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Abstract— In this paper, the imitation of human captured
motions by a humanoid robot is considered. The main objective
is to reproduce an imitated motion which should be as close
as possible to the original human captured motion. To achieve
this goal, the imitation problem is formulated as an optimization
problem and the physical limits of the humanoid robot are
considered as constraints. The optimization problem is then
solved recursively by using an efficient dynamics algorithm,
which allows the calculation of the gradient function with respect
to the control parameters analytically. The simulation results
using OpenHRP platform, which is a dynamical simulator for
humanoid robot motions, have pointed out that the imitated
motions preserve the salient characteristics of the original human
captured motion. Moreover the optimization procedure converges
well thanks to the analytical calculation of the gradient function.

I. INTRODUCTION

Imagining a humanoid robot collaborates with humans to
execute some daily tasks is now reality. Actually, the ability of
humanoid robots to execute complex tasks increases rapidly.
In order to increase the autonomous behavior of humanoid
robots as well as improving their reactivity, the humanoid
robot should be able to imitate human motions.

In recent years, the imitation of human motions by
humanoid robots was an active research field. Pollard et al
[1] have proposed a method to transform a dance captured
motion to a motion that the humanoid robot can execute.
Nakaoka et al [2] have realized a whole body control of
humanoid robot to imitate Jongara-Bushi dance that is a
traditional Japanese folk dance. To maintain the dynamical
stability of humanoid robot, they control the trajectory of
Zero Moment Point (ZMP) [3] to be inside the polygon of
support. Safonova et al [4] use also a pre-recorded human
motion to generate optimal motion of the upper body of
Sarcos humanoid robot. The function to be minimized is the
difference between the recorded and executed motion by the
robot. However, the previous methods do not consider some
physical limits of humanoid robot, e.g. torque limits.
Ruchanurucks et al [5] have proposed a method to optimize
upper body motion of humanoid robot in order to imitate
a human record motion. Their objective function preserves
the main characteristics of the original motion, and at
the same time it respects the physical constraints of the

humanoid robot. However, the authors have mentioned that
the resulting trajectories would meet the latter limits while
the former limits are often violated. This is because their
method considers the velocity and force constraints separately.

In this paper, our objective is to generate a motion within the
humanoid physical capabilities from a human captured motion.
The physical limits are the angle, joint velocity and torque
limits of the humanoid robot. We focus on the imitation of
upper body motion. On the other hand, the motion of lower
body can be efficiently generated using leg motion primitives
[6], [7]. Concerning the dynamical stability of humanoid robot,
it can be guaranteed by controlling the ZMP trajectory [8].

The main contribution of this paper is providing an op-
timization framework to generate the upper body motion of
humanoid robot from human captured motions. The generated
motions imitate the original human captured motion, and at
the same time they respect the physical limits of humanoid
robot.

The remainder of this paper is organized as follows. In
Section II the imitation problem is formulated. In Section
II a pre-processing procedure for human captured motion
is explained. An overview of the algorithm of recursive
multibody dynamics is given in Section IV. In Section V
the optimization problem is reformulated using the notations
of recursive multibody algorithm which is explained in the
previous section. In Section VI discretizing the configuration
space and solving the optimization problem are explained.
Some experimental results are given in Section VII and Section
VIII concludes the paper.

II. IMITATION PROBLEM FORMULATION

The kinematic structure of the humanoid robot HRP-2 [9]
is given in Fig. 1. In this structure the degree of freedoms are
presented by cylinders. The structure contains 30 degree of
freedoms.

The inputs of the imitation procedure are human captured
motions. These motions are provided by a motion capture
system as a skeleton of virtual actor and a sequence of the
angular values of the virtual actor’s joints.
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Fig. 1. Description of HRP-2 kinematic structure.

Generally, the virtual actor has more degree of freedoms
than the humanoid robot and as well its links lengths are
different from those of humanoid robot.

The imitation problem, from a kinematic point of view,
is well known in computer graphics and it is called motion
retargeting [10]. The motion retargeting problem is formulated
as follows

min
qt

∫ t f

t0

{
(qt−qc

t )
T (qt−qc

t )+σ (Pt −Pc
t )T (Pt −Pc

t )
}

dt

subject to
qt0 = q0

qtf = qf

q− ≤ qt ≤ q+

(1)
where σ is a user defined constant. qt and qc

t are the joint
positions of the upper body of the humanoid robot and the
virtual actor respectively. Pt and Pc

t are the Cartesian positions
of the hands and the head of the humanoid robot and virtual
actor in the pelvis frame. It is defined as follows

Pt =

 Phead
Pright hand
Pleft hand

 (2)

Note that if the lengths of the virtual actor’s links are largely
different from those of humanoid robot, the vector Pc

t can be
scaled to fit the humanoid robot size. q− and q+ denote the
minimal and maximal values of the vector qt respectively.

