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Abstract— Recent years have seen an explosion of research on
the computational modeling of human visual attention in task
free conditions, i.e., given an image predict where humans are
likely to look. This area of research could potentially provide
general purpose mechanisms for robots to orient their cameras.
One difficulty is that most current models of visual saliency
are computationally very expensive and not suited to real time
implementations needed for robotic applications.

Here we propose a fast approximation to a Bayesian model
of visual saliency recently proposed in the literature. The
approximation can run in real time on current computers at
very little computational cost, leaving plenty of CPU cycles for
other tasks. We empirically evaluate the saliency model in the
domain of controlling saccades of a camera in social robotics
situations. The goal was to orient a camera as quickly as
possible toward human faces. We found that this simple general
purpose saliency model doubled the success rate of the camera:
it captured images of people 70% of the time, when compared
to a 35% success rate when the camera was controlled using
an open-loop scheme. After 3 saccades (camera movements),
the robot was 96% likely to capture at least one person. The
results suggest that visual saliency models may provide a useful
front end for camera control in robotics applications.

I. INTRODUCTION

There has recently been a large amount of scientific

research to develop computational models of visual saliency

[1], [2], [3], [4], [5], [6], [7], [8], [9], [10]. The computational

output of these models is a value at each pixel of an image

or video sequence (Figure 1) that indicates whether that

region is likely to be fixated by humans when the task

is to simply look at the image or video. Typically these

methods are evaluated on how well they predict the actual

specific locations that humans have fixated in eye-tracking

experiments where the only instruction is “look” or “watch”.

This area of research is of potential interest to social robotics

for two reasons: First, a robot that orients its eyes in a

manner similar to humans is likely to give an impression of

intelligent behavior and facilitate interaction with humans.

Second, such models may orient the robot towards regions

of the visual scene that are likely to be relevant.

Unfortunately the currently existing models of visual

saliency are typically too slow, requiring seconds, if not
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minutes, to analyze single video frames at very reduced

resolution. Here we describe and evaluate a very fast and

computationally-lightweight adaptation of a recently pub-

lished model of visual-salience. The model can comfortably

provide saliency maps in about 10 ms per video frame

on a modern low-end computer, thus being particularly

suitable for robotic applications. We show that the algorithm

provides a useful front end for robotics cameras, effectively

using foveal information to orient the camera towards likely

regions of interest.

II. PREVIOUS MODELS OF VISUAL SALIENCY

Several Bayesian approaches have been developed recently

that provide a computational foundation to the notion of

visual saliency. While at first sight these models may appear

very different from each other, they can be seen as special

cases of the same formalism. In particular many of these

approaches implicitly or explicitly define the saliency of a

pixel x as a function of the probability that this pixel renders

an object of a category of interest, given the available image,

i.e.,

s(x) def= log p(Cx = 1|fx)
= log p(fx|Cx = 1) + log p(Cx = 1)

− log p(fx) (1)

where s(x) is the saliency of pixel x and fx is a feature

vector that summarizes the information on image pixels in

the neighborhood of x, and Cx is a binary random variable

that takes value 1 if pixel x renders an object from the

category of interest.

This formulation can be used to compare the choices made

by the existing Bayesian approaches. For example, Torralba

et al. [3] use the p(Cx = 1) term to model class specific

location distributions, i.e. the density p(Cx = 1) differs

for every x depending on the location of x in the image

plane, e.g. clouds may be more probable a priori toward

Fig. 1. The purpose of visual saliency algorithms is to quantify the
importance of attending to each visual location. Saliency algorithms are
often evaluated on how well they predict human eye-fixation data.
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the top of the image. It can also take on a different value

by switching targets, e.g. the distribution p(Cx = 1) when

searching for clouds is different from p(Cx = 1) when the

category of interest is people. They estimate p(fx) using a

generalized Gaussian fit to the statistics of the specific image

being searched.

Bruce & Tsotsos [5] present a model of saliency based

on the Shannon information of an event, − log p(x). They

estimate the density p(fx) using a histogram over a small

image region, as opposed to the entire image, as in [3]. Their

model implicitly assumes that in general purpose tasks the

functions p(fx|Cx = 1) and p(Cx = 1) are approximately

constant with respect to x and they can be ignored for they

do not affect the relative saliency of different pixel locations.

