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Abstract— This paper proposes a real-time implementation of
collision and self-collision avoidance for robots. On the basis of
a new proximity distance computation method which ensures
having continuous gradient, a new controller in the velocity
domain is proposed. The gradient continuity encompasses no
jump in the generated command. Included in a stack of
tasks architecture, this controller has been implemented on the
humanoid platform HRP-2 and experienced in a grasping task
while walking and avoiding collisions with the environment and
auto-collisions.

Index Terms— stack of tasks, proximity distance with contin-
uous gradient, self-collision and obstacle collisions avoidance.

I. INTRODUCTION

It is crucial for a robot to have, among others, the ability to

(i) avoid undesirable collisions with both obstacles and own

parts –for example undesirable auto-collisions for redundant

robots such as humanoids– and (ii) detect desired collisions

such as those necessary to perform contact-based tasks –for

example haptic interaction with an environment or with own

robot parts–. Collision detection and avoidance functions are

needed either in simulation or in real implementation and can

be used in off-line or on-line trajectory generation. Planning

collision-free trajectories is an active area of research [1].

Open-loop planning is generally made off-line and can

make use of simple binary collision detection algorithms

whereas closed-loop trajectory generation is on-line, mostly

embedded with the controllers and makes use of proximity

distance collision to predict and prevent collisions [2]. In

this paper we address the problem of on-line collision

avoidance (including auto-collision avoidance) in the context

of robotics and more particularly in humanoid robotics;

although several closed-loop controllers have been proposed

for various reactive task purpose full body motion, see for

instance [3][4], surprisingly none of them guarantee, in an

explicit way, non desirable collisions or auto-collisions. We

propose an efficient algorithm to compute fast proximity

distances that can be efficiently integrated in a low-level

reactive control. We used strict-convexity bounding volumes

close to polyhedral convex hulls in order to guarantee the

continuity of the proximity distance gradient [5] and in the

same time satisfying real-time control requirement. In [6]

authors make use of cylinders and spheres to cover a redun-

dant manipulator and compute in a efficient way proximity

distance to be used as a secondary task in a kinematics task

prioritization scheme and experimented on a 7dof redundant
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Fig. 1. STP-BV representation of HRP-2.

manipulator. Instability that may occur from discontinuity

of the witness points has been addressed in configurations

where the cylinders are nearly parallel. Our algorithm makes

use of patches of spheres and toruses to cover in a more

precise way the convex hull of robot’s part and get rid of

this problem. Our algorithm description and its technical

implementation issues are presented in the first section.

The very nature of reactive controllers is that they are

local and not global such as in [7]. They are more suited

to interactive task, and unstructured varying environments;

they are also computationally lighter than planning. Our

algorithm has been integrated as an additional task in the

stack of the task sequencing architecture proposed in [8][9].

In humanoid robotics, a similar idea has been proposed

in [10] where self-collision avoidance has been implemented

on the simulator of ASIMO, their method makes use of an

artificial force which changes the value of the desired posture

in the gradient of a posture cost function projected in the null

space of the main tasks; tasks are described in derivative

of joints or Cartesian spaces (velocity). This virtual force

penalizes a close proximity distance obtained from sphere

swept lines [11] bounding volume of the humanoid. Their

approach is very elegant and simple to implement, yet they

did not consider stability problems that may occur from

discontinuous witness points and their formalism would not

allow marking auto-collision avoidance with higher priority.

This is possible by our method. Other methods have been

proposed based on convex hulls [12], or hybrid approachs

[13]. Again, none of them consider the problem of disconti-

nuity or include the constraint in a stack of controllers.

Our method has been ported and exemplified on an actual
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experiment involving the HRP-2 humanoid robot. The tasks

consist in performing a ball-grasp guided by vision while

at the same time walking stably and avoiding obstacles and

auto-collisions. As a result of this experiment, open issues

appear to be linked to task sequencing and prioritization and

more generally the way to tackle tasks described through

unilateral constraints... consisting in future work.

