
Low-dimensional Feature Extraction for Humanoid Locomotion using
Kernel Dimension Reduction

Jun Morimoto, Sang-Ho Hyon, Christopher G. Atkeson, and Gordon Cheng

Abstract— We propose using the kernel dimension reduction
(KDR) to extract a low-dimensional feature space for humanoid
locomotion tasks. Although humanoids have many degrees of
freedom, task relevant feature spaces can be much smaller
than the number of dimension of the original state space. We
consider an application of the proposed approach to improve
the locomotive performance of humanoid robots using an ex-
tracted low-dimensional state space. To improve the locomotive
performance, we use a reinforcement learning (RL) framework.
While RL is a useful non-linear optimizer, it is usually difficult
to apply RL to real robotic systems – due to the large number
of iterations required to acquire suitable policies. In this study,
we use the extracted low-dimensional feature space for RL so
that the learning system can improve task performance quickly.
The kernel dimension reduction method allows us to extract the
feature space even if the task relevant mapping is non-linear.
This is an essential property to improve humanoid locomotive
performance since stepping or walking dynamics involves highly
nonlinear dynamics. We show that we can improve stepping and
walking policies by using a RL method on an extracted feature
space by using KDR.

I. INTRODUCTION

Reinforcement learning (RL), which does not require a
precise environmental model, can be a useful technique to
improve task performance of real robots. However, one draw-
back of utilizing RL is that it usually requires a large number
of iterations to improve policies in a high-dimensional space.
Thus, applications of RL have been limited to robots with
small numbers of degrees of freedom [1]–[4].

In our approach, we propose using kernel dimension
reduction (KDR) [5], [6] to extract a low-dimensional feature
space so that the learning system can improve task perfor-
mance even when a target robot model has many degrees of
freedom including the complexity of humanoid robots.

In this study, we focus on improving the locomotive per-
formance of humanoid robots as an application of our learn-
ing framework. The dynamics of biped robots characteristi-
cally includes contact and collision with the ground. Model-
ing the interaction with the ground can be very cumbersome.
Using RL methods can be a suitable approach to improve
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Fig. 1. (Left) Our human sized hydraulic humanoid robot CB developed
by SARCOS. height: 1.59 m, total weight: 95 kg. (Right) Simplified 3D
biped simulation model of our humanoid robot.

biped walking. We use the extracted low-dimensional feature
space for RL.

We extract the low-dimensional feature space from step-
ping and walking dynamics without explicitly identifying
rigid body parameters and without the use of a ground
contact model. KDR allows us to extract the feature space
even if the task relevant mapping is non-linear. This is
essential property to improve humanoid locomotive perfor-
mance since stepping or walking dynamics involve highly
nonlinear dynamics. We show that we can improve stepping
and walking policies by using a RL method applied to the
extracted feature space.

We apply our learning framework to a biped simulation
model (see Fig. 1(Right)) of our humanoid robot CB (see
Fig. 1(Left)) [7].

In our approach, we first construct a stepping and a walk-
ing controller based on our previous study [8]. The previous
study proposed using the center of pressure to detect the
phase of the robot dynamics for both stepping and walking
(Fig. 2). We used simple periodic functions (sinusoids) as
desired joint trajectories (see Appendix). We showed that
synchronization of the desired trajectories at each joint with
the detected phase from the center of pressure could generate
stepping and walking movements. In this study, we modulate
the amplitude of the sinusoids according to the current state
of the robot to improve locomotive performance.

In Section II, our learning framework is introduced. In
Section III-A, we explain how we applied the kernel dimen-
sion reduction (KDR) method to the tasks of stepping and
walking. In Section III-B, we describe our implementation of
a RL method on a low-dimensional feature space extracted

2008 IEEE International Conference on
Robotics and Automation
Pasadena, CA, USA, May 19-23, 2008

978-1-4244-1647-9/08/$25.00 ©2008 IEEE. 2711



COP

0

COM

y

COP

0

COM

y

COP

COMroll
pitch

(A) (B) (C)
z

y

z

y

z

x

Fig. 2. Inverted pendulum model represented by the center of pressure
(COP) and the center of mass (COM). ψroll denotes roll angle of the
pendulum. ψpitch denotes pitch angle of the pendulum.

using KDR. In Section IV, we show our simulation results.
Our biped controller as proposed in [8] is introduced in
appendix.

