
  

  

Abstract— Measurement of ground contact forces (GCF) 
provides necessary information to detect human gait phases. In 
this paper, a new analysis method of the GCF signals is 
discussed for detection of the gait phases. Human gaits are 
complicated, and the gait phases can not be exactly 
distinguished by comparing sensor outputs to a threshold. This 
paper mainly discusses how to detect the gait phases 
continuously and smoothly. The proposed analysis method is 
intended for applications to power assistive devices for patients, 
as well as diagnostics of pathological gait. Smooth and 
continuous detection of the gait phases enables a full use of 
information obtained from GCF sensors. For experimental 
verification, smart shoes have been developed. Each smart shoe 
has four GCF sensors embedded between the cushion pad and 
the sole. The performances are experimentally verified for both 
normal and abnormal gaits, and a means for quantification of 
abnormalities in the gait is also introduced in this paper. 

I. INTRODUCTION 
ALKING is a basic capability that allows humans to 
pursue their daily lives and to function as productive 

members of society. Walking involves a repetitious sequence 
of limb motion to move the body forward while 
simultaneously maintaining stance stability [1]. Walking is 
characterized by the gait [1]. A typical gait involves one foot 
placed forward with the second placed the same distance 
beyond the first. The gait of a normal person, often called the 
normal gait, is a very effective gait pattern in terms of power 
and gait velocity so that a human can walk easily for a long 
time. Furthermore, the normal gait allows the human to 
remain agile so that he/she may easily ascend and descent 
stairs, change walking directions and swiftly avoid obstacles. 
Because of these advantages of the normal gait, patients with 
nervous or muscular disorders strive to rehabilitate and 
resume the normal gait even though they may have been 
impaired severely. Modern sensing and mechatronics 
technologies may be utilized in many ways to assist elderly 
people and patients with walking problems. Motion capture 
technology utilizing passive and active markers and infrared 
video cameras such as VICON [2] has helped the analysis and 
diagnostics of the pathological gait. Also, there have been 
various rehabilitation devices with monitoring and actuation 
capabilities installed in hospitals, e.g. LOCOMAT developed 
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by HOCOMA in Switzerland [3,4]. In recent years, active 
orthoses and exoskeletons to assist patients in their daily lives 
have been developed: e.g. Hybrid Assistive Limb (HAL) [5] 
and Active Ankle Foot Orthosis (AAFO) [6].  

Sensing and mechatronic technologies, however, have not 
been fully exploited to assist patients in their gaits. In the 
viewpoint of control systems, a human has a fully closed 
control loop without any exogenous inputs because the 
desired motion is intrinsically generated by an intention or a 
reflex. Since it is impossible to directly measure the human 
intention, controllers in power-augmenting devices usually 
set the desired assistive forces based on estimated values 
obtained from biological sensors [5,7,8]. For examples, HAL 
applies electromyography (EMG) sensors to measure 
muscular efforts [5], and EXPOS applies a novel sensor 
called a muscle fiber expansion (MFE) sensor [7,8]. Such 
methods, however, may not be necessarily the best for 
assistive purposes because they are due to biological 
responses in a human body and may not reliable in certain 
patients. For rehabilitation purposes, an impedance control 
method [4,9] has been applied recently. In the impedance 
control, the desired motion of a human body is usually 
predefined [4], and it may be suitable for the limited 
environment such as a treadmill. 

For more reliable assistance, measurement of ground 
contact forces (GCF) based on foot pressure sensors may 
provide necessary information [10,11]. Although the GCF 
signals do not directly provide feedback signals for the 
control of assistive devices, they do provide a foundation for 
detecting human motion phases and enable assistive devices 
to adaptively change the algorithms for each motion phase for 
better estimation of the feedback signals. Motion phases 
during walking are characterized by the gait phases, and each 
gait phase has a unique GCF pattern. In gaits of certain 
patients, the GCF patterns are vague sometimes. A threshold 
method may not detect such low signals, which may be 
important in medical diagnostics. Therefore a smooth and 
continuous detection method is required for a full use of 
information obtained from the GCF sensors. The smooth and 
continuous detection also contributes to a smooth transition 
of the algorithms in assistive devices even in a rapid change 
of the motion phases. In this paper, fuzzy logic is utilized for 
the smooth and continuous detection of gait phases. 