II. PROXIMITY DISTANCE HAVING CONTINUOUS

GRADIENT

A. A new strictly convex bounding volume

Proximity distance and more generally collision avoidance

have been widely studied, which results in numerous al-

gorithms and schemes (the interested reader may refer to

the recent, exhaustive and excellent review books [14][15]).

However, little attention has been paid to the continuity

properties of the proximity distance. It has been pointed out

however that in singular cases, the gradient of this distance

is not continuous, generating oscillations or misbehaviours

in the control scheme [6]. For a complete discussion on the

continuity problem as well as a method to regularize the

proximity distance gradient, see [5]. The main idea is to

build strictly convex hulls of the robot bodies in a way that

can be seen as a slight blowing up of the usual convex hull.

It is realized through patches of spheres and toruses. Such

a volume is called Sphere-Torus-Patches Bounding Volume

(STP-BV). Its advantages are (i) to ensure continuity of

the gradient, and (ii) to accurately approximate the convex

hull of the object (in typical cases we experienced, the

volume increase from convex hull to STP-BV is 1–2%),

while maintaining the number of collision pairs low (one

volume per body) as well as the computation time for each

of them.

One of the most interesting property of STP-BV main

result presented is it is sufficient to have only one strictly

convex body to have a continuous minimum distance be-

tween two witness points of two convex bodies. This means

that the STP-BV construction is not mandatory for obstacles

to hold the continuity. It is sufficient to build the patches only

for the robot’s bodies. The HRP-2’s associated representation

is depicted in figure 1. The computation of the gradient then

from [5] of this distance is now detailed, as it is a key point

to compute a control law to avoid self-collision.

B. Computing Proximity Distance’s Gradients

Let us note δ the distance between two convex objects

O1 and O2. The relative position between two objects is

parameterized by the actuated joints of the robot noted q.

Assuming that the witness points of the STP-BV of objects

O1 and O2 are respectively SP 1
min and SP 2

min then the

gradient of the distance can be written:

∂δ

∂q
= n⊤

d

(
∂SP 1

min

∂q
(q) −

∂SP 2
min

∂q
(q)

)
(1)

with nd the normal unit vector derived from the features.

Intuitively the gradient is orthogonal to the vector defined

by the two witness points.

For a point P of fixed coordinates (x, y, z) in the local

frame of an object O at the configuration q, the gradient has

the following expression:

∂P

∂q
(q) = xJ1(q) + yJ2(q) + zJ3(q) + J4 (2)

obtained by deriving

P (q) = R(q)(x, y, z)⊤ + T (q)

= xC1(q) + yC2(q) + zC3(q) + T (q)
(3)

where R is a rotation matrix, Ci its columns and T is

the translation vector. The Ji are the gradient matrices of

the Ci and T . This matrices can be analytically computed

beforehand and are called hereafter pregradient matrices.

III. STACK OF TASKS

The stack of tasks is a structure that orders the set of tasks

that are currently active. Only the tasks in the stack are taken

into account in the control law. The task at the bottom level

has priority over all the others, and the priority decreases as

the stack level increases. The control law is computed from

the tasks in the stack, in accordance with three rules:

- any new task added in the stack does not disturb the

tasks already in the stack.

- the control law is continuous, even when a task is added

or removed from the stack. The robot is controlled

through the joint velocity q̇. A break of continuity

would mean an infinite acceleration during a short

period of time, which would imply that the control is

not correctly applied.

- if possible, the additional constraints should be added

to the control law, but without disturbing the tasks in

the stack.

The control law is computed from the stack, using the

redundancy formalism introduced in [16]. The additional

constraints are added at the very top of the stack, which

means that they are taken into account only if some degrees

of freedom (DOF) remain free after applying the active tasks.

