
Abstract—The aim of this paper is to enable a programmer
to easily employ external sensors for flexible robot
manipulation. We describe a general approach to determine
the relation between the position deviation of an object and
the resulting data from sensors used to recognize this
deviation. This information can be used to employ adaptation
techniques to compensate the deviation thus enabling robots to
react flexibly to changes such as workspace variations or
object drifts. The proposed methods are designed to be
independent of the type of sensor. We describe methods to
automatically determine a function describing this relation
and how adaptive techniques can be integrated easily into
robot programs without detailed knowledge provided by the
programmer.

Keywords: Manipulation Planning, Intelligent and Flexible Manufacturing,
Programming Environments

I. INTRODUCTION

ndustrial robots are able to perform complex tasks
without symptoms of fatigue as well as highest precision

and speed. However, these tasks are nearly always executed
in a fixed environment, that is the precision is gained by
ensuring that all objects are placed in exactly the same
position every time. All parts need to have the same
dimension, position, orientation, etc. Only by employing
external sensors such as cameras or force-/torque-sensors,
we can enable a robot to deal with imprecisions and
variations occurring in the objects and the environment.
When designing such programs for flexible robots, a
programmer faces two problems: The first problem is, that
the programmer must know which type of sensor may be
employed to measure a specific variation. The second
problem is to determine how the measured data (physically)
relates to the variation.

I

In [5] we have classified changes that can occur between
two executions of the same robot program with two
characteristics: The origin of the change and the robots
reaction to it (Table 1). An indeterminacy is something we

are not aware of at this moment, but once we have learned
about it, it will remain constant for a prolonged period of
time. Variations on the other hand occur every time the
robot performs the task at hand. Faults and errors occur
when a sudden change in the workspace occurs. The drift is
a problem caused by gradual changes within the workspace,
i.e. the settings of machines and tools changes over time. In
this paper, we are interested in ways of dealing with
changes requiring a continuous adaptation strategy:
Variations and drifts.

To successfully deal with both, we need external sensors
to identify the change so we can compute a reaction to it.
The first task is to find a function which transforms sensor
values into a Cartesian description of the change. While this
is straightforward for “easy” sensors, e.g. distance sensors,
it proves to be a lot more difficult for complex sensors, like
images from cameras etc. Additionally the sensor values are
nearly always blurred by some kind of noise. The classical
approach is to analytically determine a function describing
this mapping. But, for complex sensors this task turns
difficult very fast and sometimes finding an analytical
solution is simply not possible if the underlying physical
principles are unknown to the programmer. In these cases
other approaches have to be taken to get an idea which
change has occurred for a given sensor signal as input.

In this paper, we introduce a systematic approach to
recognize continuous changes in manipulation tasks using
external sensors, regardless of the type of sensor. The rest of
this paper is organized as follows: In Section II, we give a
short overview of related work concerning this topic. In
Section III, we define the mathematical properties of
continuous changes and define a change model. Based on
this model we show which requirements must be fulfilled by
the change and the supervising sensors to allow a successful
recognition of and adaptation to the change. In Section IV,
we describe methods to recognize and adapt to a change
during execution of the task. In Section V, we show the
validity of our approach with two experiments. In the last
Section VI, we give a short summary of our work and
discuss further steps.

II. RELATED WORK

The task of infering information from noisy sensor data is
covered thoroughly by various books on pattern
classification, e.g. [8]. But all of these describe methods
how to extract the relevant information from the sensor
values, assuming that this information is somehow present

Jan DEITERDING and Dominik HENRICH

Lehrstuhl für Angewandte Informatik III
Universität Bayreuth, D-95445 Bayreuth, Germany

E-Mail: {jan.deiterding, dominik.henrich}@uni-bayreuth.de, http://ai3.inf.uni-bayreuth.de

TABLE 1
CLASSIFICATION OF CHANGES THAT CAN OCCUR BETWEEN TWO EXECUTIONS OF THE SAME

PROGRAM [5].

