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Abstract— We propose a new approach to reduce and ab-
stract visual data useful for robotics applications. Basically, a
moving fovea in combination with a multi-resolution represen-
tation is created from a pair of input images given by a stereo
head, that reduces hundreds of times the amount of information
from the original images. With this new theoretical approach
we are able to compute several feature maps, including several
filters, stereo matching, and motion, in real time, that is at
more than 30 frames per second. As the main contribution,
the moving fovea allows, most of the time, a robot to avoid
performing physical motion with the cameras in order to get a
desirable region in the images center. We present mathematical
formalization of the moving fovea approach, the algorithms,
and details of the implementation of such schema. We validate
it with experimental results. This approach has demonstrated
to be very useful to robotics vision.

I. INTRODUCTION

We propose a moving fovea approach for low-level vision
that works in combination with a multi-resolution, multi-
feature representation applied to robotics stereo vision. While
using a conventional attention system, a robot would have
to move its resources (cameras) in order to get a desired
point at the images center (the fovea). So the basic idea
of our method is to change the region of interest in both
images without performing unnecessary physical motions for
that. Basically, once a region other than the current focus
of attention is chosen inside both images, image processing
and computer vision techniques are applied to provide data
reduction and feature abstraction around the chosen points
building the multi-resolution, multi-feature representation.

The proposed algorithm for data reduction allows our
system to achieve real-time processing (more than a 30
fps frame rate) running in a conventional 2.0 GHz Intel
processor. This processing rate allows a robotics platform
to perform tasks involving attention control (tracking) and
recognition behaviors. So the basic contribution of the pro-
posed approach is to allow the robot to select regions of
interest in its environment, that is, to foveate (verge) its
robotics eyes on the selected regions, without the need of
moving resources. Only by software calculations, by moving
the fovea inside a current view of a scene, the system is
able to keep its attention on the selected region as necessary,
for example, to recognize or manipulate objects, and to
eventually shift its focus of attention to another region, once
a task has been finished.
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On the top of this model, high-level vision tasks, such
as attention strategies, for tracking a ball are developed.
Recognition tasks could also be successfully performed
based on feature extraction from the resulting representation.
Both tasks validate the proposed model and its use in robotics
applications. We remark that we do not want to design a
system to perform specific tasks. We want a behaviorally
active system that may be able to perform different tasks in
different environments or situations, automatically respond-
ing in real-time, to environment changes. In this way, we
believe that data reduction and abstraction are the main key
of the system. The model for reducing data and abstracted
features, plus the moving fovea proposed in this article, that
allowed us to develop a system with these requirements, are
the main issues that will be treated in this paper.

II. RELATED WORKS

Vision is so far the most powerful biological sensory sys-
tem. Since computers appeared, several vision systems have
been proposed trying to provide vision sense to machines.
However, the heterogeneity of techniques for modeling a
complete vision algorithm makes the implementation of
a real-time vision system a complex task. The necessary
quantity of visual features grows very fast depending on
the task and consequently the amount of processing to
recover them. For example, if stereo vision is used, the main
goal is to recover the disparity of object projections, given
two different images of the same scene [1], [2]. Disparity
calculation is the main issue here, making stereo a complex
problem. Several algorithms have been implemented in order
to reduce its complexity or to enhance its precision [3], [4],
[5], [6], [7].

Of course, recovering disparity feature (or depth) [8], [9],
[10], [11] is not the only purpose of using vision in robots.
Several tasks can rely on vision, based on features such as
intensity, texture, edges, motion, wavelets, Gaussians, stereo,
and motion between other several ones that can be extracted
from visual data. For example, simple tasks involving atten-
tion and recognition behaviors can use Gaussian derivatives
[12], or a combination of them with disparity and motion
[13].

The use of full resolution images complicates the feature
extraction processing, if real time is a requirement. Several
models have been proposed in the literature for image
data reduction and feature abstraction. Most of them treat
visual data as a classical multi-resolution image, a pyramidal
structure, or as a scale space. The credit for the idea of
using the classical multi-resolution model in visual search
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can be given to Leonard Uhr [14]. The scale space theory is
formalized by Witkin [15] and further by Lindeberg [16]. The
Laplacian pyramid was introduced by Burt and Adelson [17].
Multi-resolution was integrated into an argument for visual
attention by Tsotsos [18], [19]. A problem when calculating
the classical pyramid is the processing time. It does not allow
real-time execution, mainly for robotics purposes, unless
dedicated architectures for vision processing are used. In fact,
most works do not explicitly deal on-line with the real-time
constraints experimented in robotics problems.