This priority order may seem illogical, considering that the

constraints are obstacles that the robot should avoid above

all. However, the positioning task has priority since it is the

task we want to see completed, despite the presence of the

obstacles. The high-level controller is then used to ensure

that the constraints are respected when it is obvious that the

robot will violate them.

1) Ensuring the priority: Let (e1,J1) ... (en,Jn) be n

tasks. The control law computed from these n tasks should

ensure the priority, that is the task ei should not disturb the

task ej if i > j. A recursive computation of the joint velocity

is proposed in [16]:
{

q̇0 = 0
q̇i = q̇i−1 + (JiP

A
i−1)+(ėi − Jiq̇i−1), i = 1..n

(4)

where PA
i is the projector onto the null-space of the aug-

mented Jacobian JA
i = (J1, . . .Ji) and J̃i = JiP

A
i−1 is

the limited Jacobian of the task i . The robot joint velocity
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realizing all the tasks in the stack is q̇ = q̇n. The projector

can be recursively computed by

PA
i = PA

i−1 − (JiP
A
i−1)+JiP

A
i−1 (5)

2) Ensuring the continuity: From (4), the control law is

obtained by imposing a reference velocity ėi for each task in

the stack. Generally, a exponential decrease is required by

imposing the first order differential equation ėi = −λiei.

However, this equation does not ensure the continuity of

the robot velocity when the stack is changed. In [17], we

proposed a solution to properly smooth the robot velocity at

the transition, by imposing a specific second order equation:

ëi + (λi + µ) ėi + (λiµ) ei = 0 (6)

where λi is the gain that tunes the convergence speed of task

ei, and µ sets the transition smoothness of the global control

law. The control law is obtained by introducing (6) in (4):
{

q̇i = q̇i−1 + (JiP
A
i−1)+(−λiei − Jiq̇i−1)

q̇ = q̇n + GAe−µ(t−τ)
(
ė(τ) + Λe(τ)

) (7)

where τ is the time of the last modification of the stack,

Λ = diag (λi) and GA is defined so that q̇n = GA




ė1

...

ėn




in (4).

3) Adding the secondary constraints: The constraints are

added using the Gradient Projection Method [18], [2]. The

constraints are described by a cost function V. The gradient

g(q) of this cost function can be considered as an artificial

force, pushing the robot away from the undesirable config-

urations. It is introduced as the last task of the stack. It has

thus to be projected onto the null space of each task into the

stack. Using (7), the complete control law is finally

q̇ = q̇n + GAe−µ(t−τ)
(
ė(τ) + Λe(τ)

)
− κPA

n g (8)

The reader is invited to refer to [17], [19] for more details.

IV. THE CONTROL LAW RELATED TO SELF-COLLISION

A. Gradient Projection Method

We want now to find the cost function to be minimized

in order to respect the constraint of self-collision avoidance.

This problem is written

min V (q), q ∈ R
n (9)

with n the number of DOFs of the robot. The classical

iterative solution is then to move the robot along the gradient

of the function:

q̇ = −κg(q) = ∇⊤
q (10)

The task to avoid self-collision is straightforward and in-

spired from the joint limit avoidance scheme proposed by

Khatib [2].

Let us consider Φ a set of parameters to span the constraint

space. The optimal force to satisfy this problem is then [20]:

gΦ(q) =

(
∂Φ

∂q

)
∇⊤

ΦVΦ (11)

For instance as proposed by [2] we can set:

V (q) =
1

2

n∑

i=1

α2
i

∆q̄i

(12)

with ∆q̄i = q̄max
i − q̄min

i the size of the joint space for joint

i, and

αi =





qi − q̄min
li , if qi < q̄min

li

qi − q̄max
li , if qi > q̄max

li

0, otherwise

(13)

we would like to find a similar function to avoid the self

collision.