The retargeting problem has been extremely studied in com-
puter graphics during the last years, and we have actually many
commercial graphic softwares that can solve it efficiently.

However, in the motion imitation by a humanoid robot
additional difficulties arise such as the joints velocity and the
torque limits.
By taking into account those additional constraints, the motion

imitation problem becomes

min
qt,q̇t,q̈t

∫ t f

t0

{
(qt−qc

t )
T (qt−qc

t )+σ (Pt −Pc
t )T (Pt −Pc

t )
}

dt

subject to

M(qt) q̈t +C(qt, q̇t) = τt

qt0 = q0, q̇t0 = 0, q̈t0 = 0
qtf = qf, q̇tf = 0, q̈tf = 0

τ
− ≤ τt ≤ τ

+

q̇− ≤ q̇t ≤ q̇+

q− ≤ qt ≤ q+

(3)
where τt is the vector of the applied torques on the humanoid
robot’s joints. M(qt) q̈t +C(qt, q̇t) = τt is the dynamic equa-
tion of the motion.

III. PRE-PROCESSING HUMAN CAPTURED MOTION

The main challenging issue in the imitation of human
captured motion is the fast dynamic. On account of the
physical limits of the humanoid robot and the capacities of
the motors in its joints, it is not able to follow a fast and
highly dynamic motion.
Therefore, taking the human captured motion as an initial
solution for the optimization problem (3) might yield a motion,
that is very different from the original one. In order to obtain
a good initial guess for the optimization problem (3), one can
slow down the captured motion.
Let us consider that we have a captured motion of length N
samples and the sampling frequency of this motion is f (e,g
f = 120 Hz). Let us denote qc(n) the vector of joint values
which corresponds to the sample number n.
A simple algorithm to transform the human captured motion
into a motion within the joint velocity limits of the humanoid
robot is given by the following pseudo code

Input: n← 1
while n≤ N−1 do

Calculate ∆qc← |qc(n+1)−qc(n)|;
Input: ∆t← 1

f

while ∆qc

∆t > q̇+ do
∆t← ∆t + 1

f ;
end
n← n+1;

end
Algorithm 1: Time re-parameterization of the human cap-
tured motion

Recall that q̇+ is the maximal value of humanoid robot’s joint
velocity vector. Fig. 3.b shows the obtained motion after the
application of time re-parameterization on the original human
captured motion Fig. 3.a.

IV. RECURSIVE MULTIBODY DYNAMICS

Solving the optimization problem (3) is generally difficult
on account of the complexity of the dynamic equation of
motion, and the implicit relation between the vector of applied
torques τt and the vector of joints positions qt.
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The objective of this section is giving an overview of an
efficient recursive algorithm for multibody dynamics, which
allows the calculation of the gradient function of the dynamic
equation analytically.

Park et al [11] have proposed to write the recursive multi-
body dynamics for serial open or branched kinematic chains
using Lie group and Lie algebra. The main advantage of this
formulation is to relate the joint torques and joint angles
explicitly. Therefore the differentiation of joint torques with
respect to joint angles can be done analytically.

Let us define the Lie groups SO(3) and SE(3), which denote
the orthonormal matrix Θ in R3×3 and the homogeneous trans-
formation group respectively. The Lie algebra of SO(3) and
SE(3) are denoted so(3) and se(3) respectively. The operators
defined on these groups are: skew, matrix exponential, adjoint
map AdG(.), dual adjoint Ad∗G(.), Lie bracket adg(.) and dual
Lie bracket ad∗g(.). For more details on Lie group, Lie algebra
and the operators definitions see Appendix.