This paper is organized as follows. Definitions of the gait 
phases and the basic idea to detect the gait phases are 
introduced in section II. Section III discusses the fuzzy logic 
algorithm for smooth and continuous detection of the gait 
phases. In section IV, an implementation method is 
introduced and the performances are verified by experiments 
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on normal and abnormal gaits. A means for quantification of 
abnormalities in gaits is also discussed in section IV. 
Summary and conclusion are in section V. 

II. HUMAN GAIT PHASES AND FOOT PRESSURE PATTERNS 
Body weight is transferred to feet through bones and the 

bones in the feet exert forces to the ground. The GCF sensors 
should be located based on anatomical information. Although 
the force is distributed by the flesh, the maximum force still 
occurs at the location of the bone. Therefore, it is reasonable 
to locate sensors at joints of bones in the foot. Fig. 1 shows 
bones in a foot. The first sensor is located at the heel ((d) in 
Fig. 1). In addition, two sensors are located at the joints of 
forefoot ((b) and (c) in Fig. 1) and one at the end of foot ((a) 
in Fig. 1). 

 

(a)

(b)

(c)

(d)

 

(d)

(c)

(b)
(a)

 
Fig. 1 Location of sensing area:  
(a), (b), (c) and (d) represent the location of the Hallux, the first Metatarsal, 
the fourth Metatarsal and Heel respectively. 

 

(a) Initial Contact (b) Loading Response (c) Mid Stance (d) Terminal Stance  
 

(f) Initial Swing (g) Mid Swing (h) Terminal Swing(e) Pre-Swing  
Fig. 2 Fundamental gait phases and expected sensor signal patterns 

To provide the basic functions required for walking and to 
minimize its required energy, walking motion involves 
unique patterns called gait phases. The basic divisions of the 
gait cycle are stance and swing. These two motion phases can 
be easily recognized with only one pressure switch on each 
foot. The human gait, however, is more complicated and the 
dynamics varies even in the same stance motion. Therefore, it 
is usually divided into eight functional patterns (Fig. 2) 
developed by the Rancho Los Amigos gait analysis 
committee [1]. 

In Fig. 2, four circles in each foot shape represent the 
expected GCF patterns in each gait phase. ● and ○ mean that 
the GCF signal is higher and lower than a threshold 
respectively.  represents that the signal is not used in the 
condition. For example, when only the signal from the heel is 
higher than the threshold ((a) in Fig. 2), the algorithm detects 
the Initial Contact phase. When every signal is lower than the 
threshold ((f)-(h) in Fig. 2), the Swing phases are detected. 
The details of gait phases are as follows: 

A. Phase 1: Initial Contact 
The shaded leg in Fig. 2 starts to contact the ground and the 

GCF measurement unit on the heel measures the force as 
shown in Fig. 2(a).  

B. Phase 2: Loading Response 
The forefoot and the heel start to contact the ground as 

shown in Fig. 2(b). In the case of the normal gait, the contact 
point usually moves from the outside to the inside of the 
forefoot.  

C. Phase 3: Mid Stance 
When the inside of the forefoot touches the ground in the 

end of the Loading Response phase, the Mid Stance phase 
starts. Depending on individual gait patterns, the thumb toe 
may or may not touch the ground. 

D. Phase 4: Terminal Stance 
As the center of body mass moves forward in the Terminal 

Stance phase, the heel starts to take off as shown in Fig. 2(d).  

E. Phase 5: Pre-Swing 
The Pre-Swing phase is the last phase of stance motion. In 

this phase, only the thumb toe part touches the ground. This 
phase is very important because the hip joint starts to move 
forward and the knee joint bends quickly as shown in Fig. 
2(e). The Pre-Swing phase and the Terminal Stance phase 
require the largest muscular power to propel the body 
forward.  