II. LEARNING FRAMEWORK

In this study, we consider extracting a low-dimensional
feature space to improve task performance by using KDR.
We assume that nominal stepping and walking controllers are
provided (see Appendix), and our learning system improves
the performance of these controllers. Since the nominal con-
troller can generate periodic movements, we only consider
the robot state at a Poincaré section.

For example, we consider the dynamics ξ̇ = g(ξ) of a
state vector ξ ∈ Rn. The Poincaré map is a mapping from
an n − 1 dimensional surface S defined in the state space
to itself [9]. If ξ(k) ∈ S is the k-th intersection, then the
Poincaré map h is defined by ξ(k + 1) = h(ξ(k)). In our
study, we defined the section which satisfies the roll angle
defined by the COM and COP equaling zero ψ̇roll = 0 (see
Fig. 2).

Since we consider an application of feature extraction
to an RL framework, we are interested in figuring out the
appropriate feature vector which can predict state variables
xr ∈ Rr used to represent a reward function r(xr). We then
formulate the problem to find the state vector x ∈ Rn as:

p(xr(k + 1)|xf (k),u(k)) � p(xr(k + 1)|x(k),u(k)), (1)

where xf ∈ Rm denotes the state vector in the original
state space. We consider a projection of the state to the low-
dimensional feature vector x = Bxf such that n < m, where
B is a projection matrix. u ∈ Rl is the output of a policy.
Then, in our learning framework, we consider three sets of
state variables: 1) the state variables used to represent reward
function in the original state space xr, 2) the original state
variables xf , and 3) the state variables in the feature space
after projection x.

The relationship in (1) implies that the low-dimensional
feature space x(k) tries to keep the Markov property for the
state xr. We use KDR to derive the projection matrix B.

The policy of the learning system is updated and outputs
the next action only at this Poincaré section.

To improve task performance, we stochastically modulate
the amplitude of the sinusoidal patterns according to the
current policy πw:

πw(x(k),u(k)) = p(u(k)|x(k);w), (2)

where w is the parameter vector of the policy πw. In the
following sections, we explain how we extract the low-
dimensional feature space and how we acquire the control
policy πw.

III. FEATURE EXTRACTION AND POLICY IMPROVEMENT

A. Kernel dimension reduction

We use kernel dimension reduction (KDR) [5], [6] to
extract a low-dimensional feature space. Here we consider
a regression problem in which we try to explain a variable
Y ∈ Y by using a variable X ∈ X . The target of KDR is
to find a low-dimensional subspace Z of the original input
space X such that we can keep information of the variable
Y even in the subspace Z .

More concretely, KDR tries to find a projection matrix B,
which specifies the subspace of the original high-dimensional
state space, to make the conditional distribution p(Y |Z) close
to p(Y |X):

p(Y |X) � p(Y |Z), (3)

where Z = BTX . In our study, Y corresponds to xr(k+1),
X includes xf and u, and Z includes x and u in (1).

This method does not impose assumptions on either the
distributions of X or the conditional distribution P (Y |X).

The idea of KDR is to map random variables X and Y to
reproducing kernel Hilbert spaces (RKHS) [10], [11] and
evaluate conditional independence using cross-covariance
operators.

Let HX be an RKHS of functions on X induced by the
kernel function kX (·, X) for X ∈ X . We also define the
space HY and the kernel function kY(·, Y ). Then, we define
the cross-covariance between a pair of functions f ∈ HX
and g ∈ HY as follows:

< g,ΣY Xf >HY

= EXY [(f(X) − EX [f(X)])(g(Y ) − EY [g(Y )])] (4)

for all functions f and g, where ΣY X is a cross-covariance
operator. Similarly, we define covariance operators ΣXX

and ΣY Y . Now, we can use these operators to define a
conditional cross-covariance operators as:

ΣY Y |X = ΣY Y − ΣY XΣ−1
XXΣXY (5)

This definition assumes that ΣXX is invertible.
To derive the projection matrix B, we try to minimize

