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Abstract— While realizing a task, human-beings are able to
use grasping inside their environment in order to keep the
most stable balance. Although such a behavior is quite natural
for humans, it is very difficult to find the best formulation to
adapt human motion to humanoid robots. This paper proposes a
conceptually simple framework of human posture control based
on optimization which takes into account grasp and friction
and achieves robustness against external disturbances. A new
stability criteria is also introduced.

Contrary to most other approaches, our method deals not
only with unilateral contacts with friction but also with bilateral
grasps. This allows for arbitrarily pulling, pushing or twisting
on a handhold. Additionally, and in contrast to classical
methods based on ZMP, our method also accounts for contacts
not being all in the same plane.

Index Terms— Humanoid robot motion, Robust posture, Dy-
namic balance control, Multiple non-coplanar contacts, Grasp
control, Frictional contacts.

I. INTRODUCTION

A. Problem Statement

Human-beings are able to climb a rock using available
holds. Grasps and friction allow them to climb up their
natural environment while realizing tasks. HR (Humanoid
robots) are expected to work in place of human-beings
and to have similar behavior in various environments. For
instance, we could think of a HR on a ladder realizing a task
like painting while keeping its balance robustly. Although
numerous HR controllers are today available, robust control
for various environments still remains a challenge.

Fig. 1. In order to catch the red object, Humanoid Robot takes a hold with
his left hand to keep its balance.

B. Related Work

Two usual stability criteria for a HR standing on a hor-
izontal ground are the Center of Mass (CoM) and Zero
Momentum Point (ZMP) criteria. In quasi-static situations,
a HR will remain static if its CoM projects vertically inside
the convex hull of the contact points. In the dynamic case,
the ZMP takes into account inertial and Coriolis wrenches.
A HR is able to realize a specified movement if the ZMP
projects vertically inside the convex hull of the contact
points. However, in case of irregular ground or grasping,
CoM and ZMP are not adapted.

Some authors work on more global balance criteria in
complex environments. Recently, H. Hirukawa et al. [12]
proposed a universal stability criterion of two-legged robots
having multiple non-coplanar contacts. However, it does not
deal with hand contacts, grasps and robustness to distur-
bance.

T. Bretl et al. [3] [4] present a general framework for
planning the quasi-static motion of a three-limbed climbing
robot in a vertical natural terrain. To prevent the robot from
falling as it moves a limb to reach a new hold, the algorithm
exploits friction at supporting holds and adjusts the robot’s
internal Degrees of Freedom (DoF). Y. Or and E. Rimon [14]
characterized robust balance in a 3D gravity environment
with multiple non-coplanar contacts. The evolution area of
the CoM is a convex vertical prism. It is a global geometrical
approach in the static case and can be applied to HR balance.
But it is difficult to make use of this analytic approach.
However, both approaches do not deal with robustness to
disturbance. They are only static; dynamic simulation and
HR posture are not taken into account. In terms of robustness,
X. Zhu et al. [22] [23] present a quality index for multi-
fingered grasps, which measures the maximum magnitude of
the wrench that can be resisted by the grasp in the worst case.
Disturbance directions are not treated simultaneously but
successively which implies the resolution of a set of linear
programming problems. While this method characterizes the
achievable robustness, it does not provide a unique control
able to resist to various perturbations.

Other teams work on HR grasping. For instance, Ch. Ott
et al. [15] present a humanoid two-arm system developed
as a research platform for studying dexterous two-handed
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manipulation but do not deal with balance. K. Harada et al.
[10] [11] worked on dynamics and balance of a humanoid
robot during manipulation tasks. Their HR may push an
object, but is not able to grasp it. Moreover, its balance
during disturbance is not robust.

Since the 80’s, L. Sentis et al. [19] use projection method
which have been fully tried and tested. However, robustness
to disturbance is not taken into account and projection
methods present passivity issues [18].

