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Abstract— Biological inspired control approaches based on
central pattern generator (CPG) have been used to generate
human-like rhythmic locomotion for bipedal robots. CPG
consists of several oscillators with coupled mutual inhibition.
In the application of CPG to bipedal walking, one of the
important problem is how to coordinate oscillators so as to
achieve stable walking, since without proper coordination the
rhythmic trajectory generated by CPG may fail to control the
walking.

To solve this problem, this paper presents a method of
coordination between two oscillators using phase information.
In the method, approximated phase values of the oscillators are
derived and used as the feedback to coordinate two oscillators.
Furthermore, coordination between multiple oscillators with
different frequencies and phases has also been explored. This
method is verified with a 2D robust walking controlled by
four oscillators. Several walking scenarios are tested: adding
external force, change walking frequency and step length during
walking. Robust walking is achieved in our simulation.

I. INTRODUCTION

Bipedal walking of humanoid robot is a complex and

challenging task. Various approaches have been extensively

proposed to realize this task. Such studies range from

model-based, ZMP-based to learning and biologically in-

spired [1]. Human beings walk gracefully and with good

efficiency. Neurophysiological studies have revealed that the

basic rhythm of movement is controlled by a neural rhythm

generator present in locomotion system [2]. These neural

rhythm generators are referred to as central pattern generators

(CPGs) [3]. With the rapid growth of interest in biological

inspired research, CPG has been adopted widely for robot

rhythmic control.

CPG always consists of a structure which combines multi-

ple coupled oscillators to generate walking gait. An oscillator

is the basic component of a CPG structure. Various models of

oscillator have been proposed [4] [5] [6] [7]. Among them,

neural oscillator is most commonly used due to its good

properties, such as entrainment and adaptation properties.

Beside oscillator model design, CPG structure needs to be

well designed for the control of motion [8] [9] [10]. By

properly design the structure for the oscillators, a bipedal

robot can achieve smooth walking in both simulation and

real implementations [11] [12] [13].

The primary goal of this work is to design a coordination

control structure for oscillators. One of the key issues is

the manipulation of phase relationship between oscillators.

The phase relationship of oscillators in CPG determines the

sequence of sub-motion generated by the oscillators and

therefore the behavior of the robot. This relationship will

shift because of the external sensory feedback. Klavins et

al. proposed a general analysis of coordination between

oscillators by phase regulation [14]. Other interesting works

include the synchronization of Kuramoto oscillator [15] and

coordination of a group of mobile robot by CPG [16].

In this paper, we present a novel method to coordi-

nate neural oscillators. Since the manipulation of phase

relationship between oscillators could achieve coordination,

phase difference between oscillators is used as a feedback

to control the phase relationship between oscillators. The

method is initially developed for coordination between two

neural oscillators. An interesting aspect of our approach

is that an arbitrary phase relationship could be adjusted

and maintained between oscillators with same or different

frequencies. The method could also be applied to coordinate

multiple oscillators.

This paper is organized as follows: In Section II, basic

properties of neural oscillators and the coordination problem

are discussed. Section III introduces our proposed method

which is implemented in Section IV on a 2D bipedal walking

in different scenarios. Conclusion and future work are given

in Section V.

II. NEURAL OSCILLATOR DESCRIPTION

A. Neural Oscillator Model

Neural oscillator model was inspired by the behavior of a

biological neuron. It can output rhythmic signal without ex-

ternal input and has limit cycle property. A neural oscillator

model proposed by Matsuoka is as follows [4]:

τ1u̇1 = c−u1 −βv1 −a[u2]
+ −∑h j[g j]

+ (1)

τ2v̇1 = [u1]
+ − v1 (2)

τ1u̇2 = c−u2 −βv2 −a[u1]
+ +∑h j[g j]

− (3)

τ2v̇2 = [u2]
+ − v2 (4)

[u1]
+ = max(0,u1) [u1]

− = min(0,u1) (5)

Y = [u1]
+ − [u2]

+ (6)

where u1(2) is the state of the neuron; v1(2) is the degree

of neural adaptation; c is the constant stimuli; τ1 and τ2 are

time constants; β is the parameter that indicates the effect of

adaptation; a represents the strength of inhibition connection

between neurons; g j is the external input which usually serve

as the feedback pathway for the oscillator; h j is a factor to

adjust the input; Y is the oscillator output.
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B. Properties

Based on Poincaré-Bendixson theorem, the neural oscil-

lator model described by (1)-(6) has a unique limit cycle

behavior if [17]

a−1− τ1

τ2
> 0 (7)

a−1−β < 0 (8)

Limit cycle will be maintained even if there is external

perturbation through input.