Origin of change

Caused by the task Caused by abrasion

Reaction to
change

One-step
learning

Indeterminacies Faults and Errors

Continuous
learning

Variations Drifts

Acquiring Change Models for Sensor-Based Robot Manipulation

2008 IEEE International Conference on
Robotics and Automation
Pasadena, CA, USA, May 19-23, 2008

978-1-4244-1647-9/08/$25.00 ©2008 IEEE. 3945

in the data. Multiple papers exist dealing with the task of
planning sensing strategies for robots, e.g. [15, 23]. Most of
these assume a specific task [1, 10] or are aimed at
employing multi-sensor strategies [3, 7]. Various papers
deal with the task of setting up the sensors in the work cell
to allow information retrieval [12]. [14] proposes a general
platform for sensor data processing, but once more assumes
that the sensors are already capable of detecting changes.
Papers covering the topic of employing sensors for robot
tasks from a general point of view are [9, 21]. There is one
paper dealing specifically with drift in the servo motors of
robots joints [13], but again, this work is geared towards a
specific type of sensor.

Two types of sensors are typically used for manipulation
tasks: Force-/torque sensors and cameras. When
force-/torque sensors are employed, maps are created
describing the measured forces with respect to the offset to
the goal position. [4] describes possibilities to either
analytically compute these maps and or create these maps
from samples. Based on this, [24] shows how these maps
can be computed using CAD data of the parts involved in
the task. In both cases, the maps must be created before the
actual execution of the task and are only valid if the parts
involved are not subject to dimensional variations. When
the information is acquired using cameras, the first step is
to perform some kind of pre-processing of the data to
extract the relevant information. To determine in which
way this information relates to a positional variation is once
more task of the programmer and highly dependent on the
type of the task. Examples are given in [6, 20, 25].

In summary, all of the papers mentioned above either
propose specific solutions for given types of sensors and
tasks or propose algorithms to extract the relevant
information from the sensor data. Here, we are interested
in defining the fundamental properties a sensor must fulfill
in order to allow such an information extraction. These
properties should be independent from the actual task and
only define requirements which must be met by the sensor
in order to allow for a recognition of and adaptation to the
change. Using this knowledge a programmer can decide
which sensor can be employed to monitor changes during
executions of a robot task and how a change in the sensor
data can be mapped to a position deviation in Cartesian
space.

III. REQUIREMENTS FOR CHANGE DETECTION

In this section, we will define the term continuous
change and show how this change can be modeled using
analytical terms. Based on this, we show which premises
must be fulfilled in order to successfully recognize an
occurring change during a manipulation task. Then, we
describe methods how a compensation function can be
determined that computes a position deviation for a given
sensor signal.

A. Definition and properties of a continuous change

We define a continuous change as a spontaneous position
deviation in Cartesian space between an estimated and an
actual position of an object in the workspace of the robot
between two consecutive executions of the same task.

This means that we will approach the position pobj of an
object we believe to be correct during each execution t of a
task and measure its position deviation Δpobj compared to
the previous execution:

Δpobj= pobj t – pobj t−1
This definition refers to the position deviation of the object
in Cartesian space. But we will need a sensor to recognize
this deviation. This sensor must not be the same which is
used to approach pobj, otherwise we are unable to recognize
the change. This can be explained by two examples: In the
first example, the position is determined using the internal
sensors of the robot. If the object has moved, we cannot
recognize this change solely with the internal sensors.
Instead we have to employ a second, external sensor to
measure if a deviation has occurred. In the second example,
we use a force/torque sensor to describe a force-dependent
position. In this case, we can employ the internal sensors of
the robot to check if this position has moved.

We see that the position pobj of an object in Cartesian
space is mapped to a (vector of) sensor value(s), mobj, in the
measurement space of the sensor, so we have a function
fchange: R6 → Rm, where m is the dimension of the sensor:

f change pobj=mobj

B. Requirements of the drift function and sensor

To successfully adapt to the change, we must be able to
infer the position deviation from the sensor values, that is
build the inverse function of fchange, f -1

change: Rm → R6 with
 ∃ f change

−1 with f change
−1

 f change p obj= pobj
Based on this requirement, we can directly postulate that a
physical change must modify the sensor signal. Otherwise
we would not be able to recognize a change, that is

f change pobj=c∀ pobj , c∈R
We can easily see that there exists no inverse for this
function. There is always an inverse for all bijective
functions. In addition, if fchange is continuous, fchange is strictly
monotonic as well. If necessary the surjection can be
guaranteed by a deliberate constraint of the measurement
range of the sensor.