B. A cost function to avoid self-collision

As we want to keep distance between two bodies of the

robot to be above a certain threshold a, we propose the

following cost function:

V (q) =
∑

i∈Cp

gi(q)

gi(q) =

{
(δi(q) − ai)

2 if δi(q) < ai

0 otherwise

(14)

with Cp = {Cj ,∀gj(q) < αaj}, 1 < α ∈ N. and C =
{C0, ..., Cm} is the set of m pairs of bodies which are checked

for collision. ai represents the activation distance between

the two bodies of pair Ci.

C. Gradient of the cost function

The gradient of the cost function is obtained by simple

derivation:

∂Vi(q)

∂q
= 2(δi(q) − ai)

∂δi(q)

∂q
(15)

if δi(q) < ai,
∂Vi(q)

∂q
= 0 otherwise. The final Jacobian for

the cost function is:

∂V (q)

∂q
=

∑

i∈Cp

Ji(q) (16)

which size is 1 × n. It is also possible to have a weighted

function on all the pair of bodies formulate as:

gi(q) = wi(δi(q) − ai) (17)

But this will imply to compute the gradient on each pair.

D. Exponential decay

As self-collision avoidance (SCA) is of prime interest for

safety reason, we would like to put it as one of the first task

to be realized. In order to insert the SCA task inside the stack

of tasks, we need to create a projector to constraint the lower

priority tasks inside the null space of SCA’s task. Integrating

the Jacobian of the SCA task directly and its related null-

space as proposed in 4, is not a good idea. Indeed there is

no constraint regarding the evolution of the function with

respect to time. Therefore we finally introduce the following

task: e = V (q), ė∗ = −λe. The second equation means

that the desired task velocity is an exponential decay.
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Fig. 2. Using a one-dimensional task for collision avoidance allows the
violation of constraints.

E. A multi-dimensional task to avoid self-collision

In case of simultaneous collisions, it appears that task (14)

can cause some problems. The null space of the task (14)

allows collisions to occur, because the avoidance of potential

collision is considered as a one-dimension task; the gradients

of all the collision distances are summed. The null space of

this task will thus be of higher dimension than it would have

been if we had considered each collision separately. This is

illustrated on figure 2. Let us suppose the operational space

is a plane with two collisions detected. The figure represents

the velocity plane. G1 and G2 represent the gradients of

the collision distances. The hatched area represent the locus

of velocities for which a collision will occur. C1 and C2

represent the collision constraints. In the framework of the

stack of tasks, no motion is possible in such a case because

the velocity along both G1 and G2 will be constrained to be

zero and since G1 and G2 are independant, no more degree

of freedom is available. However, if we use task (14), lower

priority tasks will be projected onto the null space of the

sum of G1 and G2. This null space is one-dimensional and

thus allows motion along the dashed line which cause the

violation of the collision constraints. In order to avoid this

behavior, we replaced task (14) with the following:

V (q) =




...

gi(q)
...


 i ∈ Cp

gi(q) =

{
(δi(q) − ai)

2 if δi(q) < ai

0 otherwise

(18)

The dimension of (18) can change depending on the number

of potential collisions. To avoid implementing dimension-

varying tasks, we fixed the dimension of (18) to a constant

Nc, so that it is possible to handle up to Nc collisions. We

tested the case where Nc = 5.
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F. Problem of remaining stuck in collision

In some other experiments of the collision avoidance

control, we observed that the robot was stuck at distance

a0 to contact, after it occurred. This behavior was observed

even if another task with a lower priority was pushing the

robot away from the collision. Such a behavior is due to

the collision-avoidance task that exponentially decreases the

distance between two bodies to the minimum distance. The

minimum distance is thus asymptotically reached after a

long time. The collision task is deactivated only when this

minimum distance is reached. While the collision task is

converging, no other task with a lower priority can act in its

space to quit the collision. For the experiments presented

in this paper, we believe this problem was not observed

because collision constraints are strictly convex and that it

is possible to quit a collision in the null-space of a collision

task thanks to the high-redundancy of HRP-2. Solving such a

problem requires to develop a new theoretical framework to

deal with collision constraints, that are inequality constraints

rather than equality constraints.