A. Forward Kinematics
The kinematics of an open chain can be modeled as a

sequence of homogeneous transformation between consecutive
joint frames. Let Ti−1,i ∈ SE(3) be the transformation matrix
between the frame of link i and the frame of link i−1.
The matrix Ti−1,i can be written using matrix exponential
notation as follows

Ti−1,i = MieSiqi (4)

where Si ∈ se(3) is the joint screw written in the coordinate
of link i−1, qi is the current position of joint i and Mi is the
coordinate transformation between link i and link i−1.
Using the above definition of transformation matrix, the end-
effector of a kinematic chain can be calculated by the product

T0,n = T0,1T1,2 · · ·Tn−1,n

= M1eS1q1M2eS2q2 · · ·MneSnqn
(5)

Note that by expressing the matrix of transformation in expo-
nential form, we can calculate its derivative with respect to qi
analytically.

B. Recursive inverse dynamics of branched chains
Branched chains are serial open chains with two or more

branches leading to two or more tip links [11], [12]. In the
branched chains two definitions arise :
• Parent link: the link inward (towards the base) from a

given link.
• Child link: the link or links which are outward (towards

the tips) from a given link.
Spatial velocity of branched chains:
• Initialization: Given V0.
• Outward recursion: loop over all links in depth manner:

TP,i = MieSiqi

Vi = AdT−1
P,i

(VP)+Siq̇i

ai =−adSiq̇i (Vi)
bi =−ad∗Vi

(JiVi)

(6)

where the index P denotes the parent link of link i, TP,i designs
the mapping from the link i to its parent P and VP denotes the
spatial velocity of link P.

Applied torques on the branched chains: In order to
calculate the inward recursion of forces and torques, we define
the external forces applied on a link j by F̂j.

• Initialization: Given the external applied forces on each
link F̂j, V̇0 and Ĵ j = 0 for each tip link.

• Inward recursion: loop over all links in reversed breadth

V̇i =AdT−1
P,i

(
V̇P
)
+Siq̈i +ai

Ĵi =Ji + ∑
j∈C

Ad∗
T−1

i, j
Ĵ jAdT−1

i, j

Bi =bi + ∑
j∈C

Ad∗
T−1

i, j
z j

zi =Ĵi (Siq̈i +ai)+Bi + ∑
j∈C

Ad∗
T−1

i, j
F̂j

Fi =Ĵi AdT−1
P,i

(
V̇P
)
+ zi

τi =ST
i Fi

(7)

where C denotes the child links for link i, and τi is the torque
applied on the joint i.
The matrix Ji is called the spatial inertia and it is defined as
follows

Ji =
[

Ii−mi[ri]2 m[ri]
−m[ri] m.1

]
(8)

where Ii is the inertia of the link i about its center of mass and
m is its mass. ri is the vector from the point of application of
the force and the center of mass of the link i. Recall that [ri]
is the skew operator see Appendix for more details.

V. OPTIMIZATION PROBLEM REFORMULATION

Using Eq. (7), the dynamic equation of motion
M(qt) q̈t +C(qt, q̇t) = τt can be rewritten as follows

ST Ft = τt (9)

where τt , Ft and S are defined as follows

τt =


τ1,t
τ2,t

...
τn,t

 , Ft =


F1,t
F2,t

...
Fn,t

 , S =


S1 0 · · · 0
0 S2 · · · 0
...

. . . . . .
...

0 · · · 0 Sn

 (10)

τt and Ft are the vectors of the applied torques and forces on
the humanoid robot’s joints respectively. τi,t and Fi,t denote the
value of the applied torque and force on the joint i respectively.
In order to transform this optimization problem into a classical
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optimization problem, let us define

Xt =
[
qt

T q̇T
t q̈T

t
]T

L(Xt) =
∫ t f

t0

{
(qt−qc

t )
T (qt−qc

t )+ · · ·

σ (Pt −Pc
t )T (Pt −Pc

t )
}

dt

G(Xt) =


τt − τ+

−τt + τ−

q̇t− q̇+

−q̇t + q̇−
qt−q+

−qt +q−

 , H(Xt) =



τt −ST Ft
qt0 −q0

q̇t0
q̈t0

qtf −qf
q̇tf
q̈tf



(11)

Thus the optimization problem (3) can be transformed into the
following classical form

min
Xt

L(Xt)

subject to
H(Xt) = 0
G(Xt)≤ 0

(12)