Another requirement is that the dimension of the sensor
must be at least as high as the degrees of freedom (DOF) of
the change. Otherwise there can be no inverse for fchange.

If we are only taking the physical effect into account,
which maps a position to a set of sensor values, there is no
universal solution for fchange. Instead the sensor values for a
given position are highly dependent on the objects position
in the workspace and the type of object which is to be
manipulated. It should be noted though, that there are
similarities of the change function to the Jacobi matrix [19].

Another thing which must be kept in mind is the signal-

3946

to-noise ratio (SNR) of the sensor for the given object. We
can only recognize a change if the alteration of the sensor
values for a given position deviation is significantly higher
than the noise generated by the sensor.

C. Determination of the change function

To be able to adapt to a continuous change, we must
specify a function fcomp: Rm → R6 with

f comp mobj= f change
−1

 f change pobj
so that we can compute an estimated change for a given
sensor value.

1) Analytical computation of fcomp

The straightforward way to determine fcomp is to work out
an analytical solution. But sometimes this task proves to be
too complex: While the type of function may be known, it
can be extremely difficult to determine a set of parameters,
which fit the function well enough to the problem at hand.

2) Analytical approximation of fcomp

If we cannot calculate the parameters of fcomp analytically,
but at least have some idea about the type of the function,
we must create a training set T containing pairs of type
<physical change, sensor values>. To build T, we
systematically create artificial changes and measure the
sensor values for each change. Using this training set, we
can approximate fcomp, so that it will be close enough to f
-1

change to ensure a valid guess for an existing change. The
accuracy of fcomp is then determined by the size of T and the
accuracy of each sample in T. The minimum size of the
training set is determined by the complexity of fchange and is
equal to the number of parameters in the change function,
although the size should be significantly higher to
counterbalance the noise of the sensor data.

Once we have created a training set, we can use it to
approximate fcomp, provided that fchange fulfills the
requirements mentioned in Section III.B. To achieve this,
we use analytical or iterative methods to fit a given function
to the data which minimizes, e.g., the mean error of all
pairs in T. Various algorithms for curve fitting exist, the
most popular are the Householder algorithm [11, 18] and
the Levenberg-Marquardt algorithm [16, 17]. The problem
with these and other approaches is that we must have some
kind of idea about the general type of fcomp, that is which
sensor values are influenced by which DOF of the change.

3) Estimation of fcomp for unknown function types
The problem gets even more complex, when the type of

function itself is unknown. Here, we will need the same
training set as for an analytical approximation. Then we
can employ series expansion, neural nets or equivalent
methods to obtain a solution for T. In this case, we estimate
the type of function which fits the training set best. For
example, we can use multilayer perceptron (MLP) networks
[2, 22] to implicitly learn fcomp. While all of these
approaches save us the task of analytically determining the
general outline of fcomp, the price we have to pay for this is
that the size of T increases drastically, because we will need

a lot more samples to train the MLP adequately.
4) Learning algorithms to determine fcomp

Both approaches for approximation or estimation of fcomp

require a training set. So far, we have assumed that we
create T offline before the actual execution. Another option
is to create T online, so we let the robot figure out which
change will produce which sensor values during the
execution of the task. The actual algorithms to infer fcomp

from T remain unchanged.
The offline approach has the advantage of providing us

with very exact pairs for T, resulting in a very well
approximated function fcomp. This can be used directly and
delivers the best possible results without having to re-train
at a later point. The disadvantage is, that we need to know
in which DOF the change will occur beforehand, in order to
create a set T which covers all possible changes. If we
choose to place no external restrictions on the change, we
must deal with six possible DOF, thus enlarging T
drastically.

In case that there is no way to obtain some set of training
data offline, we must make use of learning algorithms to
obtain and classify training data during the actual task
execution, called online creation of T. Every time we
measure a change, we add a new pair to T. In this case, we
do not have to deal with the task of artificially building the
training set. But the main problem with this approach is
that we do not know the correct change for a given sensor
value.