Harel et al. [6] proposed a model of saliency based on

the use of a dissimilarity metric. Like [5] the context is

free-viewing, and the first two terms become irrelevant in

ranking pixels. Like [3] the distribution p(fx) is estimated

based on the histogram of the the current image. However in

this case they use a graphical model that weights inter-pixel

distance and feature dissimilarity. Probabilities are estimated

by sampling, a process that is O(n4) with n pixels in the

image. While this approach matches human free-viewing

data well, it is infeasible for calculating salience maps of

moderate size in real time.

Zhang et al. [7] follow the model in [3], but estimate

p(fx) using frequency counts from a data set of natural

images/videos fit to generalized Gaussian distributions. By

using features sensitive to local contrast, they are able

to replicate saliency effects that in other models require

densities to be estimated within each image separately. This

makes the model’s complexity roughly linear with respect to

the number of image pixels, and therefore attractive for real-

time implementations, since it does not require recomputing

costly frame by frame statistics.

Itti et al. [1] proposed a model of visual saliency based on

the Feature Integration Theory of human attention [11]. Their

model computes many features at each pixel by convolving

e.g. motion, color, and brightness channels with Difference

of Gaussians filters. These are then normalized and half-wave

rectified. The different channels are then added together to

create a master saliency map. Navalpakkam & Itti [4] define

visual saliency in terms of Signal to Noise Ratio (SNR).

Specifically, the model learns the parameters of a linear com-

bination of low level features that cause the highest expected

SNR for discriminating a target from distractors. Itti & Baldi

[2] define salience as the KL divergence between the prior

distribution that a pixel renders an object of interest and the

posterior distribution given the image statistics around that

pixel. Specifically, under their model, saliency is proportional

to the number of events generated by a Poisson process. A

Gamma distribution conjugate prior is maintained over the

Poisson distribution’s parameters. Spatial saliency detectors

estimate the posterior distribution based on map neighbors

and temporal saliency detectors estimate the posterior dis-

tribution based on subsequent salience of the same pixel.

The model is evaluated in terms of its capacity to fit human

saccade data in open ended, free-viewing tasks.

Gao & Vasconcelos [9] define saliency as the KL distance

between the distribution of a pixel region’s filter responses

from that of pixels surrounding that region. The distribution

of filter responses is estimated as a generalized Gaussian dis-

tribution, and a different distribution is fit to each overlapping

region of the image.

Kienzle et al. [10] used a data-driven approach, using

human eye movement data on general purpose tasks to

learn features that are highly discriminative of regions that

are commonly scanned by humans versus regions with low

scanning rates.

III. REAL-TIME IMPLEMENTATION

In this paper, we propose a simplified version of Zhang

et al.’s model [8] designed to operate in real time at little

computational cost. In [8], Zhang extends the model in

[7] to temporally dynamic scenes, and characterizes the

video statistics around each pixel using a bank of spatio-

temporal filters with separable space-time components, i.e.,

the joint spatio-temporal impulse response of these filters is

the product of a spatial and a temporal impulse response. In

[8] the spatial impulse responses are Difference of Gaussians

(DoG), which model the properties of neurons in the lateral

geniculate nucleus (LGN). The surround Gaussian has radius

twice the size of the center Gaussian, and each subsequent

scale is twice the size of the previous scale. At the smallest

scale the radius is 1 pixel and the spatial impulse response

at scale i is

g(i) =
1

2π(2i−1)2
exp

(
− x2 + y2

2(2i−1)2

)

− 1
2π(2i)2

exp
(
−x2 + y2

2(2i)2

)
(2)

The temporal impulse responses are Difference of Exponen-

tials (DoE), which can be implemented recursively in a very

efficient manner:

h(t; τ) = ĥ(t; 2τ) − ĥ(t; τ) (3)

where ĥ(t; τ) = τ
1+τ · (1 + τ)t, t ∈ (−∞, 0] is the relative

frame number to current frame (0 is the current frame, −1 is

last frame, etc.) and τ is a temporal scale parameter. The τ
of the first scale is a parameter to the model, and it doubles

with each successive temporal scale.

The probability distribution of the features p(f) is es-

timated by collecting filter responses over natural videos,

fitting a generalized Gaussian distribution for each individual

filter, and combining the distribution across temporal and

spatial scales assuming conditional independence.

For the real-time implementation explored in this paper

we simplified Zhang’s model in the following ways:

1) We used only image intensity channels, not color

channels.
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Fig. 2. Difference of Gaussians filter, and the Difference of Boxes approximation. The filters are typical of those used in this paper, with the rcenter =
1/2 rsurround. The filters are respectively applied to the original image (left). Absolute filter responses are shown.