The classical multi-resolution approach has been adapted
using its positive aspects, as the nice property of multi-scale
processing for feature enhancement, but fitting all data into
a much more compact structure [20]. Only small images are
used, in the above approach, in the pre-processing phase.
Then, features can be calculated from these images using
any desirable filtering over the small images. This approach
has proven to be fast enough to allow real-time processing,
as shown in previous work [20]. A problem with the above
approach is that the fovea (the highest resolution image) is
always centered in the stereo images, so a physical motion is
necessary if another region (or scene point) has to be put on
it, which takes time. We note that this approach some how
imitates what happens in biological system, where saccadic
movements are constantly realized.

We propose the use of a moving fovea as an enhancement
the above model. Instead of forcing the robot to perform
a physical motion, in order to get a new interest point in
the center of the images given by the attention process, we
perform a new calculation of the above structure changing
the original position of each small image in the acquired
images. When the fovea gets close to the borders of the
current view, a physical motion has to be suggested to the
robot anyway. However, this simple idea has allowed a much
better performance of the system as will be shown, mainly
for tracking and recognition.

III. THE MULTI-RESOLUTION MULTI-FEATURE USING
MOVING FOVEA STRUCTURE

The multi-resolution model allows visualization of the
whole scene with different resolution images with the same
size. Images with higher resolution include more detail of
the scene objects however covering a smaller region of the
scene. This allows real-time implementation of attention and
recognition behaviors. The complex problem solved in this
work is how to move the fovea in this model.

A. Data Reduction and Abstraction in Robots

To reduce visual data, we use a light structure, regarding
data reduction and abstraction, made of multi-features (MF)
extracted from a multi-resolution (MR) representation of the
scene. This technique has been used by a robot equipped
with a stereo head [21] shown in Figure 1. In this version
of the MRMF approach [21], we use an embedded PC in
the robot with the two cameras connected to it. This PC
has two frame grabbers that get as input the two video
streams from the cameras on the stereo head shown in Figure

Fig. 1. Stereo Head platform with 5 mechanical degrees of freedom

1. Both structures (MR and MF) represent the mapping
of topological/spatial indexes from the sensors to multiple
attention or recognition features.

As the MRMF with moving fovea is an improvement over
the classic multi-resolution pyramid, we describe it using the
notation that supports the description of the schema described
next. Each frame captured by the cameras is re-sampled in
levels numbered from 0 to m (m+ 1 levels of resolutions),
each level centered at the original image I of size U =
(Ux, Uy). Each kth level of resolution Rk is the mapping of
an area of size Sk = (Sk,x, Sk,y) in the original image to an
area of size W = (Wx,Wy) constant for all resolutions. The
size of the first level should have a resolution equals to the
original image I . To this effect, S0 = U and Sm = W . The
intermediate levels are interpolated between these two final
ones. Once all levels are centered maps in I , each mapped
area has a shift ∆ = (∆X,∆Y ) in relation to the origin
(0, 0) of I . As R0 maps the whole original image, ∆R0 =
(0, 0). In I , Rm maps W pixels. Then, ∆Rm = (U−W )/2.
With the interpolation of ∆ we obtain:

∆Rk =
k(U −W )

2m
(1)

The Figure 2 shows those concepts using 4 levels.

Fig. 2. MRMF using 4 levels
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The mapping of I to Rk associates Sk pixels from the
original images with W pixels of Rk. For this, a rate
Pk = (Pk,x, Pk,y) is fixed, such that PkW = Sk, that can
be rewritten as:

Pk =
mU +Wk − kU

mW
(2)

A block Bk(x, y) : {0...Wk,x−1}x{0...Wk,y−1} → PN2

is defined by:

Bk(x, y) = {(a, b) ∈ I| (3)
∆Rk,x + Pk,xx ≤ a < ∆Rk,x + Pk,x(x+ 1),
∆Rk,y + Pk,yy ≤ b < ∆Rk,y + Pk,y(y + 1)}

This way, a block Bk of Pk pixels is mapped into a single
pixel in Rk. This mapping is a function ψ : PN2 → N so
that:

Rk(x, y) = ψ(Bk(x, y)) (4)

Fig. 3. ψ function maps each block Bk to a Rk pixel

For this ψ function, we have chosen the 4 pixels distant
1/3Pk of the central pixel of each block. This results in a
good representative value for the pixel group at the same
time that is computationally fast.