In terms of control computation, optimization techniques
have been studied. P.B. Wieber [21] proposes an interesting
optimization formulation for walking robot problems. Con-
tact forces are taken into account in the control law. However,
his formulation is only applied to walking stability and do
not deal with robustness. Recently, Y. Abe et al. [1] proposed
an interactive multi-objective control with frictional contacts,
but did not consider grasp and robustness.

C. Contribution

As a contribution to this challenge, this paper proposes a
new general HR controller which deals with non coplanar
unilateral as well as bilateral contacts with friction, and
which is able to achieve the best available robustness to exter-
nal perturbations. A new stability criteria is also introduced.
The key features of our controller are the following:

• Stability margins: We deal with stability against dis-
turbances. We compute the biggest disturbance wrench
which can be compensated by non-sliding contact and
saturated grasp wrenches: the norm of this biggest
disturbance is the stability margin of the posture. The
bigger this biggest disturbance wrench, the better the
posture stability. This stability margin allows to quantify
the robustness of a contact and grasp configuration.
Moreover, we compute the most suitable CoM position,
robust contact and grasp wrenches.

• Dynamic HR control: It is based on a previous work,
detailed in [6]. It computes motor joint torques to try
to reach the goal CoM position, contact and grasp
wrenches. The latter are computed with stability mar-
gins taken into account, and are given to the optimiza-
tion process as desired, not necessarily feasible goals.

• Unilateral frictional contact and bilateral grasp con-
tact considered simultaneously: In complex environ-
ments, HR at work use both hands and feet to keep their
balance. Contrary to classical methods based on ZMP,
we account for unilateral frictional contacts not being all
in the same plane, like for instance simultaneous hand-
wall and feet-ground contacts. Moreover, as grasping
a handhold is a very common every-day gesture, we
account for bilateral grasp contact for pulling, pushing
or twisting. For dealing with different kind of contacts,
a unified control formulation is proposed.

In the following section, we present the modeling hypothe-
ses for control. In section III, we briefly present dynamic
balance control of HR. In Section IV, we detail robust
posture computation by introducing wrench stability margin.
Section V presents the first results of robust posture control.

Finally, section VI summarizes the presented control and
indicates some possible future research directions.

II. MODELING HYPOTHESES FOR CONTROL

A. Humanoid Robot

We use a robotic approach and more precisely joint control
to handle HR dynamics. Our HR is a set of articulated
branches of rigid bodies, organized into a highly redundant
arborescence (ndof: number of degrees of freedom). It con-
sists of 32 joints (Fig. 1). The skeleton is modeled as a multi-
body system. The root body of the HR tree is the thorax. This
root has 6root DoF and is not controlled. We decided to use
human data for modeling our HR [13][9][7].

B. Contact

Unilateral contacts seen as Coulomb frictional contacts
are ruled by a non linear model i.e.: | f t

c| < µ f n
c with

f n
c , f t

c respectively the normal and tangent contact forces
and µ , the dry-friction factor. As a linear formulation for
our optimization problem is needed, we use a linearized
Coulomb model. Like J.C. Trinkle et al. [20], contact cones
are linearized into multifaceted friction cones in order to get
linear constraints (Fig. 2(a)). The linearized contact force
of the k-th contact (denoted f k

c , 3 DoF) computed by our
control law must lay inside the friction cone,that is: ∀i ∈
[1,ne], Ek

ci
f k
c + dk

ci
≥ 0 with ne, the number of edges, and

Ek
ci

f k
c +dk

ci
, distance between f k

c and each i-th oriented facet.

C. Grasp

The grasp wrench (denoted Wg, 6 DoF) computed by our
control law must not exceed a certain limit wrench, which
we write: |Wg| ≤ W max

g . Geometrically, that means that Wg

must lay inside a certain polytope of R6; if we restrain the
wrench to its force or torque component only, it must lay
inside a cube (Fig. 2(b)).