In our simulation analysis, we found that neural oscillator

has low-pass filter property. Hence, high frequency noise will

not affect the output of the neural oscillator.

When there is no external input, the frequency and am-

plitude of the oscillator are dependent only on the oscillator

parameters. For the neural oscillator described by (1)-(6), the

frequency is determined by [18]

F =
1

2πτ1

√

b(1+(
β

a
−1)(1+b)) (9)

where b = τ1
τ2

, which is usually set as a constant. The

approximate amplitude is given by [17].

Amp =
2c

1+β +a
(10)

Equations (7)-(10) show the relationship between the

parameters and the oscillator output. Same relationship has

been numerically obtained by previous research [10]. In this

paper, these equations will be used to obtain the values of

the oscillator parameters.

C. Problem

When implementing CPG on robot control, oscillators are

coupled to give the control signal. The problem is how to

make them work synchronously even when there is external

sensory feedback. For example, using the oscillators to con-

trol the top end of a 2-link planar robot to move horizontally

(Fig.1). The top end of the 2-link robot will move forward

and backward in X direction while keeping constant height

in Y direction. To achieve the motion, reference joint angles

could be obtained from inverse kinematics. These angle

trajectories of two joints have a similar form as a sinusoidal

wave. Two neural oscillators are used to generate desired

angle trajectory. The forward kinematics could be described

by:

x = L1cos(os1)+L2cos(os1+os2) (11)

y = L1sin(os1)+L2sin(os1+os2) (12)

Fig.1 also shows the oscillators’ arrangement. Two oscilla-

tors have inhibitory connections as in [9]. Because we merely

want to demonstrate the coordination problem, we omit the

part on how we design the oscillators’ parameters for this

task. It is similar to the way we obtain the parameters and

implement oscillators on bipedal walking in the later part of

this paper.

Fig. 1. Two-link planar robot model and oscillators arrangement
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Fig. 2. Trajectory of 2-link planar robot when external input exists

When there is an external input to the oscillator, (eg. from

sensory feedback) the trajectories generated by the oscillator

may fail to drive the 2-link robot to follow the desired

motion. As shown in Fig. 2, the external input affects the

output trajectories of the oscillators. This is the result of

the oscillator adjustment with the external input. However,

when the external input is removed, the oscillators still fail

to return back to the desired trajectory and the Y direction

becomes oscillation. This is because the phase relationship

between two oscillators changes after receiving the external

input. As shown in Fig.3, the time difference between the

peak values of Os1 and Os2 is 0.3 seconds before the

external input was introduced, while the difference changes

to 0.21 seconds after the external input. This is because

different oscillator may response differently to the external

input. Although single oscillator has limit cycle property,

the trajectory generated by several oscillators may not has

this property. Hence it is required to design an adjustment

structure capable of coordinating the oscillators to follow the

desired motion under the influence of the external input.

III. METHODOLOGY

A. Proposed Method

Williamson found that when an oscillatory input is applied

to an oscillator, the oscillator can entrain the input and lock

onto the input frequency [10]. However, we are interested

in not only controlling the frequency but also manipulating

3207



0 1 2 3 4 5 6 7 8 9 10
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

Time sec

A
m

p
li

tu
d

e

Os1

Os2

0.30s 0.21s

Fig. 3. The phase relationship between the two oscillators before and after
the external input

the oscillator phase. As for the neural oscillator, there is no

parameter which directly indicates the phase value. Many

methods could reflect oscillator output with phase value. In

this paper, we get the approximate phase angle of oscillator

by using inverse sin function. Actually, when |a− 1− b| is

small, oscillator output is close to a sinusoidal wave. The

approximate phase value is used as a feedback to adjust the

oscillator phase.

