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Abstract— In this paper, we propose a simple framework for
learning and synthesis of fast and complex motor tasks. Where
a passivity-based task-space controller acts not only as a full-
body force control module, but also as an important module to
generate phasic joint patterns. The generated joint patterns are
encoded into the paramaters of phase oscillators and form the
synergy of the task. Then, similar and/or faster motions are syn-
thesized by superposing the task space controller output and the
oscillator output with the modified oscillator amplitudes and/or
frequencies. We present some examples of whole-body motion
synthesis on a human-sized biped humanoid robot including
squatting, dancing and stepping while bipedal balancing. The
simulation and experimental videos are supplemented.

I. INTRODUCTION

A. Motivation

Our motivation to study humanoid robots is to develop
novel human-friendly assistive devices such as exoskeleton
systems. For such systems, it is very important to establish a
suitable framework for motor learning and synthesis, which
can be seamlessly coupled to various level of human motor
control, from joint-level to task-level. At the joint-level,
controlling force/torque is critical so that the robot can
accept external forces applied from human and environment.
As well known from many physiological studies, muscu-
loskeletal systems can control the joint stiffness and the load
simultaneously.

At the task-level, how to coordinate whole-body motions,
synergy [1], is important because there are many degrees
of freedom in human body, and transforming task-space
force into the joint-space torque is an ill-posed problem.
For example, controlling center of mass (CoM) is the most
fundamental task objective especially for human balancing,
which can be achieved by appropriately controlling the
contact forces between human and environment. Without a
suitable synergy, it is impossible to obtain a human-friendly
balance-assist function.

Modular control architecture will be one of the promising
approach for learning and synthesis of multiple complex
motor tasks [2], where the output of each module is summed
up with the responsibility weights. For position control tasks,
an imitation learning paradigm has been successfully adopted
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Fig. 1. The conceptual organization of our learning/synthesis framework.
The task-space control module (M1) generates whole-body motions, while
achieving task-space control objectives given by a high-level motor center.
The pattern generator module (M2) encodes the generated motions into the
oscillator parameters. Faster and similar motor tasks can be achieved by the
superposition of (M1) and (M2) with the modulated oscillator parameters.

to generate human-like movements [3], where the synergy
has been extracted from observation. For force control tasks
such as balancing, however, no such imitation is available
because we cannot observe others forces.

On the other hand, we have developed a passivity-based
contact force controller for redundant humanoid robots and
experimentally validated [4]. The key idea was to suppress
internal motions (or self-motions) [5] of un-modeled nonlin-
ear dynamics by simple dissipation terms [6]. Although this
passivity-based redundancy resolution is robust to modeling
and sensing errors compared to inverse dynamics-based solu-
tions, the method cannot achieve fast dynamic task because
of the simple dissipation term.

A naive way of reducing the effect of the dissipation
terms is to increase the task-space feedback gain (task-
space stiffness). As we observed from our experiments on
humanoid robots, however, a large task-space gain easily
results in awkward resonance, due to the forward kinematics
errors which are caused by the accumulation of the joint
posture sensing. This is one of the serious and real problems
of all task-space controllers, which cannot be seen in ideal
simulation environments. The instability due to the high
feedback gain can also occur when there is considerable
transmission delay in sensory motor systems. Even if some
fast task-space tracking is fortunately achieved by increasing
the task gain, but again the internal motions may appear.
This trade-off shows that there are obvious limitations in the
passivity-based task-space control when it is used alone.

2008 IEEE International Conference on
Robotics and Automation
Pasadena, CA, USA, May 19-23, 2008

978-1-4244-1647-9/08/$25.00 ©2008 IEEE. 2705



B. Overview of the proposed framework

In this paper, we propose a simple framework for learning
and synthesis of fast and complex motor tasks for hu-
manoid robots via superposition of a passivity-based task-
space controller with a local joint pattern generator. The
conceptual organization is illustrated in Fig. 1. We use the
passivity-based task-space controller not only as a task-
space position/force control module, but also as an important
module to generate joint-space motion patterns.

For the learning stage, we assume a control hierarchy
between the task-space controller and the local pattern gen-
erator by:

(M1) Task-space control module achieves slow but complex
task objectives;

(M2) Local pattern generator module encodes the generated
joint patterns into the parameters of some oscillator
models.