(a) Linearized friction cone (b) Grasp force/torque limits

Fig. 2. Control modeling

III. DYNAMIC HR CONTROL

Although the lower level of our controller is not a new
contribution [6], a rough description is given hereunder. The
goal of this module is to compute all the control torques
which have to be applied to HR joints. To this end, as in [21]
[1], the control problem is stated as a constrained optimiza-
tion problem (Quadratic Programming : QP). All wrenches
affecting the HR (control torque, contact and grasp wrenches)
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are taken into account, as well as joint acceleration. The
solution of the dynamic QP problem induces a realizable set
of desired forces acting on the HR. However, only the control
torques result are useful for the control.

We assume physically meaningful equations on the HR
motion which are at the core of the control law since they
are used as constraints for the dynamic QP problem (Fig. 3):

• Inputs
Global state: dynamic model, friction µ , contact, grasp,
CoM and environment localization.
Goals: CoM, contact and grasp wrenches.

• Constraints and Optimizations
Constraints: To keep stable contacts, contact accelera-
tion must be null and contact forces must be inside the
friction cones. If the contact is broken, the HR tries to
use the nearest environment to keep its balance. Dy-
namic equation have to be respected. The joint control
torques and grasp wrenches are saturated so that our HR
cannot apply unrealistic wrenches.
Optimizations: It adapts its posture. HR tries to reach
the CoM goal position, contact and grasp wrench goals
which are required (computed in the next section).

• Outputs
They are obtained as the result of constrained QP. Only
the control joint torque results are useful in the physical
simulation.

We propose in the next section a method to compute a HR
configuration robust with respect to a disturbance, i.e. robust
CoM position, contact and grasp wrench goals.

Fig. 3. Dynamic HR control. Only the control torque results are useful
in the physical simulation. In the optimizations, CoM, contact and grasp
wrench goals are required. In section IV, we compute a posture that is
robust with respect to a disturbance i.e. robust CoM, contact and grasp
wrench goal.

IV. ROBUST POSTURE CONTROL

This chapter presents our main innovation.

A. General Outline
In order to simplify the problem and its presentation, HR

posture, considered rigid enough, is reduced to its CoM,
subject to the acceleration of gravity, contact and grasp
wrenches. In a first step, the stability margins of the HR
configuration are estimated.

These margins are related to disturbance wrenches ∆Ω

which are applied to the CoM. These wrenches are decom-
posed through an amplitude λ and a normalized direction
vector δω of dimension 6. ∆Ω = λ δω . For a given distur-
bance shape δω of our choice, we compute:

• Maximal disturbance wrench: In IV-D, we compute
the maximal amplitude disturbance λ max for a given
δω . It is a stability criteria of the best HR configura-
tion toward current contact points and grasp hold. We
formulate a LP optimization.

• Admissible disturbance wrench: In IV-E, we choose
the amplitude disturbance λ ′ (lower than λ max). We
compute CoM position, prestressed contact and grasp
wrenches for any kind of admissible disturbance. We
formulate a QP optimization. It was first studied by A.
Rennuit [17].

We make the following assumptions. Contact points and
grasp localizations are known. CoM position, contact and
grasp wrench are unknown. These unknowns must respect
several constraints. First of all, equality constraint is com-
posed of static equations. Then, inequality constraints respect
the following assumptions: contact wrenches must be inside
the friction cones and grasp wrenches inside the R6 polytope.
In IV-B and IV-C, we introduce the stability margin in this
constraint formulation.

We introduce the following notation, Y unknown vector, A,
b, C and d matrices and vectors which express linear equality
and inequality constraints.

Linear Programming: F1 is a line vector of weighing.

max(F1 Y1) such that

{
A1 Y1 +b1 = 0
C1 Y1 +d1 ≥ 0

(1)

Quadratic Programming: Y des
2 is a desired but not neces-

sarily accessible solution and Q2, a quadratic norm.

min 1
2‖Y2−Y des

2 ‖2
Q2

such that

{
A2 Y2 +b2 = 0
C2 Y2 +d2 ≥ 0

(2)

B. Introduction of Stability Margin in the Static Equation

We introduce the following notation: xG the CoM posi-
tion, fc the linearized contact wrenches and Wg the grasp
wrenches. The vector fc is of dimension 3 nc with nc, the
number of contacts. The vector Wg is of dimension 6 ng
with ng, the number of grasps to take into account. With the
gravity W scene