F. Phase 6~8: Swing Phases 
The foot does not touch the ground so that the GCF signals 

are expected to remain zero. It may be possible to detect the 
phases by utilizing the signals from the other foot. However, 
since the gait patterns are slightly different from person to 
person and from time to time, this method may not be reliable. 
Therefore, other sensors such as a goniometer and an 
inclinometer should be introduced to recognize the specific 
phases in the swing motion. 
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III. SMOOTH AND CONTINUOUS DETECTION: 
FUZZY LOGIC APPROACHES 

A simple way to detect the gait phases in Fig. 2 is a 
threshold method. The threshold method, or a discrete events 
analysis method, is effective when changes of the signal are 
very distinct, e.g. a digital signal is an extreme case. Normally 
the ground contact forces (GCF) in feet change very smoothly 
and continuously to protect a human body from impact forces. 
The signals may be more smoothened due to cushioning 
materials in shoes. Therefore, a human gait is not a set of 
discrete events, and a new method to smoothly detect the gait 
phases is required. 

Fuzzy logic method may be suitable for this purpose. In the 
case of fuzzy logic, a human gait is analyzed as a set of whole 
gait phases defined in Fig. 2, and each gait phase is reliable as 
much as each fuzzy membership value (FMV). For example, 
if FMV of the Initial Contact phase is one while those of the 
other phases are zero, the human may act the motion of Fig. 
2(a). If FMV’s of both the Initial Contact and the Loading 
Response phases are 0.5, the human motion may be in a 
transition of the phases (Fig. 2 (a) and (b)). 

The fuzzy logic method has been applied for various 
applications of the human-machine interaction such as the 
decision making [12], the machine learning [13] and the 
sensor fusion [14].Generally speaking, the fuzzy logic 
method is a useful method when a set of rules may be 
established based on a sound understanding of the problem. 
Making rules in the fuzzy logic for the gait analysis is as 
defined in Fig. 2. For example, a condition for the Initial 
Contact phase in Fig. 2 is interpreted as “If GCF of the heel is 
large while those of the other parts are small, then the human 
motion is in the Initial Contact phase.” In the language of 
fuzzy logic, the statement is expressed as “…, then the foot is 
in the Initial Contact phase (i.e. FMV of the Initial Contact 
phase is close to one.)” 

Table I shows a set of the rules for detection of the phases 
during walking. μSwing implies FMV for all three phases 
during swinging, i.e. the Initial Swing, the Mid Swing and the 
Terminal Swing in Fig. 2, which are not distinguished from 
the GCF signals. Several trivial conditions are ignored. The 
rules in Table I are equivalent to the conditions of Fig. 2. 
 

TABLE I 
FUZZY RULE BASES FOR GAIT ANALYSIS 

    
Fuzzy Membership 

Value 

Large Small   1→ContactInitialμ  

Large Large Small  1→ResponseLoadingμ

Large Large Large  1→StanceMidμ  

Small Large Large  1→StanceTerminalμ  

Small  Small Large 1→−SwingPreμ  

Small Small Small Small 1→Swingμ  

 
 
 

Two major questions are remained: 1) how large is large or 
how small is small and 2) how the rules are interpreted in 
programmable logics. The first question is equivalent to a 
design problem of membership functions in the fuzzy logic 
method. In this paper, a membership function which applies 
the hyperbolic tangent function is used: i.e. 

 

[ ] ]1,0[1))(tanh(
2
1)( 0 ∈+−= xxsxf Large                                          (1) 

 
where x, x0 and s represent the measured GCF, the threshold 
value and the sensitivity coefficient respectively. This 
membership function is useful because, 
1) it is continuous and smooth over the entire range: This 

contributes to continuity and smoothness of the resultant 
outputs from the fuzzy logic. 