B. Introducing the moving fovea concept

In the moving fovea model, the center of the region that
maps Rk may vary its position, in such a way that it can be
any region of the original image. The center of the better
resolution Rm is indicated by a fovea vector F . As R0

already maps the whole image, this level keeps the same
pixel values, no matter where the fovea is placed. To the
level Rm, the fovea center may move from its origin (0, 0)
(the center of I) up to a limit on which the mapping is
close to the border on the acquired image. Hence, the fovea
center should be at a distance W/2 from any border. So
the center of the fovea F should be between (W − U)/2
and (U − W )/2. Note that whenever F = (0, 0), we
have the same sampling schema of the MR model without
moving fovea. The positions for the intermediate levels are
interpolated from the first and last resolutions, summed to
the shifting when F = (0, 0):

δRk = ∆Rk +
kF

m
(5)

which can be rewritten as:

δRk =
k(U −W + 2F )

2m
(6)

The Figure 4 shows those concepts using 4 levels. With
the moving fovea concept, a block is now defined by:

Bk(x, y) = {(a, b) ∈ I| (7)
δRk,x + Pk,xx ≤ a < δRk,x + Pk,x(x+ 1),
δRk,y + Pk,yy ≤ b < δRk,y + Pk,y(y + 1)}

Fig. 4. The MRMF with moving fovea using 4 levels. F is the fovea
vector.

IV. MAPPING

Due to the possibility of a mapping between positions
referring to the original image (including the fovea position),
positions referring to each level, and positions from level to
level, it is important to use the model successfully, as will
be described by an algorithm in a later section.

A. between level and the original image

Let be υ a function that, given p = (a, b) in I and a
level k, results in a position q in Rk so that the block Bk(q)
contains p. By the definition of Bk 7 we have:

x′ ≤ a− δRk,x

Pk,x
< (x′ + 1), (8)

y′ ≤ b− δRk,y

Pk,y
< (y′ + 1)

As we want integer positions, (x′, y′) ∈ N2, we can write
(8) so that:

υk(a, b) =
(
ba− δRk,x

Pk,x
c, bb− δRk,y

Pk,y
c
)

(9)

Let now be ω a function that, given a pixel p = (a, b) in
Rk, results in the possible positions q in I so that the block
Bk(p) contains all q. By the definition of Bk 7 we have:
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ωk(p) ⊆
⋃
t

δRk + Pkp+ t (10)

, where t ∈ {0...Wk,x − 1} × {0...Wk,y − 1}.

B. between levels

Suppose that we want to map a pixel at level k to the
level j. A pixel (x, y) at level k is a result of ψ(Bk(x, y)).
Each pixel in Bk(x, y) is also in a block Bj(x′, y′) if j < k.
However, this is not necessarily true for each pixel if k < j
(see Figure 5). Let be Φ the function that results in the set
of those index (x′, y′):

Φk,j(x, y) = {(x′, y′)|∃(a, b).(a, b) ∈ Bk(x, y), (11)
(a, b) ∈ Bj(x′, y′)}

Note that Φ can be ∅ if k < j.
We can evaluate the Φ function, evaluating each pixel in

Bk. Given a pixel p = (c, d) that is in Rk, using 10 we have
a set A = ω(p), and we can convert each pixel in A referring
to I to level j using 9:

Φk,j(p) ⊆
⋃
t

υj(t) (12)

, where t ∈ ωk(p).
Note that if υj(t) /∈ {0...Wk,x − 1} × {0...Wk,y − 1},

there’s no correspondent block at level j, since these values
are not defined by Bj .

Fig. 5. Matching pixels in level k to a next level j. The vertical hatch
indicates blocks in level j that contains one or more pixels that are also in
the block hatched by horizontal lines.