Algorithm 1 Initialize Saliency

1: NS ⇐ 5 {Parameter: # of Spatial Scales}
2: NT ⇐ 5 {Parameter: # of Temporal Scales}
3: Minσ ⇐ 1 {Parameter: Smallest Box Filter Radius

∈ [1,∞)}
4: Minτ ⇐ 1 {Parameter: Smallest Time Parameter

∈ (0,∞)}
5: σ[1] ⇐Minσ
6: τ [1] ⇐Minτ
7: for i = 1 to NS do
8: σ[i + 1] ⇐ 2σ[i]
9: end for

10: for j = 1 to NT do
11: τ [j + 1] ⇐ 2τ [j]
12: end for
13: for all Exp[i, j] do
14: Exp[i, j] ⇐ �0 {Exp has (NS+1, NT +1) vectors

the size of the salience map.}
15: end for

2) The DoG filters were approximated by difference of

box filters DoB (See Figure 2).1

3) The filter impulse response distribution was modeled

as a Laplacian distribution with unit variance, a special

case of the generalized Gaussian distribution.2

As in Zhang’s original model, we assume an open-ended

visual search task, i.e. we don’t have prior knowledge about

where in an image generally interesting objects will appear,

or what they will look like. Under these conditions the

location prior p(Cx = 1) and the object appearance model

p(fx|Cx = 1) are approximately constant with respect to x
and thus can be ignored.

The approach is pseudocoded in Algorithms 1&2. In

Algorithm 2, all arithmetic operations are vector operations.

The computational complexity was roughly linear with

respect to n, the number of pixels, as well as NS and NT ,

the number of spatial scales and temporal scales. Tables I&II

show the time needed to compute saliency on a frame varying

each of these three complexity dimensions. The computations

1DoB are types of box-filters, a computationally efficient class of filters
that have been used with much success recently in visual object classification
[12]

2In the generalized Gaussian case we have − log p(f) =
P |fi/σi|θi .

This becomes − log p(f) =
P |fi| under our Laplacian with σi = 1

approximation.

Algorithm 2 Calculate Saliency s(x)
Require: NS, NT, σ, τ, Exp initialized in Algorithm 1.

Exp is updated in this Algorithm.

1: SaliencyMap ⇐ �0
2: Im ⇐ get downsampled frame from camera

3: BoxFilt[1] ⇐ Filter Im with box-filter, width=2σ[1]+1
4: for i = 1 to NS do
5: BoxFilt[i + 1] ⇐ Filter Im with box-filter,

width=2σ[i + 1] + 1
6: DoB[i] ⇐ BoxFilt[i] − BoxFilt[i + 1]
7: Exp[i, 1] ⇐ τ [1]

1+τ [1]DoB[1] + 1
1+τ [1]Exp[i, 1]

8: for j = 1 to NT do
9: Exp[i, j + 1] ⇐ τ [j+1]

1+τ [j+1]DoB[i] +
1

1+τ [j+1]Exp[i, j + 1]
10: DoE[i, j] ⇐ Exp[i, j + 1] − Exp[i, j]
11: SaliencyMap ⇐ SaliencyMap + abs(DoE[i, j])
12: end for
13: end for
14: return SaliencyMap

were performed on a Mac Mini with a 1.87 GHz Intel

Core Duo processor. Box filter operations were performed

with Apple’s vImageBoxConvolve Planar8 function. Vector

algebra operations were performed using the BLAS library.

The time was measured in absolute (wall) time, but since

the processor was dual core, the process-specific times were

nearly identical. In practice our implementation is orders of

magnitude faster than those reported in the literature. For

example, the popular Saliency model of Itti & Baldi [2]

requires ≈ 1 minute for each 30 × 40 pixel video frame,

while the model proposed here takes 11 milliseconds for

each 120 × 160 pixel video frame.

In order to ensure that the simplifications in our approach

still maintain the important properties of other visual saliency

algorithms, we compared its performance to the model of Itti

& Baldi [2]. The task was to predict human eye fixation on

videos in a free viewing task; the data were those originally

used in [2]. The performance of our algorithm (0.633 AROC)

was very similar to that of Itti & Baldi (0.647 AROC).

This is also comparable with Zhang’s original algorithm,

and so very little performance is sacrificed making the three

approximations above.
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Fig. 3. Three robot members of the RUBI project. Left: QRIO is a humanoid robot prototype on loan from Sony corporation. Center:
RUBI-1, the first prototype developed at UCSD. Right: RUBI-3 (Asobo) the third prototype developed at UCSD. It teaches children
autonomously for weeks at a time

TABLE I

PROCESSING TIME NEEDED TO COMPUTE SALIENCY MAP AS A

FUNCTION OF IMAGE SIZE (5 SPATIAL / 5 TEMPORAL SCALES).