Mass , contact W scene
Contact and grasp W scene

Grasp wrenches
applied to HR and expressed in the scene coordinate system,
the static balance equation is: W scene

Mass +W scene
Contact +W scene

Grasp = 06.
We can easily find:

W scene
Mass =


0 0 0
0 0 0
0 0 0
0 −m g 0

m g 0 0
0 0 0

 xG +


0
0

−m g
0
0
0


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which we rewrite W scene
Mass = ExG xG +P. We can also define a

matrix E fc such as W scene
Contact = E fc fc and EWg such as W scene

Grasp =
EWg Wg. Hence, the static equation may be writen:

[
ExG E fc EWg

] [
xT

G f T
c W T

g
]T +P = 0 (3)

A disturbance ∆Ω introduced in the Eq. 3 can be compen-
sated by adding contact and grasp wrench variations respec-
tively noted δ fc and δWg. We remark than δxG = 0 because
we only consider disturbances which can be compensated by
a realizable set of contact and grasp wrenches without CoM
displacement.

E δ f +∆Ω = 0 (4)

with E =
[

E fc EWg

]
and δ f =

[
δ f T

c δW T
g

]T . The
matrix E is generally not invertible and an infinity of δ f are
solutions in a rigid framework to Eq. 4. The solution which
minimized the following quadratic norm is held:

min 1
2‖δ f‖2

G such as E δ f +∆Ω = 0

δ f minimizes a spring potential energy. G is a symmetric
positive matrix such as G−1 is homogenous to an articular
spring. It may be constructed using a weighing between
the different end-effector muscular strengths. The detailed
construction of this matrix is spared for future works. We
resolve analytically this problem by introducing a lagrangian.

L = 1
2 δ f T G δ f +σT (E δ f +∆Ω) and ∂L

∂ (δ f ) = 0

L is the lagrangian and σ is lagrangian coefficient. The
resolution of this problem gives:

G δ f +ET σ = 0 ⇒ δ f =−G−1 ET σ

⇒ E δ f =−E G−1 ET σ =−∆Ω

∆Ω = E G−1 ET σ ⇒ σ =
(
E G−1 ET )−1

∆Ω

δ f =−E∗ ∆Ω with E∗ = G−1 ET (
E G−1 ET )−1 (5)

with E∗ a generalized inverse of E, E∗
fc the first 3nc lines of

E∗ and E∗
Wg

the last 6ng lines of E∗. Be careful that E∗
fc and

E∗
Wg

are not pseudo-inverse of E fc and EWg respectively.

C. Introduction of Stability Margin in the Inequality Con-
straints

We now write the linear inequality constraint. Contacts
must be non-sliding (Subsection II-B) i.e. Ec fc + dc ≥ 0.
Moreover, grasp wrenches are saturated because of the motor
limitations (Subsection II-C) i.e. |Wg| ≤W max

g .
Introduction of a stability margin in the inequality con-

straints consists in adding δ fc and δWg to fc and Wg
respectively. Using the variable substitution in Eq. 5, we can
easily rewrite the inequalities with ∆Ω. An originality of our
approach is that we may considere simultaneously several
disturbances: δω may be a vector as in section IV-A, but also
a matrix composed of several disturbance directions, forming

a disturbance polytope in R6. This enables us to choose the
shape of the disturbances, choose to explore some direction
rather than another or all the directions fairly. For the final
inequalities, we select the most constraining disturbances and
get the following results:

Ec fc +dc−max
(

Ec E∗
fc ∆Ω,~0

)
≥ 0

+ Wg +W max
g −max

(
E∗

Wg ∆Ω,~0
)
≥ 0

− Wg +W max
g +min

(
E∗

Wg ∆Ω,~0
)
≥ 0

(6)

The next two sections are dedicated to resolution.