For the synthesis stage, we use the learned task-related os-
cillator simultaneously with the task-space control by simple
superposition. In this way, we expect the generated motions
being valid, at least statically, because the superposition is
done for the experienced (slow) motions. The advantages of
this synthesis are:

• The ill-posedness is solved by the explicit joint patterns
learned in the oscillators;

• Some critical task-space control objectives such as
balancing is imposed all the time;

• Fast motions are possible by modulating oscillator pa-
rameters;

• Kinematic constrains such as joint limits can be met.

By this simple synthesis, we try to achieve fast and
complex motions effectively. Although the oscillator outputs
statically-valid motions, the oscillator alone cannot outputs
dynamically-valid motions for fast motor tasks in general.
Therefore, the task-space control plays important role for
modulating the oscillator outputs. Balancing control will be
the strongest modulation. Once the target motor task has been
achieved by the synthesis, the obtained motions are again
encoded into the oscillator parameters, which are stored into
a motion library. In this way, we expect various fast and
complex motions can be learned.

We demonstrate our motor learning and synthesis frame-
work on simulations and experiments on a full-sized biped
humanoid robot. Because of the page limit, the extended
simulation and experimental results are supplemented by the
conference video.

II. HIERARCHICAL MOTOR CONTROL BY SUPERPOSITION

A. Task space controller

The task-space control is thought to be a part of the
central nervous system (CNS) of humans [7], where CNS
composites necessary control inputs to the lower level from
proprioceptive, graviceptrive/vestibular and visual feedback
signal. As the task control module, we employ our whole-
body contact force controller [4]. To focus on the main
subject of this paper, here we give the simplest form of the

controller. Consider a multi-DoF humanoid robot as shown
in Fig. 2. Let rC = [xC , yC , zC ]T ∈ R3 be the position
vector of CoM in the world coordinate frame ΣW , q ∈ Rn

be the joint angles and φ ∈ R3 be the attitude of the base.
Suppose the foot is in contact with the ground, and the
center of pressure (CoP), whose position vector from the
CoM is indicated by rP = [xP , yP , zP ]T ∈ R3, lies within
the supporting region. We introduce a gross applied force,
or ground applied force (GAF) fP = [fxP , fyP , fzP ]T ,
defined as fP := −fR, where fR is the ground reaction
force (GRF). The GAF represents the gross force that the
robot applies to the environment. The control objective here
is to bring fP to the desired value fP , which is give by a
task, such as balancing and/or walking.

The simplest form1 of the passivity-based contact force
control is given by

τ = JT
P fP − Dq̇ (1)

fP = fu + Mg (2)

where JP (φ, q) ∈ R3×n is the Jacobian from CoM to the
desired CoP and fu = [fux, fuy, fuz]T ∈ R3 is a certain
new force input. This yields the convergence of GAF, fP →
fu + Mg as t → ∞, provided the joint-wise damping D
(positive diagonal matrix) is designed so that the internal
dynamics is stable as shown in the Appendix of [4]. The
optimal contact force distribution for multiple contact cases
are also presented in [4].

As the basic assumption of the controller, we suppose
the linear force mapping between the contact forces and the
joint torques, JT

P , are known. This mapping is described in
sinusoidal functions of joint angles and mass distribution,
which can be effectively represented by some neural network
model to be trained.

In general, however, it is difficult for task-space controllers
to solve all the constraints. Therefore, in the learning process,
we allow some heuristics to be combined. For example,
the joint states are not updated in a singular posture. If
the robot is in an upright posture, the knee joint is fully
extended, and it becomes difficult to bend the knee. If we
allow the posture enters into singularity, we should introduce

Z
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CoP

GAF

Mg

Fig. 2. Definition of positions and forces of a biped humanoid robot

1This is the simplest, but approximated formula. See [4] for the exact
formulation.
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Fig. 3. (Video. 1) Slow squat with the frequency of 0.1 Hz while balancing.
Joint limits are avoided.

a heuristic recovery rule from it, similar to the human’s knee
locking/release. Moreover, in the learning process we should
consider kinematic constraints into its motions. For assistive
devices, learning the range of motion of humans is very
important. Simple joint limits avoidance are possible by a
repulsive force field around the joint limit:

U(q) =
α

(q − qmin)2
+

α

(q − qmax)2
, (3)

and the resultant task space controller is given by

τ = JT
P (fu + Mg) − Dq̇ +

∂U

∂q
(4)

Fig. 3 (and Video. 1) shows a slow squatting motion
achieved only by (4) only, where two simple feedback
controllers are used. The one is the CoM stabilization

fux = −KPCxC − KDC ẋC , (5)

fuy = −KPCyC − KDC ẏC , (6)

where KPC ,KDC > 0 are the task-space PD-gains, and the
origin is defined as the center of the feet. The other one
is the head height control. A vertical PD-feedback force is
applied between the head and the center of the feet (CoM
height is not controlled: fuz = 0). A sinusoidal pattern
with the amplitude 0.3 m and the frequency of 0.1Hz has
been set. Since the motion is very slow, the joint limits are
easily avoided. In this way, the robot may achieve relatively
complex joint space trajectories.