Tr
[
Σ̂Y Y |Z

]
, where Σ̂Y Y |Z is the empirical conditional co-

variance operator which corresponds to (5).
Let {xi,yi}N

i=1 denote N samples from the joint distri-
bution p(X,Y ), and let KY ∈ RN×N and KZ ∈ RN×N

denote the Gram matrices computed over {yi} and {zi =
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BTxi}. Then, this minimization problem can be formulated
in terms of KY and KZ , so that the optimal projection matrix
B∗ is derived as:

B∗ = arg min
B

Tr
[
Kc

Y (Kc
Z +NεIN )−1

]
(6)

where IN is the N×N identity matrix, and ε is a regulariza-
tion coefficient [5], [6]. The matrix Kc denotes the centered
kernel matrices

Kc =
(
IN − 1

N
1N1T

N

)
K

(
IN − 1

N
1N1T

N

)
, (7)

where 1N = (1, . . . , 1) is the vector with all elements equal
to 1. We used a Gaussian kernel:

Kij = k(xi,xj) = exp
(
−||xi − xj ||2

2s2

)
, (8)

where Kij is the ij element of the Gram matrix, and s
denotes the parameter of the kernel.

B. Policy improvement by using a reinforcement learning
method

We use a policy gradient method proposed by [12] to
improve the the stepping and walking policies.

The basic goal is to find a policy πw(x,u) = p(u|x;w)
that maximizes the expectation of the discounted accumu-
lated reward:

Eπw{V (k)} = Eπw

{ ∞∑
i=k

γi−kr(i)

}
, (9)

where r denotes reward, V (k) is the actual return, w is the
parameter vector of the policy πw, and γ, 0 ≤ γ < 1, is the
discount factor.

In this study, x represents an extracted feature vector and
u denotes the output of a policy. We modulate amplitudes of
sinusoidal patterns as the output of our stepping and walking
policies (see Section IV). Both the approximated value
functions and the policies are represented by a normalized
Gaussian network [13].

IV. SIMULATION

We applied our proposed method to a simplified simulation
model of our humanoid robot CB [7] (Fig. 1(Right)).

A. Improvement of biped stepping performance

We applied our proposed method to improve stepping in
place.

We modulate the amplitude Astep in (16) to improve the
stepping performance. We defined the target of the stepping
task to keep the desired state at ψroll. We use a reward
function:

r = −0.1(ψroll
d − ψroll)2 (10)

for this stepping task, where ψroll
d = 2.0◦. The learning

system also receives a negative reward r = −1 if the biped
model falls over.

Since the reward function is defined as a function of the
variable ψroll, we try to find a low-dimensional feature space
that can predict ψroll at the next step by using KDR. We use

200 samples to find the projection matrix B. The parameter
of the kernel in (8) is s = 0.75.

The simplified humanoid model has 10 joints, and the
base link has 6 degrees of freedom. We did not consider
translational degrees of freedom of the base link since our
humanoid robot CB does not have a sensor to detect the 3D
position of the base link. Therefore, we need to consider 13
degrees of freedom. As a consequence, we need to consider
a 26 dimensional state space as the original state space that
includes the time derivative of each degree of freedom. We
applied KDR for the original 26 dimensional state space
to find the proper projection to a 1-dimensional feature
space. The number of dimensions of the feature space is
predetermined.

Figure 3 shows learning performance of the stepping task
on the extracted feature space. This results showed that the
extracted feature can be used to learn the stepping task.

Here we compared with the learning performance using
randomly extracted feature space. We randomly selected the
elements of the projection matrix B such that BTB = 1 for
this comparison. Figure 3 shows that the learning system
could not acquire a good stepping policy and had large
variance in stepping performance when we used a randomly
selected feature space.

Figure 4 shows the relationship between the extracted
1-dimensional feature and the roll angle ψroll. This result
showed that KDR extracted a 1-dimensional feature, which
has high correlation to the roll angle (correlation coefficient
was 0.93). This is interesting because the learning system
automatically finds a feature space which corresponds to the
roll angle of the center of mass while a number of biped
walking studies have emphasized that humanoid robots have
inverted pendulum dynamics (see Fig. 2), with the top of the
pendulum at the center of mass and the base at the center of
pressure [14]–[17].

Note that the reward function is a function of the roll
angle. However, it is not obvious whether the proper variable
to predict the roll angle at the next time step (k + 1) is the
roll angle at current time (k) or not.