The above optimization problem has been extremely studied in
the literature of optimization theory. To solve this optimization
problem, one can use the augmented Lagrange multiplier
method, which is a very efficient and reliable method [13].
Using the augmented Lagrange multiplier method transforms
the optimization problem (12) to the minimization of the
following function

min
Xt ,λ

L̃(Xt ,λ ) = L(Xt)+λ
T
ψ ψ +

1
2

σψ
T

ψ +λ
T
H H +

1
2

σHT H

(13)
where λ =

[
λ T

ψ λ T
H
]T , ψ = max

{
G(Xt), −1

σ
λψ

}
. Then there

exist λ ∗ such that X∗t is a local minimum of the unconstrained
L̃(Xt ,λ

∗) for all σ smaller than some finite σ̄ .
To solve the unconstrained optimization problem of L̃(Xt ,λ )
with respect to Xt , one can use Gauss-Newton method. Note
that the function L̃(Xt ,λ ) is differentiable in Xt if and only if
L(Xt), H(Xt) and G(Xt) are differentiable in Xt , and in this
case we can write

∂ L̃(Xt ,λ )
∂Xt

=
∂L(Xt)

∂Xt
+(λH +σH)T ∂H(Xt)

∂Xt
+

max
{

0,λψ +σG(Xt)
}T ∂G(Xt)

∂Xt

(14)

As λ ∗ is unknown, an update rule is used

λ
k+1
H = λ

k
H +σH(Xk

t )

λ
k+1
ψ = λ

k
ψ +σψ(Xk

t )
(15)

where Xk
t is the unconstrained minimum of L̃(Xt ,λ

k). Such
updating rule will generate a sequence λ k converges to λ ∗

[14]. In practice, a good schedule is to choose a moderate σ0,
and increase it as follows

σ
k+1 = ασ

k (16)

where α is between 5 and 10. A threshold σ̄ is chosen and
the update rule of σ stops when σ k becomes higher than σ̄ .

For more details on the algorithm of augmented Lagrange
multiplier method see [15], [13], [14].

Approximating the gradient function ∂ L̃(Xt ,λ )
∂Xt

by a numerical
difference method is usually used in practice. However, this
approach is not only a time consuming method on account of
the evaluation of the gradient calculation, but also may not
converge well because of the approximation.

As we have mentioned the main advantage of using the
recursive dynamic algorithm explained in Section IV-B is
calculating the gradient function analytically in a recursive
way.

A. Gradient calculation

The objective is to calculate the gradient of the dynamic
quantities. By considering the vector of parameters Xt =[
qt

T q̇T q̈T ]T , let us start by calculating the derivatives
of the operators with respect to an element x of Xt

∂T0,n

∂x
=T0,i (Siδx,qi)Ti,n

∂AdT−1
i−1,i

(Y )

∂x
=adAd

T−1
i−1,i

(Y ) (Siδx,qi)+AdT−1
i−1,i

(
∂Y
∂x

)
∂Ad∗

T−1
i,i+1

(Y )

∂x
=ad∗AdMi+1(Si+1δx,qi+1)

(
Ad∗

T−1
i,i+1

(Y )
)

+ · · ·

Ad∗
T−1

i,i+1

(
∂Y
∂x

)
∂adZ (Y )

∂x
=ad ∂Z

∂x
(Y )+adZ

(
∂Y
∂x

)
∂ad∗Z (Y )

∂x
=ad∗∂Z

∂x
(Y )+ad∗Z

(
∂Y
∂x

)

(17)

where δx1,x2 is the Kronecker delta defined as follows

δx1,x2 =
{

1 if x1 = x2
0 otherwise (18)

The calculation of the gradient with respect to Xt can be
done in a recursive way analogously to the recursive dynamic
calculation.
Forward recursion:

• Initialization: Given ∂V0
∂Xt

.
• loop over all links in depth manner:

∂Vi

∂Xt
=

∂AdT−1
P,i

(VP)

∂Xt
+Si

∂ q̇i

∂Xt
∂ai

∂Xt
=−

∂adSiq̇i (Vi)
∂Xt

∂bi

∂Xt
=−

∂ad∗Vi
(JiVi)

∂Xt

(19)

Backward recursion:

• Initialization: Given ∂ F̂j
∂Xt

, ∂V̇0
∂Xt

.
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• loop over all links in reversed breadth

∂V̇i

∂Xt
=

∂AdT−1
P,i

(
V̇P
)