We further classify learning algorithms into three groups:
Supervised, reinforcement and unsupervised learning. In
supervised learning, the programmer checks the estimation
and corrects it, if necessary. Here, this approach is
impractical, because the programmer would have to stay
with the robot during execution, negating the desired time
saving of online creation of T. Reinforcement learning
strategies have no need for supervision. Instead they guess
the change and check its correctness by measuring and
evaluating after the adaptation. Based on this rating, each
pair in T is modified. Unsupervised learning strategies don't
even evaluate how well the change has been guessed in the
last execution.

All of the described approaches are summarized and
ordered by their complexity in Table 2. If the underlying
physical relation between sensor and position deviation is
known, the accuracy of the approximation is only dependent

TABLE 2
CLASSIFICATION OF APPROXIMATION METHODS TO DETERMINE THE COMPENSATION

FUNCTION.

Knowledge about fchange Methods for approximation

Thorough / Complete Analytical computation

General type of function Analytical approximation

Evaluated training data only Function estimation

Unknown or no training data Reinforcement or unsupervised
learning strategies

3947

on the signal-to-noise ratio of the sensor.
In case of online creation of T, estimating fcomp with

neural nets or similar methods may not be reasonable: In
the very first executions T will be too small for adequate
training. Later on, we have to keep in mind that every pair
in T describes a guess of a change for a given sensor value.
The quality of T is determined by the quality of every guess.
When we have to guess a lot of values, this will deteriorate
the quality of T thus reducing the net's ability to correctly
calculate the drift for a given sensor value.

In all cases, fcomp must be continuous (or will be, should a
neural network be used), otherwise it cannot be
approximated by the methods described above.

IV. SUPERVISING AND ADAPTING TO CHANGES DURING EXECUTION

In this section, we will explain how an adaptive change
compensation can be integrated easily into a robot program.
We will use the basic principles described in Section III and
show how these can be combined to form a powerful, yet
easy method to deal with manipulation changes.

For all applications, one can sub-classify between the
tasks which must be accomplished during initialization and
the supervising and compensation process during execution.

A. Setup and Initialization

The first thing to do is decide which positions are to be
supervised for changes. This is usually easy: The positions
were tools are placed, parts are delivered to the robot, etc.
When a position is chosen, one must consider the possible
DOF of the change. This task is not as easy as it may sound:
Variations are usually straightforward, because they
represent the flexibility the robot is supposed to cope with.
Unfortunately, the drift is an unintentional factor. But
usually it is easy to make some assumptions about it. For
example, if an object is placed on a table, one can assume
that the position and orientation of it may move along the x/
y-plane of table and that the object may rotate around its z-
axis. Drifts (or variations) along the z-axis and rotations
around the x- and y-axis may happen, but are exceedingly
rare. So here, one can limit the change which is to be
supervised to three DOF: The x- and y-axis for translations
and the z-axis for rotation.

The next thing to be done is to decide which sensor will
be used to supervise the change. It must be kept in mind,
that the sensor signal must alter when a change occurs and
that the dimension of the sensor values is at least as high as
the DOF of the change. Additionally one has to set a change
threshold cchange for each dimension of the sensor. The
purpose of this treshold is to prevent the robot from
recognizing false or minimal changes due to the SNR of the
sensor. The thresholds should be chosen at least as high as
the SNR of the sensor.

The last thing to do during the setup is to move the robot
to the desired position pobj and measure the initial sensor
values minit. This set of values defines the target values

against which the robot checks for an occurring change
during execution.

If the training set is to be acquired offline, this step is
extended to that point that either the object itself is moved
deliberately by a preset, known deviation or the robot moves
by a preset distance. In both cases the resulting pairs of
position deviation and corresponding sensor values (pi - pobj,
mi - minit) are recorded and added to the training set. The
subtraction of pobj and minit from all measured values yields
the advantage that fchange(0)=0, so the input will be zero if no
change has occurred. Then one can use one of the methods
described in Section III.C to derive fcomp. If fcomp shall be
acquired online, one has to make an initial guess about the
nature of fcomp, that is set some initial parameters which
roughly specify f -1

change. Otherwise the robot will not be able
to perform a valid adaptation right from the beginning.