D. Maximal Disturbance Wrench: LP Formulation

In this section, the maximal disturbance amplitude which
resisted to imposed contact points and grasps is computed by
resolving a LP problem. The unknowns are the amplitude
disturbance λ , the position of the CoM xG, the contact
wrenches fc and the grasp wrenches Wg. They are expressed
into a vector: Y1 =

[
λ xT

G f T
c W T

g
]T of dimension

1 + 3 + 3 nc + 6 ng. We restrict the solution area of xG in
a cube thanks to the following inequality: xmin

G ≤ xG ≤ xmax
G .

With this simple condition, we suppose that the computed
CoM can be reached by the HR. Moreover, equations (3)
and (6) may be rewritten:

A1 Y1 +b1 = 0 with
{

A1 =
[

0 ExG E fc EWg

]
b1 = P

(7)

C1 Y1 +d1 ≥ 0 with (8)



C1 =



0 + I3 0 0
0 − I3 0 0

−max
(

Ec E∗
fc

δω,~0
)

0 Ec 0

−max
(

E∗
Wg

δω,~0
)

0 0 + I6 ng

+min
(

E∗
Wg

δω,~0
)

0 0 − I6 ng


d1 =

[
−xmin

G
T xmax

G
T dc

T W max
g

T W max
g

T
]T

The goal is to compute the maximal λ so we write the
following maximization:

max(F1 Y1) with F1 =
[

1 0 . . . 03+3 nc+6 ng

]
(9)

We group equations (7), (8) and (9) to solve the LP
problem (Eq. 1). We rename λ in λ max in the next section.
It is the maximal amplitude disturbance for the chosen
directions δω .
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E. Admissible Disturbance Wrench: QP Formulation

In this section, λ is known and noted λ ′ ∈ [ 0 , λ max ].
The goal of this section is to compute xG, fc and Wg
for a given λ ′. (We have already computed these data in
the previous section (IV-D) for λ ′ = λ max). The unknowns
are expressed into a vector Y2 =

[
xG

T fc
T Wg

T
]T of

dimension 3 + 3 nc + 6 ng. We rewrite the same constraints
(Eq. (3) and (6)):

A2 Y2 +b2 = 0 with
{

A2 =
[

ExG E fc EWg

]
b2 = P

(10)

C2 Y2 +d2 ≥ 0 with C2 =


+ I3 0 0
− I3 0 0

0 Ec 0
0 0 + I6 ng

0 0 − I6 ng

 (11)

and d2 =



− xmin
G

+ xmax
G

+ dc − max
(

Ec E∗
fc

δω,~0
)

λ ′

+ W max
g − max

(
E∗

Wg
δω,~0

)
λ ′

+ W max
g + min

(
E∗

Wg
δω,~0

)
λ ′


There is a lot of solutions which respects these constraints.

Thus we choose to consider the one that minimizes a certain
quadratic norm. We give a desired CoM xdes

G , a desired
contact wrench distribution f des

c (generally homogeneous for
a standing posture) and desired grasp wrenches W des

g of our
choice. We prioritize the optimization criteria thanks to the
weighing matrix Q2.

min
1
2
‖Y2−Y des

2 ‖2
Q2

(12)

with

 Q2 = diag(QxG , Q fc , QWg)

Y des
2 =

[
xdes

G
T f des

c
T W des

g
T

]T

We group equations (10), (11) and (12) to solve the QP
problem (Eq. 2).

Up to now, we have considered CoM position as an
unknown and computed the most robust CoM localization.
However, for a fixed HR configuration and CoM, it is also
interesting to compute the maximal resistible disturbance and
the corresponding prestressed contact and grasp. It gives an
estimation of stability margins of a fixed HR configuration
and CoM. All we have to do is to rewrite previous LP and QP
with a given xG, the fixed position of CoM in the simulation.