Fig. 4. The structure to adjust the phase difference between oscillators

Fig. 4 shows the proposed structure to coordinate two

oscillators. Os1 and Os2 are two oscillators which have

the same frequencies but different initial phases. Function

f is used to calculate the approximate phase value of the

oscillator output:

f (x) =











−π
2

x < −AMP

arcsin( x
AMP

) −AMP <= x <= AMP
π
2

x < AMP

(13)

where x is the output of oscillator; AMP is the amplitude of

the oscillator. The phase difference between Os1 and Os2 is

e = Φ2 −Φ1, where Φ1 and Φ2 are phase values of Os1 and

Os2 respectively. Functions g1 and g2 select e to adjust Os2.

The rule is that if e is negative, it will inhibit neuron 4 of

Os2 through g j; if e is positive, it will inhibit neuron 3:

g1 = K min(e,0), g2 = K max(e,0) (14)

where K is the scaling factor to modify the speed of

adjustment. In this method, Os1 offers the reference phase

information to Os2. The phase error will be feedback to Os2

so that it will try to adjust its phase angle to be the same as

that of Os2. An example of such a coordination is shown in

Fig. 5.

Fig. 5 also shows that the coordination may affect the

amplitude of the oscillator. Although it is not desirable, it

may be useful for walking. For example, when the robot’s

body is moving ahead while the swing leg motion is late and

behind, a larger and faster swing step may help to balance

the walking cycle. Such an effect will be further explored in

the future research.
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Fig. 5. Phase adjustment example between oscillators with same frequency
and different initial phase

Phase adjustment example shows that the phase angle of

an oscillator could be adjusted to be the same as reference

oscillator when they share the same frequency. However, in

most cases of CPG implementation, we need to coordinate

oscillators with different frequency and maintain certain

phase relationship. These differences should be maintained

with the aid of external input.

The oscillator could be synchronized and converged to the

reference oscillator with phase value feedback. To coordinate

oscillator, the key issue is to generate reference phase value

from the reference oscillator. To maintain certain phase

difference between two oscillators which have the same

frequency, the new reference phase value is Φ1 +Φd , where

Φd is the desired phase different between Os1 and Os2. The

new error input becomes e = Φ2−Φ1−Φd . Phase difference

Φd could be maintained.

To coordinate oscillators with different frequency, the new

reference phase value is mod(F2
F1

Φ1,2π). Function mod helps

the reference phase value change as fast as target oscilla-

tor phase value. Generated by the reference oscillator, the

reference phase exactly follows the output of the reference

oscillator. Hence, by using these reference phase value to

coordinate other oscillators, all the oscillators are coordinated

by the reference oscillator.

Fig.6 shows the model for coordinating oscillators which

are different in frequencies and phase. Φri is the reference

phase to the oscillator i. Equation of fi is used to get the

reference phase for target oscillator from main oscillator. The

equation of fi is

Φri = fi(Φ1) = mod(
Fi

F1
Φ1,2π)+Φdi (15)

where Fi is the frequency of the ith oscillator; Φdi is the

desired phase different between Os1 and Osi.

B. Numerical Simulation

Here we give an example of coordination between two

different frequency oscillators. The frequency of one oscil-

lator is twice of the other. The output trajectory is the sum
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Fig. 6. The model to adjust the phase between oscillators with different
frequencies and phases

output of the two oscillators. Fig. 7 shows the performance of

the two oscillators. When there is disturbances from external

inputs, the oscillators can adjust the phase and recover to

the original target output. However, when there is no phase

adjustment between two oscillators, the output is different

from the initial trajectory under the effect of the external

input.
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Fig. 7. Phase adjustment between two oscillators with different frequency.
(a) The output of os1+os2;(b)The output of os1 with disturbance; (c) The
output of os2 with disturbance; (d) The output of os1+os2 when there is no
phase adjustment

In the previous 2-link planar robot example, when the two

oscillators are connected by phase adjustment, there will be

no oscillation in Y direction as shown in Fig. 8. The phase

relationship will recover under external input as shown in

Fig. 9.