Additionally, the approximation can be used to extract a
measure of the SNR of the sensor, which is simply the mean
error of all samples compared to fcomp. Then, the accuracy
error of the adaptation is given by

error= f comp
1
n ∑
i=1,. .. , n

mi− f comp pi

for n samples in T. It is impossible to compensate a change
more exactly than this measure.

B. Adaptation to changes during execution

Each time the robot approaches the position in question
in execution i, it will record a new set of sensor values mi

and subtract minit. If the resulting value exceeds cchange for
this dimension of the sensor, a significant change has
occurred. The estimated change pguess is obtained by
applying fcomp to mi. Note, that pguess describes the deviation
of the object in question in regard to its original position
and is not a position in world coordinates. In which way the
robot deals with this deviation depends on the type of
change: If we deal with a variation the robot should adapt to
it and modify the following movements and operations to
take care of the fact that the object has moved. If we deal
with a drift, we can either choose to try to compensate the
drift, that is put the drifted object back to its original
position or simply adapt to it and treat it like a variation.

In summary, the proposed method is independent of the
type of sensor and can be applied to all situations if the
sensor is capable of detecting a change.

V. EXPERIMENTS

In this section, we will show the validity of our approach by
two experiments. In the first experiment, we implement a
recognition of rotational variations around an objects z-axis
using distance sensors. We determine the change function
first analytically and then approximate it using a training
set generated offline. Afterwards, we compare both
approaches. In the second experiment, we train the robot to
react to translational deviations along the x- and y-axis of a
disk placed on a table. First, we fit a given function to our

3948

training set and afterwards train a neural network to learn
fchange and then compare both approaches.

A. Measuring the rotation of a steel ruler

In the first experiment, we want to find a measure for the
rotation of a steel ruler lying on a table, so we do not have
to ensure that the ruler is orientated correctly every time we
want to grasp it. For this purpose we use three Sharp
GP2D120 distance sensors set up in a straight line facing
the ruler (Figure 1, left). Each sensor has a resolution of 1
cm in the range from 4 to 30 cm. The sensors are set up 20
cm apart from each other. While it is a straightforward task
to determine the rulers distance from the sensors, which can
be solved analytically quite easily, we are interested in
allowing rotational variations of the ruler. In theory, we can
measure this variation by subtracting two sensor values
from each other and comparing this value to one of the
original sensor values. Then the rotation of the ruler is
simply

f comp s i−s j=arctan
s i−s j
d

where si and sj describe distance measurements of two
sensors i, j. The parameter d describes the distance that the
two sensors are set up apart from each other. Note, that this
is the only parameter in the change adaptation function. In
theory, we would determine this parameter and set up an
appropriate algorithm to calculate the rotational drift. But
here, we will try to determine this parameter
experimentally. To achieve this, we have grasped the ruler,
rotated it counterclockwise in steps of one degree and
measured the sensor values. This compromises our training
set (Figure 1, right) of 30 samples for angles from 0 to 30°.
To approximate this function we have used a computational
approach described in Section III.C.2 employing the
Levenberg-Marquardt algorithm. We have used two general
types of functions for the approximation. The first is of the
same type as the theoretical drift function, an arctan-
function with one free parameter, dguess. The second function
is a simple linear function of type aguess + bguess*x, with two
parameters to approximate. In the case, where we used the
sensors spaced 40 cm apart, we could only use the first 22
of the 30 training pairs, as for rotations bigger than 22°, the
measured distance of the ruler to the third sensor exceeded
the sensor range. The functions are displayed in Figure 2
and the results are summarized in Table 3. We have
calculated the mean error of each sample to the theoretical
value, giving us an impression about the SNR of the
sensors. This is relatively low, so we can only recognize
changes which are larger than 2°, but the width of the
gripper is big enough to deal with this tolerance. To
evaluate how well the approximated functions compare to
the theoretical function, we have analytically computed the
integral error of the difference of the two functions on a
range from 0 to 10 cm. We have chosen this range because
it is significantly higher than the SNR of the sensors and a

difference of 10 cm in two sensors values would mean a
rotation of 26° and 21° for a sensor distance of 20 cm and
40 cm respectively. This gives us an idea of how well we
can estimate the variation adaptation function with the
given training data. We can see, that if we know that the
change function is an arctan function, we can form an
estimate with a relatively low error. The error is
significantly higher if we do not know the type of change
adaptation function and guess it to be linear.