∂Xt
+Si

∂ q̈i

∂Xt
+

∂ai

∂Xt

∂ Ĵi

∂X
= ∑

j∈C

∂Ad∗
T−1

i, j

∂Xt
Ĵ jAdT−1

i, j
+ · · ·

Ad∗
T−1

i, j
Ĵ j

∂Ad∗
T−1

i, j

∂Xt
+Ad∗

T−1
i, j

∂ Ĵ j

∂Xt
AdT−1

i, j

∂Bi

∂Xt
=

∂bi

∂Xt
+ ∑

j∈C

∂Ad∗
T−1

i, j
z j

∂Xt

∂ zi

∂Xt
=

∂ Ĵi

∂Xt
(Siq̈i +ai)+ Ĵi

(
Si

∂ q̈i

∂Xt
+

∂ai

∂Xt

)
+ · · ·

∂Bi

∂Xt
+ ∑

j∈C

∂Ad∗
T−1

i, j
F̂j

∂Xt

∂Fi

∂Xt
=

∂ Ĵi

∂Xt
AdT−1

P,i

(
V̇P
)
+ Ĵi

∂AdT−1
P,i

(
V̇P
)

∂Xt
+

∂ zi

∂Xt
∂τi

∂Xt
=ST

i
∂Fi

∂Xt

(20)

where as we mentioned C denotes the child links for link i.

VI. DISCRETIZATION OF CONFIGURATION SPACE

It is well known that the space of the admissible solutions
of the minimization problem (3) is very large. In order to
transform this infinite dimensional space to a finite one, we
can use a basis of shape functions.
Let us consider a basis of shape functions Bt that is defined
as follows

Bt =
[
B1

t B2
t · · · Bl

t
]T (21)

where Bi
t denotes the value of shape function number i at the

instant t, the dimension of Bt is l defines the dimension of the
shape function basis.

The projection of the vector of angular values qt into the
basis of shape functions Bt can be given by the following
formula

qt = QBBt (22)

where QB is a constant matrix.
The derivative q̇t and q̈t can be written as follows

q̇t =QBḂt

q̈t =QBB̈t
(23)

In this case, the derivative with respect to each element
QB (i, j) of the matrix QB can be computed using the following
formula

∂Yt

∂QB(i, j)
=

∂Yt

∂Xt
× ∂Xt

∂QB(i, j)

=
∂Y
∂Xt
×

ei⊗

B j
t

Ḃ j
t

B̈ j
t


 (24)

where ei ∈Rn,

ei = [0 . . . 0 1
↑
i

0 . . . 0]T

and ⊗ denotes Kronecker’s product operator.
By using the discretization of the configuration space, the

problem of optimization transforms into the problem of finding
the optimal matrix QB, which minimizes the function L̃(Xt ,λ )
in Eq. (13).

It remains to define the shape functions Bi
t . In our case, the

shape functions should verify the following properties:
1) They are continuous.
2) Their first and second derivatives are continuous.

Therefore, we use the quartic B-spline functions.

VII. EXPERIMENTAL RESULTS

We have chosen a boxing captured motion to validate our
proposed method. As the movements of the upper body of the
boxing motion is complex, so the imitation by a humanoid
robot is really a challenging issue. The vertical movement of
the pelvis joint is also considered, and the movements of the
lower body is calculated using inverse kinematic. Snapshots
of the conducted motion using OpenHRP platform [16] are
presented in Fig. 2. In order to ensure the dynamical stability
of humanoid robot, the trajectory of ZMP is controlled using
the method of cart table model proposed by Kajita et al [8]
as follows

1) The ZMP trajectory of the optimized motion is calcu-
lated.

2) The calculated ZMP trajectory is then modified and
restricted to be inside the polygon of support feet.

3) Once the modified ZMP trajectory is available, we use
the cart table model [8] to calculate the trajectory of the
center of mass.

4) The horizontal trajectory of the free flyer (pelvis joint)
is then calculated using the trajectory of the center of
mass.

Fig. 3.a shows the angular position trajectory of the virtual
actor’s right elbow, Fig. 3.b shows the modified trajectory
after the application of the time re-parameterization algorithm
explained in Section III. The optimized trajectory for the
humanoid robot is given in Fig. 3.c. The optimized trajectory
respects the physical limits of HRP-2 humanoid robot, which
are not only the angle limits but also the joint velocity and
torque limits.