V. EXPERIMENTS

A. Control the distance between two objects.

In order to have a better understanding of the collision

distance behavior and its jacobian inside the stack of tasks,

let us consider a simpler version of the collision avoidance

control law proposed previously. The cost function is set to:

V (q) = (δ0(q) − a0)
2 (19)

where δ0(q) is the distance between the head and the right

gripper, and a0 is set to 0.01 m. Here the test δ0(q)−a0 > 0
is removed. This task is interesting because as there are eight

articulations from the gripper to the head it is redundant,

so an infinite number of solutions is possible. Thus face

crossings triggering discontinuities are very likely to occur.

The evolution of the distances between the two bodies return

by V-Clip and STP-BV are given in figure 3. Note that

the graph’s is very close to an exponential decrease. The

evolution of the Jacobian’s relevant components are depicted

in figure 4. As expected, the legs were equal to zero, as well

as the chest, the head’s tilt, the free-flyer and the left arm.
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The only moving parts of the robot are the right arm and

the head’s pan. Between iterations 50 and 60 a discontinuity

seems to have occur (figure 4 up), but a careful examination

shows that this is only a quick continuous change (figure 4

bottom). This especially appears when two faces are parallel

during which the witness points thus move very quickly

along the STB-BV geometric shapes.

B. Avoiding known obstacle

In this section, the experiment fully exploits the redun-

dancy of the HRP-2 humanoid robot by combining several

tasks. The robot has to grasp a ball while walking. An image

centering task ensures that the robot is always seeing the

ball. An arm-orientation task makes sure that the gripper is

ready to grasp. When the gripper is close enough the ball is

catched. If the gripper misses, it is detected by monitoring

the torque. A detailed description of the control laws can be

found in [9]. The priorities of the tasks are the same, with

the collision avoidance task having the second priority just

after walking. Two original modifications have been realized

to implement obstacle avoidance in the stack of tasks. Firstly

a set of 116 pairs are chosen to track auto-collision. Bodies

linked to each other are not included because they are treated

by the joint limits constraints. The second originality is done

through the inclusion of a 25 cm diameter ball in the collision

pairs. The ball position is put in such way that the robot’s

hand comes into collision, see figure 5. The value starting

the inclusion of the distance inside the control law is set to

Fig. 5. Initial motion with collision

Self−Collision

Avoidance

Fig. 6. Avoiding Self-Collision (ai = 0.01 m).

ai = 0.1 m.

The robot avoids the ball in two occasions. First by holding

the hand when moving forward. Then the avoidance stops

while the robot is moving away. In second when the robot

swing back to the left for the next step the hand and the arm

moves to the right to avoid collision.

As in [9]the high-level controller removes the orientation

and grasp tasks right after grasping, and a task extending the

right arm is put inside the stack. The CoM task then uses the

left arm to maintain the CoM given by the pattern generator.

However this motion makes the robot reach its joint limits.

The left arm then moves toward the left leg, and avoid it

thanks to self-collision pairs in the controller, see figure 6.

The described experiment can be watch in the companion

video, and is depicted in figure 7.

VI. CONCLUSION

We have presented a new controller which can be used

to avoid self-collision and collision with an external object.

This new controller is based on a proximity distance which

has a continuous gradient. A new geometric representation

of the robot bodies bouding volume is at the heart of this
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Fig. 7. HRP-2 reactively avoids the biggest ball.

new result. This controller has been implemented and tested

on a real full-size humanoid robot.

The main limitation of the current system is that the

Jacobian components related to the free flyer’s humanoid are

not considered. Indeed this might involve to change in real-

time the CoM trajectory and in some cases the foot position.

A new challenge is to include obstacle avoidance in real-time

biped walking engine.

In our future work, we will investiguate new methods

allowing to get rid of some numerical problems encountered

by the adaptation on top of V-Clip.
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