In summary, even with the relatively low resolution of
the sensor we are able to enable the robot to flexibly grasp
the steel ruler, even if it is displaced by up to 13 cm and
rotated by up to 21°. All we had to to is build a training set
by deliberately rotating the ruler and measuring the
resulting sensor values.

B. Measuring the drift of a disk on a table

In this experiment, we use a force/torque sensor to
recognize the deviation of a round disk along the x- and y-
axis of a table. The use of this sensor has the advantage,
that it is mounted at the robots tool-tip, so no additional

Figure 2: Theoretical and approximated functions for a rotational drift
compensation function. The training data is shown as red dots. The theoretical
function is shown in green. The approximated functions are shown in blue
(arctan) and purple (linear).

Figure 1: Left: Setup of experiment A. Three distance sensors are used to
determine the rotation of the steel ruler. Right: Measured distances for given
angles and theoretical values.

s

1

s

2

s

3

TABLE 3:
ACCURACY OF APPROXIMATED CHANGE FUNCTIONS COMPARED TO THEORETICAL FUNCTION

FOR TWO DIFFERENT SENSOR DISTANCES.

Sensor
distance
[in cm]

Number of
samples used

Mean error of
raw data to
theoretical

model
[in °]

Integral error
of arctan
approx. to
theoretical

model
[0-10cm]

Integral error
of linear

approx. to
theoretical

model
[0-10cm]

20 30 2.63 1.64 17.83

40 22 2.28 0.92 11.46

3949

sensors have to placed in the robots workspace (Figure 3).
The idea is, that if the disk drifts along the table, we can

measure a significant moment along the x- and y-axis
because we will not grasp the disk in the center. While it is
still possible to analytically determine a drift compensation
function, this is highly dependent on the weight of the disk,
its position, etc. Because of this, we try to determine fcomp

experimentally.
We have chosen to acquire the training set T with an

offline approach and have set up a simple algorithm which
moves along a grid of a specified size around the center of
the disk, picks it up at given intervals and measures the
resulting moments.

We know that the relation between the measured
moments and the drift is linear and have set up the general
drift compensation function in that way:

f comp mX

mY =
a 1b1∗m Xc1∗mY
a2b2∗m Xc 2∗mY

We have assumed that a deviation along the x- and y-axis
influences the moments along both axes. The sensor values
along the grid and the approximated functions for a grid
size of 9*9 are shown in Figure 4.

We have used the same training sets to train a MLP
network to learn the same drift compensation function. The
MLP consists of three layers with two input and output
neurons and three neurons in the hidden layer. Each MLP
was trained for a maximum of 100000 epochs with an
desired error of 0.001. The functions learned by the MLP
network for a grid size of 15*15 are shown in Figure 5.

It can be seen that a deviation along the x-axis mainly
influences the moment along the y-axis and vice versa. We
have calculated the mean error of the approximated
function and the training set for various grid sizes, giving
us an idea about the SNR of the sensor. To test our drift
compensation function, we have deliberately moved the disk
by a random offset preal and recorded the corresponding
sensor values mreal. Afterwards, we have entered mreal into
our compensation function and compared the estimated drift
pguess against the real drift preal. We have repeated this with
100 different offsets for every grid size. The results are
summarized in Table 4.

We can see that due to the SNR of the sensor, which is
about 3.5 Nm, we need at least 16 samples in our training
set to obtain a reasonable approximation for fcomp. Below this
value the noise of the sensor inhibits a reasonable
approximation. On the other hand, it is unnecessary to
create excessively large training sets with hundreds of
samples. Above 81 values, there is no significant
improvement of the approximation if we increase the
number of samples.

In case we do not know the type of function and use a
neural network to approximate the function we need more
than twice as many samples to approximate the change
function with the same accuracy. But for training sets of
this size, an equally good approximation is possible.

TABLE 4:
COMPARISON OF APPROXIMATION WITH A GIVEN TYPE OF FUNCTION AND A MLP NEURAL

NETWORK.