2) it is a symmetric function, such that the contra membership 
function is simply expressed as, 

 
]1,0[)(1)( ∈−= xfxf LargeSmall
                                                           (2) 

 
This reduces the calculation time in real-time applications. 

3) it returns 0.5 when the measured GCF is equal to the 
threshold: Intuitively this is reasonable because the 
threshold value means neither large nor small. 

4) it is easy to adjust the sensitivity: By adjusting one 
parameter, s, the slope of the membership function changes 
without loss of other characteristics stated above. 
Derivative of Eq.(1) at the threshold is, 
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where,  
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As s increases, the membership function becomes more 
distinct but more sensitive to the change of the threshold 
value. Note that the membership function is asymptotic to 
the one for the crisp logic as s→∞. Fig. 3 shows the shape 
of the membership function of Eq. (1). 
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Fig. 3 Fuzzy membership function 
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If xheel is Large and xmeta4 is Small, then

1)( →heel
Large xf 1)( 4 →meta

Small xf× = 1→ContactInitialμ

)()( 4meta
Small

heel
Large

ContactInitial xfxf ×=μ

1→ContactInitialμ

 
Fig. 5 Mathematical interpretation of the rule for the Initial Contact phase 

 
For implementation of the fuzzy rule bases in Table I, the 

Larsen product implication method [15] is used as the 
inference operator. Fig. 5 shows how the rules in Table I are 
converted to mathematical expressions in the case of the 
Initial Contact phase. The other phases follow the same logic. 
The statement of “x is Large” is equivalent to “f Large(x)→1.” It 
should be noted that each FMV is close to one only if its all 
conditions are satisfied. 

Since the summation of all FMV’s should be one for all the 
time, a scaling factor is introduced as, 

 

∑
=

)(
1)(

, k
ksf

iPhaseμ
                                                                (5) 

 
where k represents a time index and μPhase,j(k) means the FMV 
of each gait phase, e.g. μPhase,1(k)= μInitial Contact(k), μPhase,2(k)= 
μLoading Response(k), etc. 

The scaling factor also provides information on the amount 
of abnormalities in the gait. Intuitively the scaling factor 
should be one if all parameters in the fuzzy logic are adequate 
and a subject has the normal gait as defined in Fig. 2 and 
Table I. When the scaling factor is less than one, it means that 

more than one gait phase are detected. If it is larger than one, 
there may be no proper phase to explain the motion of the 
subject. In addition, since it is a time function as defined in Eq. 
(5), it can be observed in which phase the subject has a 
problem. 

Fig. 4 shows the entire fuzzy logic. Information in each 
step is manipulated and passes into the next step by applying 
the tools shown in Fig. 4. Arrows represent the signal flow 
and all steps are realized in one sampling time. 

 

 
 

Fig. 6 Shoes with GCF measurement system: Air bladders and air pressure 
sensors are installed for measurement of ground contact forces. 

 

Fig. 4 Overall fuzzy logic for detection of gait phases 
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IV. EXPERIMENTAL RESULTS ON 
NORMAL AND ABNORMAL GAITS 

A. Implementation 
The GCF measurement system using air bladders and air 

pressure sensors is embedded in the sole of between the 
cushion pad and a shoe shown in Fig. 6. When a foot presses 
the air bladder, it is deformed and its pressure change is 
measured by the air pressure sensor. Four air bladders are 
placed at each location shown in Fig. 1. The weight of each 
measurement unit including an air bladder and an air pressure 
sensor is less than 20 grams so that the sensors do not disturb 
user’s motion. The air pressure sensor has a built-in 
amplification circuit, and no signal processing is required. 
For more detailed information such as characteristics of the 
sensing unit and the design of the Smart Shoes, see [16]. 