V. FEATURE EXTRACTION

In order to test the proposed methodology, we further
extract some desired features to perform tracking and recog-
nition. Basically, we convolve each resolution level of the
above fovea representation with several filters and further
stereo and motion features are also calculated from it.

A. Calculation of stereo disparity

Given the position of the fovea in one of the images (say
I1), the position of the fovea in the other image, I2, has to
be determined, and also the opposite, fovea of I2 in I1. We
decided to choose the fovea in both images to be at the same
point in the scene, besides referring to the original image
when stereo disparity is calculated. This search is done by
using cross-correlation, considering epipolar restrictions, that
is, F2,y = F1, y.

To find the position of the fovea at the other image, the
score that maximizes correlation on the first level is used.

Once the two images are calculated, disparity is computed
using correlation scores, between pixels in both images, that
is in practice implemented by several convolution operations
[1]. Performance is yet enhanced by using one level to predict
disparity for the next one.

As the position of the center of the fovea may be in
different positioning at the two images, the displacement of
level k that was δRk will be denoted by δR1,k and δR2,k

for the resolution k on the left and right images respectively.
For calculating stereo correspondence using multi-

resolution with moving fovea, we first compute it at level
zero, of lower resolution. Disparity for the other levels can
be calculated using an estimation from the previous level
through a simple refining schema, what is given by the
following algorithm:

Algorithm 1 Stereo correspondence for the level k (k >
0) of I1, where D is the disparity map and corr(y, x1, x2)
means the correlation between a window centered at (x1, y)
in I1 and a window centered at (x2, y) in I2

t⇐ dPk−1
Pk
e

for i = 0 to Wy do
for j = 0 to Wx do
p⇐ Φk,k−1(i, j)
q ⇐ p+D1,k−1(p)
r ⇐ Φk−1,k(q)
if r is inside R2,k then
maxscore = −∞
for k = −t to t do

if (rx + k, ry) is inside R2,k then
if corr(i, j, rx + k) > maxscore then
maxscore = corr(i, j, rx + k)
D1,k(i, j) = (rx + k)− j

end if
end if

end for
end if

end for
end for

Figure 6 shows disparity maps for one of the images in the
Tsukuba image database. Ground truth is shown in Figure 7.
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Fig. 6. Equalized disparity calculated only for the first level, a refining
from this one is done for the following levels.

Fig. 7. Ground truth

VI. EXPERIMENTS AND RESULTS: TESTING ATTENTION
AND RECOGNITION BEHAVIORS

Basically, in order to validate the proposed methodology,
several experiments involving performance, attention, and
recognition behaviors were performed.

Remember that what is been testing is the time perfor-
mance if our multi-resolution with moving fovea approach
is applied, not the algorithms themselves.

If an algorithm can be applied to a classic image repre-
sentation, then it’s possible to apply it to each resolution in a
straight forward manner, since each resolution can be stored
in the same conventional way. In most case, someone would
have to adapt her/his algorithm if it’s location dependent, as
the stereo algorithm. In these cases, he/she has to convert
positions between levels to evaluate indexes to their real
values.

A. Implementation issues

It’s worth to remark that most expression developed can
be expressed only in function of a few parameters, assuming
that W,U,m, k (a different block of processing for each
level) are all constants and can be pre-processed using meta-
programming. All experiments that are described on next use
this approach. For example: Φk,k−1 can be rewritten to:

fk(p) =
WU −W 2 + 2WF + P (2mU + 2kW − 2kU) + t

2(W (k − 1) + U(m− k + 1))

B. Performance experiments

We applied the algorithm on a real time acquired video
stream, whose images have the following parameters:
U = (640, 480) (images size)

W = (32, 24) e (64, 48) (resolutions for two MRMF)
m = 3 (both MRMF with 4 levels of resolution)

Time results for each phase are shown in Table I. A
2.0 GHz processor was used in this experiment. Overall,

TABLE I
TIME PERFORMANCE (MR-MF).