Number of
samples used

to
approximate
drift function

Mean error of
raw data to

approximated
model using
the analytical

function
[in mm]

Mean
accuracy for
100 random
drifts using
analytical
function
[in mm]

Mean error of
raw data to

approximated
model using

the MLP
network
[in mm]

Mean
accuracy for
100 random
drifts using
the MLP
network
[in mm]

4 3.13 10.99 0.31 12.47

9 3.28 6.33 1.23 8.99

16 3.57 4.03 1.97 7.92

25 3.61 3.57 3.10 4.88

81 4.01 3.62 4.55 4.05

121 4.09 3.60 4.65 4.03

225 4.05 3.62 4.04 3.50

The accuracy of the approximated change functions determined with the
Householder algorithm and a neural net for various sizes of supervised
training data. The accuracy is determined by testing both functions with
samples which were not used for the approximation.

Figure 5: Measured moments mX and mY (red) of the disc for given
deviations and approximated drift functions (green) for supervised acquisition
using a neural network with a training set of 225 samples.

Figure 4: Measured moments mX and mY (red) of the disc for given
deviations and approximated drift functions using the Householder algorithm
(green) for supervised acquisition with a training set of 81 samples.

Figure 3: Setup of the second experiment.
The vacuum gripper grasps the disk at
specified offsets from the center and
measures the forces and torques for each
position. Based on this information the drift
compensation function is approximated using
a Householder approximation and a MLP
neural network.

3950

In both cases the low mean error of the approximations
for low grid sizes is caused exactly by this fact: There are
only a few training samples, so it is possible to find a very
good approximation with a low cumulative error for all
samples, but the mean error for samples not used for the
approximation is relatively high. After a certain sample
size, the mean error of the approximation remains constant,
thus enabling us to determine the SNR of the sensor.

With both approximations, we are able to automatically
check if and how far the disk has moved along the table and
use the result to adapt to the environment accordingly. The
approximations are precise enough to allow for an
adaptation without the need to re-grasp the disk.

In summary, we have shown that it is possible to easily
approximate change functions independent of the type of
sensor with relatively low effort. The less knowledge we
have entered into the approximations, the bigger the
training set must be in order to successfully approximate the
function.

VI. CONCLUSION

The aim of this paper is to enable a programmer to easily
employ external sensors for flexible robot programms. The
focus of this work is to show that the function describing
the connection between sensory data and positional
variations can be acquired automatically and task
independent by the robot without the need for intricate
calculations by the programmer. We have outlined the basic
requirements on both the sensor and the physical relation of
sensor data and position deviation that must be met to
compute a change from a sensor signal. We have presented
methods to determine this function automatically and have
ordered them by the amount of knowledge necessary for the
approximation. The presented requirements and methods
are independent from the type of sensor and can easily be
incorporated into a robot program. Finally, we have
presented two experiments to validate our research. We
have shown that is possible to employ the proposed methods
to successfully approximate the change function for two
given applications using different sensors.

Further work needs to be in finding ways to generate the
training set online and develop a rating function which is
capable of telling how good an estimated change was
guessed depending on sensor data gained in the very next
executions. Additionally, we want to develop approaches
how this change function can be employed to deal with both
variations and drifts adaptively in a systematic way, that is
independent from the actual type of application. Finally, we
want to check if fuzzy rule based sets describing the change
function may be employed.

REFERENCES

[1] M. Adams, “Sensor Modelling, Design and Data Processing for
Autonomous Navigation”, World Scientific Publishing, 1998, ISBN
9810234961

[2] C.M. Bishop, “Neural Networks for Pattern Recognition”,Oxford
University Press., 1995, ISBN 0-19-853849-9

[3] B. Bolles, H. Bunke, H. Christensen, H. Noltemeier, “Modelling and
Planning for Sensor-Based Intelligent Robot Systems”, Seminar on,
Schloß Dagstuhl, 1998, http://www.dagstuhl.de/Reports/98391.pdf

[4] S. R. Chhatpar, M. S. Branicky. “Localization for robotic assemblies
with position uncertainty”. Proc. IEEE/RSJ Intl. Conf. Intelligent Robots
and Systems, Las Vegas, NV, October, 2003.