Figure 5 shows a comparison between control performance
of an acquired policy and that of the initial policy. The roll
angle is kept around desired state by using the acquired
policy.

An acquired stepping movement is shown in Fig. 6.

B. Improvement of biped walking performance

We also applied our proposed method to improve walking
performance.

We modulate the amplitude Awalk in (17) to generate
forward movement for the biped walking task. The target
of the walking task is to increase the angular velocity of the
pendulum ψ̇pitch (see Fig 2(C)) at the Poincaré section. We
use the reward function:

r = 0.1(ψ̇pitch) (11)

for this biped walking task. The learning system also receives
a negative reward r = −1 if the biped model falls over.
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Fig. 3. Learning performance of the stepping controller in the simulated
environment. The blue solid line represents the learning performance using a
feature space extracted by KDR. The red dashed line represents the learning
performance using a randomly selected feature space. The learning system
could not acquire a good stepping policy and had large variance in stepping
performance when we used a randomly selected feature space. Means and
standard deviations of the learning performances were derived from 10
simulation runs.
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Fig. 4. Relationship between the COM roll angle ψroll and the extracted
feature x. The extracted feature is highly correlated to the COM roll angle
ψroll. The correlation coefficient was 0.93. The extracted feature captures
physical property of the robot model.

Since the reward function is defined as a function of the
variable ψ̇pitch, we try to find the low-dimensional feature
space that can predict ψ̇pitch at next step by using KDR.
In this case, we also use 200 samples to find the projection
matrix B. The parameter of the kernel in (8) is s = 0.75.

We applied KDR for the original 26 dimensional state
space to find the proper projection to a 3-dimensional feature
space. The number of dimensions of the feature space is
predetermined.

Figure 7 shows learning performance of the walking task
on the feature extracted by using KDR. This results showed
that the extracted feature can be used to learn the walking
task.

We again compared with the learning performance using
randomly extracted feature space. Since the amount of the
reward could be mostly explained only by the output of
policies Awalk, the learning system could acquire walking
policies even using a randomly selected feature space. How-
ever, learning performance kept increasing only when we
used the feature space extracted by KDR possibly because
the extracted feature space has a larger emphasis on the
reward.

Figure 8 shows a comparison between control performance
of an acquired policy and that of the initial policy for the
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Fig. 5. Comparison between control performance of an acquired policy
and that of the initial policy. The roll angle ψroll at the Poincaré section
ψ̇roll = 0 (solid line). The dotted line represents the desired angle for this
stepping task.

Fig. 6. Acquired stepping movement. The red thin line represents desired
angle. the pendulum state represented by the light gray line behind the red
line came close to the desired state at the Poincaré section. The light gray
sphere represents the center of mass.

walking task. The pitch angular velocity ψ̇pitch had a larger
value using the acquired policy compared to using the initial
policy.

Figure 9 shows the acquired walking performance.

V. DISCUSSION

We proposed using KDR to extract a low-dimensional
feature space for a humanoid locomotion task. In this study,
we used the extracted low-dimensional state space for RL so
that the learning system could improve task performance. We
showed that we could improve stepping and walking policies
by using a RL method on the extracted feature space by using
KDR. In our future work, we will consider application of the
proposed method to our new humanoid robot CB [7].

So far, we empirically determined the sufficient dimen-
sionality of the feature space. Automatic selection of the
number of dimensions for the humanoid locomotion tasks is
also included as part of our future work.
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APPENDIX

Our biped controller uses a coupled phase oscillator model
to modulate the phase of the sinusoidal patterns. The aim
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Fig. 9. Acquired walking pattern. Average walking speed is 0.16 m/s for initial 20 seconds. The red line represents the starting position. We showed one
snap in three walking steps.
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Fig. 7. Learning performance for the walking task in the simulated
environment. The blue solid line represents the learning performance using a
feature space extracted by KDR. The red dashed line represents the learning
performance using a randomly selected feature space. Since the amount of
the reward could be mostly explained only by the output of policies Awalk ,
the learning system could acquire walking policies even using a randomly
selected feature space. However, learning performance kept increasing only
when we used the feature space extracted by KDR possibly because the
extracted feature space has a larger amount of information on the reward.
Means and standard deviations of the learning performances were derived
from 10 simulation runs.
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Fig. 8. Comparison between control performance of an acquired policy and
that of the initial policy. The pitch angular velocity ψ̇pitch at the Poincaré
section ψ̇roll = 0 (solid line).

of using the coupled phase oscillator model is to synchro-
nize periodic patterns generated by the controller with the
dynamics of the robot. To use the coupled phase oscillator
model, detection of the phase of the robot is needed. We
introduce a method to detect the robot phase in Section
A. We briefly explain phase coordination for biped walking
in Section B. As in our previous study [8], we use simple
sinusoidal patterns as nominal trajectories for each joint. We
describe the design of the nominal trajectories for stepping
movement in Section C, and walking movement in Section D.