V. RESULTS

In Fig. 4, we propose a case study that illustrates the
influence of various criteria in stability margin computation.
HR is standing with a hand-wall contact (4(d) 4(h)). We
study a simplified HR contact configuration: two point
contacts on the ground and one point contact on the
wall. On every figure, we put for reference the CoM

position and contact wrenches without stability margin.
It corresponds to xdes

G and f des
c of Eq. 12. We remark

that no hand contact forces are desired c.f. 4(d). We
propose several disturbance shapes: isotropic or unilateral
distribution. The influence of limiting the available domain
for the computed CoM (constraint xmin

G ≤ xG ≤ xmax
G )

may be observed by comparing Fig. 4(a) and 4(b). We
resist to stronger disturbance wrenches without the CoM
localization constraint; it is a most robust posture. The
problem is that CoM is not necessary reachable by a HR,
as joint limits and imposed contact configurations restrict
its movement. That is why in the other examples, we keep
this constraint and supposed that the HR is able to reach
the xgoal

G . Reducing the dry-friction factor µ reduces the
stability margin (Fig. 4(b) and 4(e)). At least, reducing by
a half the disturbance wrench (Fig. 4(b) and 4(f)) thanks to
Section IV-E gives a more realizable set of contact wrenches.

In the example on Fig. 5, the ground pitches downwards
at an unchanging rotational velocity. At the beginning of the
scene, the HR is upright and its hand grasps are deactivated
(Fig. 5(a)). Because of frictional contacts, balance is broken
for a two feet standing posture at too important ground
inclinations. The goal of the HR control is to keep robust
balance when the environment changes. Thanks to grasp
holds, the HR is able to maintain its balance. To this end, HR
grasps are deactivated/activated as the simulation carries on.
This behavior is based on the computation of stability margin
which gives a good characterization of balance breakdown.
For the current posture, we compute the maximal disturbance
wrench. When this stability margin is lower than a given
amplitude, we activate a better configuration. We choose an
isotropic disturbance distribution.

The graph curves present the maximal disturbance wrench,
function of the base overturn angle. First of all, we can
remark that the more the ground overturns, the less the
stability margin. We studied several systems: two foot, two
foot and one hand, two foot and two hands. The current HR
configuration drifts from a previous configuration to another
in order to keep a required minimum stability margin, thanks
to an automaton. For instance, on Fig. 5(c), angle = 25o, the
stability margin of the two foot system becomes inferior to
the minimum stability margin: this triggers the HR decision
to use its left hand and grasp hold. Then, the two foot and
one hand system have a better stability margin. On Fig. 5(d),
current HR configuration is below the minimum stability
margin (Fig. 5 curve: under point d) because it takes time
to HR to reach the second hand hold. It anticipates a better
configuration.

This problem involves multiple grasps and non coplanar
frictional contacts and our algorithm allows us to stabilize
the motion. The HR converges to a stable and robust posture.

VI. CONCLUSION

We introduced a new robust balance control of HR with
multiple grasps and non coplanar frictional contacts. HR can
pick up a robust posture for complex contact and grasp
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(a) λ ′ = λ max without the
constraint xmin

G ≤ xG ≤ xmax
G

(b) λ ′ = λ max (c) λ ′ = λ max (d) HR posture without sta-
bility margin

(e) λ ′ = λ max with smaller µ (f) λ ′ = λ max

2 (g) λ ′ = λ max (h) HR posture with stability
margin

Fig. 4. Influences of various criteria in stability margin computation.

configuration. We deal with stability margin with respect
to disturbance wrenches. Thanks to constrained optimiza-
tion formulations (LP and QP), we characterize balance
breakdown by computing the biggest wrench disturbance
which can be compensated by contact and grasp. It can
be considered like a new stability criterion. Moreover, we
compute the CoM position and admissible robust contact
and grasp wrenches which allow the HR to grab strongly
its complex environment. Thus, HR behavior brings both
balance and autonomy. Dynamic HR control deals with HR
redundant postures to reach the feasible CoM position.

We are currently planning to use this control architecture
in an interactive demo. The basic algorithm is fast enough
to be used real-time. At last, we would like to work on more
complex behaviors with several step control and predictive
control [2].

Videos illustrating our previous work [5] [6] are available
on cyrillecollette.blogspot.com.
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