[5] J. Deiterding, D. Henrich “Automatic adaptation of sensor-based
robots”, Int. Conf. o. Intelligent Robots and Systems 2007

[6] G. Dudek, C. Zhang, “Vision-based robot localization without explicit
object models” Int. Conf. On Robotics and Automation, 22-28 Apr
1996, ISBN 0-7803-2988-0, pages 76-82 vol.1

[7] M. Dong, L. Tong, B.M. Sadler, “Information retrieval and processing
in sensor networks: deterministic scheduling vs. random access”, Proc.
o.t. Int. Symp. on Information Theory, 2004. ISIT, pages 79 - 85

[8] R. Duda, P. Hart and D. Stork, “Pattern Classification”, Wiley & Sons,
2000, ISBN 0471056693

[9] R.J. Firby, “Adaptive execution in complex dynamic worlds”,
Dissertation, Yale university, 1989,
www.uchicago.edu/users/firby/thesis/thesis.pdf

[10] G. Hager, “Task-Directed Sensor Fusion and Planning: A
Computational Approach”, Springer, 1990, ISBN 079239108X

[11] A. S. Householder, “Unitary Triangularization of a Nonsymmetric
Matrix” Journal ACM, 5 (4), 1958, 339-342.

[12] S.A. Hutchinson, R.L. Cromwell and A.C. Kak, “Planning sensing
strategies in a robot work cell with multi-sensor capabilities”, in. Proc.
IEEE Int. Conf. On Robotics and Automation, 1988, pages 1068-1075

[13] J. W. Jeon, S. Park, S. Kim, “Compensation for servo drift in industrial
robots”, Industrial Electronics, Control, Instrumentation, and
Automation - IECON, (2), 1992, pp 589-594

[14] D. Kriesten, M. Rößler, et al., “Generalisierte Plattform zur
Sensordatenverarbeitung”, Dresdner Arbeitstagung Schaltungs- und
Systementwurf , 2006, http://www.eas.iis.fhg.de/events/workshops/dass/
2006/dassprog/pdf12_kriesten.pdf

[15] U. Leonhardt, J. Magee, “Multi-sensor location tracking”, Proceedings
of the 4th annual ACM/IEEE international conference on Mobile
computing and networking, Dallas, USA, 1998, ISBN 1-58113-035-X ,
pages: 203 – 214

[16] K. Levenberg, “A Method for the Solution of Certain Non-Linear
Problems in Least Squares." Quart. Appl. Math. 2, 164-168, 1944.

[17] D. Marquardt, "An Algorithm for Least-Squares Estimation of
Nonlinear Parameters." SIAM J. Appl. Math. 11, 431-441, 1963.

[18] D. Morrison, “Remarks on the Unitary Triangularization of a
Nonsymmetric Matrix”, Journal ACM, 7 (2), 1960, 185-186

[19] D. Orin, W. Schrader, “Efficient Jacobian determination for robot
manipulators”, Rob. Research: The 1st int. symposium, M. Brady and P.
R.P. Paul (ed.), MIT Press, Cambridge, MA, 1984

[20] N. Paragios, G. Tziritas. “Adaptive Detection and Localization of
Moving Objects in Image Sequences” Signal Processing: Image
Communication, 14:277--296, 1999.

[21] R. Pfeifer, C. Scheier, “From perception to action: The right direction”,
Proc. ``From Perception to Action'' Conference", IEEE Computer
Society Press, Los Alamitos, 1994, pages = "1-11"

[22] R. Rojas, “Neural Networks. A Systematic Introduction”, Springer,
1996, ISBN 978-3540605058

[23] K. Rui, M. Yoshifumi, M. Satoshi, “Information Retrieval Platform on
Sensor Network Environment”, IPSJ SIG Technical Reports, 2006, No.
26, ISSN 0919-6072, pages 37-42

[24] U. Thomas, A. Movshyn, F. Wahl, “Autonomous Execution of Robot
Tasks based on Force Torque Maps”, Proc. o. t. Jnt. Conf. on Robotics.
2006, Munich, Germany, May 2006

[25] M. Wheeler, “Automatic modeling and localization for object
recognition”, Carnegie Mellon University, Computer Science Technical
Report CMU-CS-96-118, 1996.

3951