Parameters used in the controllers are summarized in Table
I.

A. Phase detection of the robot dynamics

As shown by our previous study [8], we can use the center
of pressure ycop and the velocity of the center of pressure
ẏcop to detect the phase of the robot dynamics:

φ(ycop) = − arctan
(
ẏcop

ycop

)
, (12)

where ycop = (ycop, ẏcop) (see Fig. 2). We use a simplified
COP detection method introduced in [8].

B. Phase coordination

In this study, we use four oscillators with phases φi
c,

where i = 1, 2, 3, 4. We introduce couplings between the
oscillators and the phase of the robot dynamics φ(ycop) in
(12) to regulate the desired phase relationship between the
oscillators:

φ̇i
c = ωc +Kc sin(φ(ycop) − φi

c + αi), (13)

where αi is the desired phase difference, Kc is a coupling
constant, and ωc is natural angular frequency of oscillators.

We use four different phase differences,
{α1, α2, α3, α4} = {− 1

2π, 0.0,
1
2π, π}, to make symmetric

patterns for a stepping movement with the left and right
limbs (see Section C.2), and also to make symmetric
patterns for a forward movement with the left and right
limbs (see Section D).

C. Stepping controller for lateral movement

1) Side-to-side controller for lateral movement: First, we
introduce a controller to generate side-to-side movement. We
control the hip joints θh roll and the ankle joints θa roll (Fig.
10(A)) for this movement. Desired joint angles for each joint
are:

θd
h roll(φc) = Ah roll sin(φc), (14)

θd
a roll(φc) = −Aa roll sin(φc), (15)

where Ah roll and Aa roll are the amplitudes of a sinusoidal
function for side-to-side movements at the hip and the ankle
joints, and we use an oscillator with the phase φc = φ1

c .
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Fig. 10. Stepping controller: (A) Controller for side-to-side movement.
(B) Controller for foot clearance.

2) Vertical foot movement to make clearance: To achieve
foot clearance, we generate vertical movement of the feet
(Fig. 10(B)) by using simple sinusoidal trajectories:

θd
h pitch(φc) = (Apitch +Astep) sin(φc) + θres

h pitch,

θd
k pitch(φc) =−2(Apitch + Astep) sin(φc) + θres

k pitch,

θd
a pitch(φc) =−(Apitch +Astep) sin(φc) + θres

a pitch, (16)

where Apitch is the amplitude of a sinusoidal function to
achieve foot clearance, θres

h pitch, θres
k pitch, θres

a pitch represent
the rest posture of the hip, knee, and ankle joints respectively.
We use the oscillator with phase φc = φ1

c for right limb
movement and use the oscillator with phase φc = φ3

c , which
has phase difference of φ3

c = φ1
c +π, for left limb movement.

We modulate the amplitude of the sinusoidal patterns by
changing Astep according to the current pendulum state for
the stepping task (see Sections IV-A).

D. Biped walking controller

To walk forward, we use an additional sinusoidal trajec-
tory. Thus, the desired nominal trajectories for right hip and
ankle pitch joints become:

θd
h pitch = Apitch sin(φ1

c) +Awalk sin(φ2
c) + θres

h pitch,

θd
a pitch = −Apitch sin(φ1

c) −Awalk sin(φ2
c) + θres

a pitch, (17)

where the phase φc = φ2
c has 1

2π phase difference of φ1
c .

We use φ3
c and φ4

c for left limb instead of φ1
c and φ2

c ,
where the phase φc = φ4

c has π phase difference of φ2
c .

We then modulate the amplitude of the sinusoidal patterns
by changing Awalk according to the current pendulum state
of the biped walking task (see Section IV-B).
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