B. Normal gait 
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Fig. 7 Experimental results for the normal gait case:  

A = μInitial Contact   B = μLoading Response  C = μMid Stance   

D = μTerminalStance          E = μPre-Swing    F = μSwing 
Continuous lines = Fuzzy logic analysis 
Dotted lines = Discrete events analysis 
 
Fig. 7 shows results of the fuzzy logic analysis for a normal 

gait. Each graph shows the estimated fuzzy membership 
value (FMV) for each gait phase over the time. The initial 
time of graphs is the start time of measurement and set to 0 
second. It should be noted that FMV’s (Continuous lines in 
Fig. 7) pass through about 0.5 when the result from the 
discrete events analysis method (Dotted lines in Fig. 7) 
changes. This also means that the proposed algorithm does 
not introduce any time delay. The estimated FMV’s are 
continuous and smooth over the entire range. 

C. Abnormal gait 
Generally, the normal gait represents a walking pattern that 

all eight phases shown in Fig. 2 appear sequentially. In other 
words, some of the phases are missing in an abnormal gait. 

Since people who need a help of power assistive devices have 
sometimes the abnormal gait due to musculoskeletal 
disorders or nervous system diseases, the proposed detection 
method of the gait phases should work even for the abnormal 
gait. For the experiments, parameters in the algorithm (e.g. x0 
and s in Eq. (1), and locations of sensors) can be adjusted 
according to the individual physical characteristics such as 
body weight and foot size. It is also reasonable to set the 
parameters based on the accuracy and the resolution of the 
GCF measurement system which are not related to individual 
information. 

Fig. 8 shows the experimental results for an abnormal gait. 
All settings are the same to the normal gait case in Fig. 7. The 
subject has weak ankle extensor muscles so that the GCF 
signal from the thumb toe ((a) in Fig. 1) is weak. Note that the 
discrete events analysis method (Dotted lines in Fig. 8) does 
not detect the Pre-Swing phase because the weak signal is 
ignored by the threshold method. Nevertheless, the fuzzy 
logic catches the Pre-Swing phase (See 1 and 2.6 seconds in 
graph E of Fig. 8), even though FMV is not that high. Unlike 
the case of the normal gait, FMV’s do not pass through 0.5 at 
the transition points. 

As stated above, the scaling factor in Eq. (5) can be one of 
the performance indexes. Fig. 9 shows the scaling factors 
calculated in real-time for the normal gait in Fig. 7 and the 
abnormal gait in Fig. 8. Note that the scaling factor for the 
normal gait is close to one for all the time, while that of the 
abnormal gait is relatively larger than one in some cases. Note 
that the scaling factor has a large value when the Pre-Swing 
phase is detected. This is reasonable because the subject has a 
problem with the Pre-Swing phase and no phase exactly 
matches the motion of the subject. Since the other gait phases 
are normal, the scaling factor is close to one for those phases. 
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Fig. 8 Experimental results for the abnormal gait case: 

A = μInitial Contact    B = μLoading Response   C = μMid Stance   

D = μTerminalStance    E = μPre-Swing     F = μSwing 
Continuous lines = Fuzzy logic analysis 
Dotted lines = Discrete events analysis 
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Fig. 9 Scaling factors for the normal and abnormal gaits 

V. CONCLUSION AND FUTURE WORKS 
A method for detecting gait phases was proposed in this 

paper. The outputs of the proposed method were smooth and 
continuous. Also, its scaling factor was related to the amount 
of abnormalities in the gait. The proposed method was 
verified by experiments on an abnormal gait as well as a 
normal gait. The performance was compared with a threshold 
method, and it detected an abnormal phase with very low 
signals which is not detectable with the threshold method. 

Since the proposed method provides information on phases 
in a human gait, it is possible to design an advanced algorithm 
that detects abnormalities in the gait. Also, the proposed 
method will be verified by various subjects including patients 
with severe walking problems. Based on these results, an 
intelligent gait monitoring system will be designed for 
patients with problems walking. Recently, we have 
introduced an algorithm that applies a vector analysis method 
for this purpose [17]. In addition to the gait monitoring 
systems, these methods will be integrated into an assistive 
device for the improved assistance and for better estimation 
of feedback signals in the control of the device. 
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