Expert 76.4 74.0 
Typical/Low-skill 81.8 83.5 
Overall 79.2 79.1 

 

TABLE V 
RECOGNITION PERFORMANCE FOR BALANCED 

DATASET WITHOUT DRIVER 357 
CRR (%) Balanced training 
 Two-step 

recognizer 
All-in-one 
recognizer 

Expert 85.7 84.8 
Typical/Low-skill 89.7 89.1 
Overall 88.2 87.5 

 

TABLE III 
CONFUSION TABLE FOR THE ALL-IN-ONE RECOGNIZER 
Actual \ Recognized Expert Typical/Low-skill CRR(%) 
Expert 196 136 59.0 
Typical/Low-skill 57 671 92.2 
Overall  81.8 

 

Fig. 8.  Mean of driver 357’s data (green) vs. that of expert 
(black), typical (blue), and low-skill (red) driver groups in 
DLC maneuvers. The dash lines with different colors mark 
mean +/- standard error of the data from different groups, 
accordingly. 
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skill, is recognized as a typical/low-skill driver. In addition, 
as shown in Fig. 8, the selected discriminant feature has 
difficulty differentiating typical drivers from low-skill 
drivers.  

In the simulator dataset, there are data from other 
channels, such as yaw and roll. We choose to focus on the 
steering wheel angle in this study because of the following 
considerations. If we view the vehicle as a filter bank, the 
data from other channels, such as yaw, roll and etc., can be 
viewed as the convolution of the steering wheel angle and 
the mathematical model of the vehicle (Fig. 9). The steering 
wheel angle is the direct output of the driver’s response to 
the attending circumstance of the driving conditions and 
contains the primary information reflecting driver’s handling 
skill.  

Apparently, other data channels, such as yaw and roll, 
need to be studied in its totality for a good result of driving 
skill characterization using pattern recognition because the 
filter bank may amplify the difference that is subtly reflected 
in the steering wheel angle. Along this line of thinking, we 
plan to extend the set of candidate parameters for 
discriminant features and extend the frequency domain 
analysis to the time domain analysis. The candidate 
parameters we are going to investigate include the steering 
onset, and its correlation with the yaw acceleration and the 
lateral acceleration, just to name a few. Beyond vehicle 
dynamics sensors, another potential extension is to include 
sensory information that directly reflects driver’s behavior, 
such as eye movements, which have been proved to be 
different between experienced and low-skill drivers [8][9]. 

B. Identification of vehicle operating conditions for 
algorithm validity 
Although the pattern recognition approach in this 

preliminary study shows promising results, many questions 
still remain open as to its validity of general applicability.  
For example, how should the driving skill be evaluated so 
that the recognizer can be trained? Other related questions 
are: Does a driving skill level fluctuate across different test 
runs? Do typical drivers really have better skills on 
maneuvers such as DLC and LCIC than low-skill drivers? Is 
a driver more skillful in one type of maneuvers necessarily 
skillful in all other maneuvers? Apparently without 
addressing some of the key questions satisfactorily, the 

algorithm can hardly be useful.  

C. Effect of vehicle longitudinal dynamic control 
In this preliminary study of driving skill characterization, 

the information of vehicle direction control is the only data 
utilized for analysis and design. A natural question can be 
raised whether the drivers’ behavior would change when they 
have the chance to control both the steering wheel and the 
vehicle speed so that the inclusion of such information is 
beneficial to the skill characterization. However, there is an 
inherent complication of using the longitudinal dynamic 
information for driving skill characterization in the real-time 
implementation in real-world driving. The apparent difficulty 
of differentiating the application of brake with and without 
object in front of the vehicle cannot easily be resolved.  
Again, depending on the availability of on-board vehicle 
sensors such as radar or camera, the validity of the condition 
could further be refined for such future work. 

D. Naturalistic driving condition 
Finally, the maneuvers included in the simulator dataset 

were originally designed to test near/at-limit vehicle handling 
performance. These maneuvers do not occur frequently in 
day-to-day driving conditions. Ideally, the driving skill 
recognition system should be able to function during 
naturalistic driving conditions for the algorithm to be useful. 
Additional study of driver behavior in these driving 
conditions is apparently necessary. 
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