B. Local pattern generator

Once some joint motions are generated by the task space
control module, we can extract the features for the lower
layer module. If the motions are periodic, one can consider
them as the outputs of some oscillator models. Even if the
motions are one-path trajectories, as long as the terminal
velocities are zero, one can consider them as the half paths
of oscillations.

In this paper, we adopt a simple oscillator; phase oscillator
parameterized by the phase frequency ωj and the amplitude
rj(φ) with respect to the phase, for all active joints j =
1, 2, ..., n. The amplitude r(φ) is represented by radial basis
function networks and the weight is learned through the
motion [8]. In addition, each oscillator has the phase shift φ0

as the parameter. All these parameters represent the synergy
for specific tasks.

Since we are using passivity-based task-space controller,
internal motion is suppressed. As long as the internal motion
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Fig. 4. (Video. 2) Fast squat with 0.5 Hz. The frequency is five times
higher than the original one. The height of the head is indicated by zB .
The CoM as well as CoP are shifted from the origin because of the balance
maintenance. There are tracking errors both in the task-space and joint-
space. To make the tracking errors small, we need to re-train the phase
oscillator during the motion synthesis. The overall behavior is very similar
to Fig. 3. (Subscripts) R2: Right hip, R4: Right knee, R6: Right ankle, T3:
Torso bend.

is well suppressed, the task-space control torque updates the
joint states to an appropriate direction. The update direction
is unique. As a result, we can obtain task-related inverse
kinematics. Thus-obtained inverse kinematics includes not
only the instantaneous relationship between the task position
and joint angles, but also the tangential vector of the motion
because the phase trajectory is continuous. Moreover, we can
magnify the phase frequency for faster motions.

C. Synthesis by weighted superposition

The main purpose of the control framework is to utilize the
learned motion pattern for similar but more dynamic tasks.
For this purpose, we synthesize the motion by:

(S1) Superposing the task-space control and the stiffness
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control around the learned joint patterns;
(S2) Modulating the stiffness according to the task difficulty.

For (S1), the total controller can be implemented by:

τ =JT
P (fv + Mg) − Dq̇

− κ
{
KP (q − q) + KV (q̇ − q̇)

} (7)

where q and q̇ are joint states from the oscillator model,
KP and KV are the position/velocity gains for tracking, and
κ is the stiffness scaling (scalar). The introduction of this
superposition is not only required by our control purpose,
but also supported by a biological musculoskeletal model
[9], because the isometric muscle force produces torque and
stiffness around thge joints.

For (S2), the stiffness κ can be adjusted by the task
difficulty. If the task requires very complex joint motion or
fast joint motion, we need to increase the stiffness. If the
task motion is similar to the training data (slow motion),
we can reduce the stiffness. In some cases, it will be better
to have the stiffness shaped rather than keeping it constant
during motion. For example, we can increase the stiffness to
the normal direction of motion and decrease to the tangential
direction.

Moreover, to make the tracking error small for the syn-
thesized motions, it will be necessary to:

(S3) Re-train the oscillator parameters.

This can be achieved by some supervised learning schemes.
These adaptation is briefly discussed at the end of this paper.

Fig. 4 (and Video. 2) shows the result of a high-speed
squat using the learned phase oscillator superposed to task-
space control. Before the synthesis, the oscillator model has
been trained using slow squatting motion described above
(Fig. 3 and Video. 1). We put normalized Gaussians on 11
anchor points on the phase coordinate from −π to π. The
each local phases are extracted from atan2(q̇,−(q − q0)).
Then, the synthesis has been performed by setting the target
phase frequency to 0.5 Hz, five times faster than the original
one. The local tracking gains are set to KP = 100,KV = 1,
and the stiffness scaling is set to κ = 1 for all joints.

The top graph shows the height of the head and CoM.
There is tracking errors. The second graph shows the balanc-
ing performance. Note that the xC is not maintained at the
center of the feet (around 0.03 m in the second graph). This is
because of the joint limits (if we remove the joint limits, the
CoM error becomes smaller). In this case, (S3), re-training
the oscillator parameters, will be required. It should be noted
that fast squat was impossible by the task-space controller
alone, as shown in Video. 3. Video. 4 shows the 10-times
faster squatting, where the stiffness has been increased to
κ = 750. We can apply some on-line learning algorithm to
optimize the stiffness κ.