IV. DYNAMIC SIMULATION

To further verify our proposed method, we test it on a 2D

biped for walking. Firstly, we will present our control archi-

tecture and control strategy. Then, several walking scenarios

on level ground are adopted. External force is given to test

the robustness of the walking behavior.
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Fig. 8. Trajectory of 2-link planar robot with phase adjustment
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Fig. 9. The phase relationship between two oscillators’ output with
adjustment

A. Control Architecture

In this 2D simulation, the simulation model

is built based on a real 3D robot NUSBIP-II

(htt p : //guppy.mpe.nus.edu.sg/ legged group/). It has

an ankle, a knee and a hip pitch joints in each leg. Our

simulation is carried out in Yobotics environment. Yobotics

is a Java package for simulating multibody dynamic system

(htt p : //www.yobotics.com/). Fig.10 shows the simulation

model. The dimension and mass distribution are listed in

Table I.

Fig. 10. 2D simulation model in Yobotics environment.

In this approach, we propose a CPG arrangement with

TABLE I

THE SPECIFICATION OF SIMULATION MODEL

link mass(kg) Ixx(kgm2) Iyy Izz length(m)

Body 25.26 0.6954 0.0842 0.5189 0.30

Thigh 4.25 0.0240 0.0196 0.0096 0.256

Shank 5.10 0.0269 0.0227 0.0100 0.256

Foot 2.52 0.0042 0.0037 0.0035 0.10
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respect to the position of the leg in the Cartesian coor-

dinate space (see Fig.11). The oscillators are arranged to

control X direction of stance leg’s hip(Hipx) and X and

Z direction of swing foot(Footx,Footz). The reference joint

angles are calculated by inverse kinematics. We employed

position based control in joint space. Compared to joint

space implementation, this arrangement significantly reduces

the total number of oscillators’ parameters and provides an

intuitive way to find the effective feedback pathways.

As shown in Fig.11, we assign the reference frame at

the ankle joint of the stance leg. Based on the reference

frame, during walking Hipx trajectory always moves from

negative to positive value. The trajectory of Hipx is shown

in Fig.12(dot line). The trajectory are not continuous when

the support leg switches. To obtain a continuous trajectory,

we inverse Hipx at every time when a particular support

leg touches the ground. The resulting trajectory is shown in

Fig.12.

Fig. 11. Oscillator arrangement of the biped

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.2

−0.1

0

0.1

0.2

Time sec

A
m

p
lit

u
d

e

Modified Hip
x

Original Hip
x
 

L
s

L
s

R
s

R
s

L
s

L
sR

s
R

s

Fig. 12. Reference Hipx trajectory.

For example, assuming that the robot stands with left

support, the reference Hipx trajectory corresponds to the 1st

half period of the neural oscillator’s trajectory. When the

robot stands with right support, the reference Hipx trajectory

is corresponding to the 2nd half period but negated. We

adopt the same strategy for the swing foot horizontal position

Footx which is also in reference to the stance angle joint.

We assume that the robot walks with constant hip height,

that is Hipz is a constant. The foot vertical position Footz
is designed to be close to a parabola which could be the

sum of two sinusoidal wave form. Therefore, we use two

oscillators to generate Footz trajectory. Fig.13 shows the

reference trajectories of stance hip and swing foot. Os1 gives

the Hipx trajectory; Os2 gives the Footx trajectory; Footz is

generated by the sum of Os3 and Os4. Phase adjustments

are given between these oscillators. Os1 gives the reference

phase to other oscillators. Foot X position (Os2) adjusts the

Foot Z position (sum of Os3 and Os4) such that the swing

leg will not touch down until it is fully extended.
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Fig. 13. Reference trajectory of stance hip and swing foot.

A strategy that we use herein to improve the stability is

called swing leg retraction. In human walking, the swing

leg moves forward to maximal extension and then it moves

backward just prior to ground contact. This backward motion

is called swing leg retraction (Fig. 14) [19]. Wisse et al.

proved that the action will increase the walking stability [19].

In our approach, adding swing leg retraction is simple. Since

we have phase adjustment between oscillators, we could shift

the phase of Os2, which generates Footx trajectory, a little

forward to make the swing leg reach the maximal forward

extension before touching down. Therefore, the swing leg

can move back just prior to touching down.