80 × 60 160 × 120 320 × 240 640 × 480

Time 2.93 ms 10.82 ms 44.96 ms 214.82 ms

TABLE II

PROCESSING TIME NEEDED TO COMPUTE SALIENCY MAP OVER VARIOUS

SPATIOTEMPORAL SCALES (160 × 120 PIXELS).

Space\Time 1 Scale 2 Scales 3 Scales 4 Scales 5 Scales

1 Scale 1.32 ms 1.64 ms 1.95 ms 2.26 ms 2.82 ms
2 Scales 2.04 ms 2.71 ms 3.36 ms 3.93 ms 4.62 ms
3 Scales 2.81 ms 3.81 ms 4.72 ms 5.90 ms 7.06 ms
4 Scales 3.35 ms 4.65 ms 5.77 ms 7.58 ms 8.95 ms
5 Scales 3.88 ms 5.32 ms 6.77 ms 9.29 ms 10.82 ms

IV. FIELD STUDY

As part of the RUBI project [13], [14] for the past three

years our laboratory has been conducting field studies with

social robots immersed at the Early Childhood Education

Center at UCSD. The goal of these studies is to explore

the possibilities of social robots to assist teachers in early

childhood education (Figure 3). One critical aspect of these

robots is to be able to find and orient towards humans. While

we have already developed powerful algorithms for detecting

the presence of humans using video [15], they tend to be

computationally expensive and thus best suited for scanning

a small foveal region of a scene. As such we were interested

in investigating whether a lightweight saliency model could

be used on peripheral regions to help orient the fovea towards

the most promising regions of the visual scene.

A 2 degree of freedom (pan and tilt) robot camera was

constructed using an iSight IEEE1394 640x480 camera with

a fisheye lens (160◦ FOV), 2 Hitech HS-322HD servo

motors, and a Phidgets servo control card operated by a

Mac Mini (1.87 GHz Intel Core Duo). The robot camera was

placed in Room 1 of the UCSD’s Early Childhood Education

Center (ECEC), where the RUBI project is taking place.

The camera was located on a bookshelf above the reach

of the children (18–24 months old). The system collected

data continuously for 9 hours during one day’s operation of

ECEC, from 7:30am–4:30pm.

Images were processed in real-time. They were received

from the camera at 640 × 480 resolution at approximately

15 FPS (i.e. every 66 msec). For the purpose of computing

saliency, they were downsampled to a 160 × 120 pixel

resolution. A saliency map was then computed in six-times-

faster-than-real-time for all the pixels (≈ 11 msec, see

Table II), using a bank of 5 spatial filters and 5 tempo-

ral filters. The DoB spatial filters had odd center widths

{3, 5, 9, 17, 33} so that they would be defined about a cen-

tral pixel. The above diameters correspond to radii about

the center of {1, 2, 4, 8, 16} respectively. The corresponding

surround widths were {5, 9, 17, 33, 65}. The τ temporal

parameters were {1, 2, 4, 8, 16}.

a) Experimental Camera – Saliency Track: At the start

of each experiment, the camera was moved to a central

location.

Starting 30 frames after any camera movement, on each

successive frame, if the maximum saliency pixel exceeded

threshold and its location was more than 10 degrees in either

the pan or tilt direction from the current fixation point, the

servos would reposition the camera so that the maximum

saliency pixel in the saliency map was now at approximately

the center of the image plane.

15 frames after a movement was initiated (to allow for

Fig. 4. Experimental Setup: A simple robotic camera (left) collected very
wide angle – 160◦ – images at 640×480 resolution (center) and downscaled
them to 160 × 120 resolution for the purpose of computing a saliency
map (top right). The camera then rotated – pan/tilt – so that the maximum
saliency pixel was now in the center of gaze. After movement, a 160×120
snapshot of the center of gaze at full resolution was saved as a foveal
representation (bottom right). This fovea was coded offline for the presence
of people.
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Salience Tracking Condition

Playback Condition

Fig. 5. Center of attention (fovea) in saliency tracking condition and playback condition. In each case, 18 images were chosen randomly from the whole
set, and so the sample is representative. Many more people are attended in the saliency condition than the playback condition.

the movement’s completion), an image of the camera’s view

was saved. Additionally, a foveal view containing the center

160×120 pixels of the high resolution 640×480 image was

saved, simulating the foveal region over which high level

but computationally expensive perceptual primitives could

operate (e.g., person detection, expression recognition).

b) Control Camera – Playback: An additional camera

control condition was implemented. In this condition the

camera played back in open-loop the exact same movements

as in the previous salience-directed movement condition.