However, the self collision problem is not considered in
this work as shown in Fig. 4.a. Although, approximating the
humanoid robot’s links by cylinders and spheres, and then
consider the distance between them as an additional constraint
can solve the problem of self collision, this procedure might
yield an imitated motion largely different from the original
human captured motion on account of the approximation.
F. Kanehiro et al [17] have proposed an efficient method
to avoid the collision for a non-strictly convex objects. The
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method makes use of non-strictly convex polyhedra as geo-
metric models of the robot and the environment without any
approximation. Applying this method as post-processing task
can solve the problem of self collision and it yields a collision-
free motion. Fig. 4.b shows the self collision avoidance of the
humanoid robot’s hands by applying the method proposed by
F. Kanehiro et al [17].

VIII. CONCLUSION

In this paper, the human motion imitation by a humanoid
robot is considered. In order to generate an imitated motion
within the humanoid robot capabilities, the imitation problem
is formulated as an optimization problem. The physical limits
of the humanoid robot are transformed into constraints of
the optimization problem, and the objective function to be
minimized is the difference between the angular values of the
humanoid robot’ s joints and those of the virtual actor.

The experimental results have pointed out that the proposed
method yields motions that preserve the salient characteristics
of the original human captured motion, and at the same time
they respect the physical limits of the humanoid robot.

Future work will focus on the integration of self collision
avoidance into the optimization problem as an additional
constraint.
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APPENDIX

A Lie group is a differentiable manifold. An example of Lie
group is the orthonormal matrix Θ in R3×3, which is called
SO(3). Note that this group consists of the rotation matrices in
Euclidean space. Another example of Lie group is the group
of homogeneous transformation which is the special Euclidean
group or SE(3). Given a rotation Θ ∈ SO(3) and translation
b ∈ R3, the homogeneous matrix is defined as follows

G =
[

Θ b
0 1

]
(A-1)

An important concept associated with each Lie group is
the notation of Lie algebra. The tangent space at the identity
element of a Lie group is called the Lie algebra for that group.
The Lie algebra of SO(3) and SE(3) are denoted so(3) and
se(3) respectively.
Let us define some notations and operations on Lie groups
and Lie algebra:

1) Skew operator:

[.] : ω ∈ R3→ so(3)

[ω] =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 (A-2)

0 2 4 6 8 10 12
!3

!2.5

!2

!1.5

!1

!0.5

0

second

R
a
d

(a) Original human captured motion.

0 10 20 30 40
!3

!2.5

!2

!1.5

!1

!0.5

0

second

R
a
d

(b) Time re-parameterization of the human captured motion.

0 5 10 15 20 25 30 35
!2.5

!2

!1.5

!1

!0.5

0

second

R
a
d

(c) Obtained motion after the optimization and considering the
physical limits of the humanoid robot (HRP-2). Dash lines
denote the angular limits of the elbow joint.

Fig. 3. Angular position of the right elbow.
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Fig. 2. Snapshots of the conducted motion.

2) (., .) operator:

(., .) : {ω,v} ∈ R3→ se(3)

(ω,v) =
[
[ω] v
0 0

]
(A-3)

3) Matrix exponential:

e(ω,v) = exp
[
[ω] v
0 0

]
=
[

exp([ω]) Av
0 1

]
(A-4)

where

exp([ω]) = I +
sinφ

φ
[ω]+

1− cosφ

φ 2 [ω]2, φ = ‖ω‖

A = I +
1− cosφ

φ 2 [ω]+
φ − sinφ

φ 3 [ω]2

(A-5)
4) Adjoint map on SE(3):

AdG(h) : se(3)→ se(3)

AdG(h) =
[

Θ 0
[b]Θ Θ

][
hω

hv

]
(A-6)

where G ∈ SE(3) is defined as in (A-1), and h =
(hω ,hv) ∈ se(3).

5) Dual adjoint operator:

Ad∗G(h∗) : se(3)∗→ se(3)∗

Ad∗G(h∗) =
[

ΘT ΘT [b]T

0 ΘT

][
M
F

]
(A-7)

where G ∈ SE(3), and h∗ = (M,F) ∈ se(3)∗.
6) Lie bracket operator:

adg(h) = [g,h] =
[
[gω ] 0
[gv] [gω ]

][
hω

hv

]
(A-8)

where g,h ∈ se(3). h = (hω ,hv) and g = (gω ,gω).
7) Dual Lie bracket operator:

ad∗g(h∗) = [g,h∗] =
[
[gω ]T [gv]T

0 [gω ]T

][
M
F

]
(A-9)

where g = (gω ,gv) ∈ se(3) and h∗ = (M,F) ∈ se(3)∗.
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