Resolution 32x24 64x48 96x72 128x96
MR-MF 0.2ms 1.2ms 1.9ms 2.6ms
Filtering 0.7ms 4.9ms 11.7ms 24.1ms

Stereo simple 0.7ms 9.0ms 50.2ms 110.0ms
Stereo predict 0.8ms 4.3ms 20.0ms 40.2ms

a gain of about 1800% in processing time was observed
from the original images to the reduced ones. As said, used
filters were: gradient (x, y and threshold of their magnitude),
Gaussian, Gaussian gradient (x, y and threshold of their
magnitude), and Laplacian. In the Table I, Stereo simple is
without estimating disparity from one level of less resolution
to the next, that is, it starts from zero at all levels. Stereo
predict is with estimation of disparity from one level to the
next.

C. Testing features in tracking behavior

In tracking experiment, a hand holding a ball appears in
front of the camera mount, an user signals the initial position
of the fovea (at the ball) and the system should track it
by only changing the position of the fovea in the image
given by the current viewing position. This is done using
the less resolution level, where the fovea can be tracked
and the corresponding one in the other image can be easily
calculated by using a correlation measure. When the ball
is almost leaving the visual field during the tracking, the
system suggests a movement. Figure 8 shows the tracking
procedure. By using the moving fovea approach, it is possible
to disengage attention from actual position and to engage it
to another position from a frame to another, in real time. If
moving robot resources is required every time that attention
changes, this could take some 500 ms [20].

Fig. 8. Tracking a ball using a moving fovea.

D. Testing features in recognition behavior

In another experiment involving recognition, two objects, a
tennis ball and a domino, were presented in several positions
to the system. About 35 images were taken for each one,
on-line. Then, the above model was applied to all of them
and a neural network was trained with 1300 epochs, using a
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threshold function of the gradient as the net input data and
a bit vector as the net output data with each bit indicating
a correspondent object. . The same objects were presented
again to the cameras and the activation calculated in the net.
The result was in about 70% of positive identification for the
ball and about 85% for the domino, even though the object
was present at the peripheral region of the camera.

VII. CONCLUSION AND FUTURE WORK

We have built a useful mechanism involving data reduction
and feature abstraction that could be integrated and tested
in attention control and recognition behaviors by adding a
moving fovea. To do that, the first step is the determination of
the position in which the fovea must rely. Then, parameters
are determined for data reduction and feature abstraction. By
using an efficient down-sampling schema, a structure derived
from the classical pyramid, however much more compact,
is constructed in real-time (some 1.2ms in a PC 2.0 GHz,
for 4 × 64 ×48 resolution images). Then, computer vision
techniques, as shape from stereo, shape from motion, and
other feature extraction processes are applied in order to
obtain desired features (each single filter costs less than 500
µs).

By using the proposed model, we tested behaviors that
have accomplished real-time performance mainly due to the
data reduction and abstraction performed. Also, the moving
fovea representation proposed has allowed to perform tasks
as overt attention to be done in real-time, that can be
applied to accelerate some tasks. So the main contributions
are the enhancement done over a previous schema for data
reduction and feature abstraction with the inclusion of a
moving fovea. We remark that experiments in attention and
recognition, using small images (some with low resolution)
were done. Based on this fact (robustness), we believe that
this approach can be used in other high-level processes, in
order to accomplish other tasks, as navigation for example.

The ability of changing attention focus is the basis not
only for the tasks described, but also for other more complex
tasks involved in robot cognition [20]. This model changed
a previous approach somewhat inspired by the biological
model in the sense that the more precise resolution levels
are located in the center of the image. In this way, the less
resolution levels can be used for example to detect motion
or features to be used in navigation tasks (mainly bottom-
up stimuli) and the finer levels of resolution can be applied
to tasks involving recognition as a text reading or object
manipulation. A search task can use a combination of one
or more levels. Of course, in this case, the moving fovea
does play an important role, avoiding the head of performing
unnecessary motions.

A problem found in our approach is that Φ is a set of
potential pixels, and choosing anyone can introduce location
errors that can be accumulated along a refining schema. A
solution to this problem is to use some interpolation method
that, on the other hand, could introduce more computational
costs. Besides, if integer operations are always desired, each
δRk can also introduce error, but no more than 2m − 1

(acceptable for real application) and each Pk no more than
mW − 1. However, in most cases it’s possible to choose
suitable resolution dimensions and m value so that Pk is
always an integer.
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