This served as a control with the same motion statistics

as the salience condition, but the movements were not

caused directly by current events in the world. In addition

to preserving the motion statistics, the playback framework

served to tie together in the two conditions the implicit prior

on the “location of the class of generally interesting objects,”

or p(Cx = 1) in Equation 1. Thus the only difference

between the two conditions was that one was caused by

features that were unlikely in natural statistics, i.e. ones for

which − log p(Fx) was high.

Each condition ran sequentially for 3 minutes at a time.

A pair of conditions salience and playback would take about

6 minutes. There was an additional 3 minute break between

cycles. In all, 64 cycles were completed and 4964 images

were collected.

V. ANALYSIS OF RESULTS

After the experiment a subset of the foveal center-images

was chosen randomly and uniformly from all 4964 collected

images. The subset of images was coded by 4 coders. Two

of the coders were authors of this paper and two were

naı̈ve third parties. The coders were instructed to label the

number of people they could see in each 160 × 120 foveal

image. The coding was done in a double-blind fashion:

the images were ordered randomly across labels and time

collected. All coders, including the authors, were given no

extra information to indicate which images came from which

condition. All coders labeled 1050 images (510 saliency

condition, 540 playback condition) in the same order.

The average Pearson correlation between the four coders

across the 1050 labels was 0.8723. We marked a foveal

snapshot as “containing a person” if two or more coders

agreed that there was a person in the snapshot.

A. Results

It should be noted that the control condition in our

experiment was designed to be particularly difficult, much

harder than random search. For example, in the control

condition, the camera oriented toward regions of space that

had been salient in the experimental condition. These regions

tended to have people in the experimental condition and

thus were still likely to have people at control time. In

spite of this, the experimental camera (Saliency Tracking)

performed much better than the control camera (Playback).

In the Salience Tracking condition, 68.04% of foveal images

contained people. In the Playback condition, only 34.81% of

foveal images contained people. Thus by orienting toward

salient events in the image plane, the camera attended to

people twice as often as just looking in the places where

people are likely to appear. A random sample of images from

both conditions is shown in Figure 5.

Note that with a detection rate of 68% per saccade, after

3 saccades, we are 96.8% likely3 to have seen at least one

3Assuming people are always present. This figure is an underestimate and
the true rate will be higher given presence of people because this average
performance figure includes even times when there are no people to be seen,
such as nap time or when children are playing outside.

96.8% = 1 − (1 − .68)3
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person. A post processing algorithm operating over these

saccades would review (3 ∗ 160 × 120) pixels, representing

more than an 81% reduction in search time.

Most importantly, the salience algorithm is fast and effi-

cient. Salience was calculated in less than 11 ms for each

67 ms frame grab, leaving over 83% of CPU cycles to be

dedicated to other tasks important to the function of the

robot, including sophisticated visual post-processing.

An additional benefit is derived from saliency’s resilience

to distorted images: it works well on the entire image plane

of a very wide angle camera. However, object identification

algorithms are often brittle to the warping caused at the edges

of the wide angle lens. By using saliency on a very wide field

of view, we can identify from large regions of the real world

areas of interest and then point the center of the lens toward

them. Objects in the central region are undistorted, and may

be discovered easily by our machine perception algorithms.

Although we did not investigate it systematically, the

salience algorithm also appears to be robust to lighting

conditions. For example, during nap time, the lights of the

classroom were turned off, but the robot continued to orient

toward teachers walking around the room.

VI. CONCLUSIONS

We presented a fast visual saliency algorithm that ap-

proximates very well current models of early human visual

attention. From a Bayesian point of view the algorithm is

designed to find regions of an image plane most likely to

be useful in unconstrained conditions, i.e., situations where

there is a very large number of potential tasks of interest. The

proposed approach matches human eye fixation data almost

as well as current state of the art models of early visual

attention, yet it is orders of magnitude faster. It can operate

in real time in a low end modern computer, leaving plenty

of CPU for other operations. This makes the approach ideal

for robotic applications.

We presented empirical results from a field study using

a robotic camera in daily life conditions. To our knowledge

this is the first example of a practical use of current models

of early human visual attention to a real time robotics task.

The results suggested that models of visual saliency may

provide a promising approach for efficient camera orientation

in social robotics applications.
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