Fig. 14. Swing leg retraction in simple inverse pendulum model

B. Sensory Feedbacks

Sensory feedbacks are used to adjust the oscillator’s

output. They are given through g j. Two kinds of sensory

feedbacks are used: pitch and orbital energy [20] as shown

in Fig.15. The body pitch is mainly used to adjust the output

of Os1. Controlling the hip horizontal position of support leg

could help to adjust the body pitch value. Orbital energy

3210



value is used to adjust the output of Os1 and Os2. The

horizontal velocities of the body and the swing foot affect

the orbital energy. Feedbacks are used to control the body

position and step lengths to stabilize the walking. There is

no connection between feedbacks Os3 and Os4. However,

Os3 and Os4 could be adjusted by Os2 by phase adjustment

which allow the swing foot height to be adjusted according

to the swing foot horizontal position.

Fig. 15. Feedback pathway for robot motion

C. Simulation Result

In the previous section, we indicate that, with proper

parameters, oscillator could output approximate sinusoidal

wave form. The trajectories we design for the walking are

approximate sinusoidal wave forms. In the simulation, the

oscillators’ parameters are derived by the following rules:

1) To simplify the frequency calculation, we let β = a.

The frequency formula becomes F = 1
2πτ1

√
b;

2) Let 2c
1+β+a

= A, where A is the desired amplitude;

3) The value of b is chosen to make |a−1−b| small;

By this procedure, we can roughly obtain all the values of

the oscillator parameters which satisfy our requirement. In

the simulation, the walking step length is 0.6m and walking

period is 1 second. The walking speed is approximately 0.6

m/s. Fig.16 shows the snapshots of normal level ground

walking for the bipedal.

Fig. 16. Snapshots of straight forward walking in simulation

In the simulation, the oscillators are coupled with designed

phase relationship. Feedback pathway needs to be well

designed to enable oscillators to respond correctly to the

environment changes. Here, the feedback parameters are

selected by genetic algorithm(GA). A 50N external force is

applied randomly on the robot hip for 0.5s. The robot shows a

robust walking even with the perturbation. As seen in Fig.17,

the robot tries to increase the step length and step height to

adjust the motion and reduce the effect of the perturbation.

This is because the pitch and orbital energy feedbacks affect

the oscillators’ output. The oscillators’ output and feedback

are shown in Fig.18.
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Fig. 17. Stick diagram of walking with external force
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Fig. 18. Os1,Os2 and Os3 coordination and their feedback in the straight
walking with external force
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Different walking frequencies and step lengths are tested

in the simulation. The step length is changed on-line by

step length scaling factor. The walking frequency is changed

on-line by changing the time constant τ1, while keeping

a constant ratio between τ1 and τ2 of the oscillator. As

shown in Fig.19, the step length changes from 0.6m to 0.7m

and then reduces to 0.4m. The speed varies from 0.7m/s to

0.4m/s. Fig.20 shows the frequency change during walking.

The step length is constant, namely 0.6m. The frequency is

1Hz in the first 4 seconds; it increase to 1.25Hz in the second

4 seconds and reduced to 0.83Hz later. The result shows

that the oscillators can adjust their output when walking step

length and frequency are changed on-line.

V. CONCLUSION

This paper presents a method for coordinating oscillators

in CPG to achieve robust walking behavior. Numerical simu-

lations demonstrate that the method could adjust the phase of

oscillators. We have also tested it on a 2D biped and achieved

stable walking. Appropriate sensory feedbacks are selected

to help the oscillators respond correctly to the environmental

changes. With the proper coordination between oscillators,

the robot achieves a robust walking behavior.

In this paper, the coordination structure works well when

reference wave-form is given. Using the sinusoidal wave-

form is a simple and effective way to get the phase value.

However, it restricts the performance of the oscillator in that

the output of the oscillator should be close to the sinusoidal

wave-form. Future work could focus on exploration of the

method to coordinate oscillators without using the sinusoidal

wave-form. If this restriction can be eliminated, the coordi-

nation structure will be capable of generating more complex

periodic wave-forms.
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