III. PRELIMINARY EXPERIMENTS

This section shows some preliminary experimental results,
where the local joint patterns are preset or taught by the
users.

A. Dynamic biped stepping

As the first example, we show a knee-stretched biped
stepping. In this task, describing pre-planned joint patterns
is useful to avoid singularity of the task-space control. Fig. 6
(and Video. 5) shows one of the experimental results of
continuous stepping achieved by combining task-space con-
tact force controller with sinusoidal joint trajectories imposed
on all joints. The sinusoidal joint patterns are driven by a
single phase frequency but different amplitudes. The robot is
initially standing still with an upright posture. Then, as the
phase evolves the robot makes steps or stops, which can be
seen from Fig. 5. The nominal phase frequency is set to 1.5
Hz.

There are many combinations of the nominal frequency
and the amplitudes of the sinusoidal patterns, which can
make the robot step stably. Anti-gravitational forces are
optimally distributed through the CoG (ground projection
of CoM) as described in [4]. That is, the more the CoG
is shifted to the edge of one foot, the more control torque is
supplied to the limb. Therefore, tracking to the joint pattern
is greatly improved compared to the case with stiffness
only. Furthermore, to obtain better stability, we introduced
a method proposed by Morimoto [10] which modulates the
desired phase to be synchronized with the actual CoP. The
time profile of the modulated phase is shown in Fig. 5(c).

B. Direct motion teaching

As the second example, we show a direct whole-body
motion teaching. We allow the robot to follow the external
forces while balancing. This compliant behavior is innate
in our full-body gravity compensation scheme [4], but this
time, we introduce the phase oscillator to learn the motions.
Fig. 7 (and Video. 6) shows one of the examples. In this
experiment, a human operator holds the robot’s hands or
legs and imposes periodic motions. Then, the oscillator
parameters are updated at every knot points, where the joint
velocities cross zero. The robot tries to follow the learned
motion patterns while keeping its balance.

The time profile is shown in Fig. 8. In this experiment,
the duration of teaching is preset in advance. The upper body
motions are learned until 20s, and the leg motions are learned
until 30s. Finally, from 35s, we have applied a feedback
control to synchronize the phase frequency . Once the phases
are synchronized, it is also easy to control the phase shift φ0.

IV. DISCUSSION: LEARNING DYYNAMIC AND STIFFNESS

Learning dynamic model during performing task has been
proposed in [11], where inverse dynamics is obtained via
supervised learning from feedback error signals. This control
scheme requires target joint trajectories q. Therefore, it is
natural to introduce this adaptive scheme into our control
framework.

Fig. 9 and Fig. 10 (and Video. 7) shows one of the
simulation examples. In this simulation, we set both task-
space and joint-space tracking gains to very small. Therefore,
initially, the tracking errors are large in both spaces. As
the learning proceeds, the joint-space feedback input is
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Fig. 6. (Video. 5) Continuous stepping achieved by combining task-space controller and the joint stiffness around sinusoidal joint trajectories imposed
on “all” joints. The robot initially stands still. Then, as the phase evolves it makes step or stop motions.
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Fig. 5. Experimental data corresponding to Fig. 6. (a) The lateral CoG
is oscillating. According to the actual CoG, the full-body joint torque is
generated. (b) The normal GRF of each foot, showing the robot is actually
stepping and stopping. (c) The step/stop is commanded by the single phase
variable. In this case, the robot steps 6-periods, then stops 2-periods, etc.
The original frequency of the phase is set to 1.5 Hz, which is then modulated
to synchronize with the actual CoP [10].

transferred into the task-space control torque. This is the
feedback error learning mechanism. Moreover, we simulta-
neously adapt the stiffness κ according to the 2-norm of
the tracking error. Then, both tracking errors and joint-space
feedback inputs are becoming small. However, it is not easy
to find adaptation parameters so that the learning converges.
Combining some suitable learning/adaptive schemes into the
proposed framework, as well as the theoretical analysis, is
left for our future studies.
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Fig. 7. (Video. 6) Direct motion teaching experiment. The human operator
is moving upper body and legs while the robot balancing. The robot
then follows the learned motion patterns while synchronizing the phase
frequencies.
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CoM and ZMP. The time profile is shown in Fig. 10
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