
Abstract—The aim of this paper is to enable a programmer 
to  easily  employ  external  sensors  for  flexible  robot 
manipulation.  We describe  a general  approach to determine 
the relation between the position deviation of an object  and 
the  resulting  data  from  sensors  used  to  recognize  this 
deviation. This information can be used to employ adaptation 
techniques to compensate the deviation thus enabling robots to 
react  flexibly  to  changes  such  as  workspace  variations  or 
object  drifts.  The  proposed  methods  are  designed  to  be 
independent  of  the  type  of  sensor.  We  describe  methods  to 
automatically  determine  a  function  describing  this  relation 
and  how  adaptive  techniques  can  be  integrated  easily  into 
robot programs without detailed  knowledge  provided by the 
programmer.
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I. INTRODUCTION

ndustrial  robots  are  able  to  perform  complex  tasks 
without symptoms of fatigue as well as highest precision 

and speed. However, these tasks are nearly always executed 
in  a  fixed environment,  that  is  the precision is gained  by 
ensuring  that  all  objects  are  placed  in  exactly  the  same 
position  every  time.  All  parts  need  to  have  the  same 
dimension,  position,  orientation,  etc.  Only  by employing 
external  sensors  such as cameras  or force-/torque-sensors, 
we  can  enable  a  robot  to  deal  with  imprecisions  and 
variations  occurring  in  the  objects  and  the  environment. 
When  designing  such  programs  for  flexible  robots,  a 
programmer faces two problems: The first problem is, that 
the programmer  must  know which type of sensor  may be 
employed  to  measure  a  specific  variation.  The  second 
problem is to determine how the measured data (physically) 
relates to the variation. 

I

In [5] we have classified changes that can occur between 
two  executions  of  the  same  robot  program  with  two 
characteristics:  The  origin  of  the  change  and  the  robots 
reaction to it (Table 1). An indeterminacy is something we 

are not aware of at this moment, but once we have learned 
about it,  it  will remain  constant  for a prolonged period of 
time.  Variations on  the  other  hand  occur  every time  the 
robot  performs  the  task  at  hand.  Faults  and  errors  occur 
when a sudden change in the workspace occurs. The drift is 
a problem caused by gradual changes within the workspace, 
i.e. the settings of machines and tools changes over time. In 
this  paper,  we  are  interested  in  ways  of  dealing  with 
changes  requiring  a  continuous  adaptation  strategy: 
Variations and drifts.

To successfully deal with both, we need external  sensors 
to identify the change so we can compute a reaction to it. 
The first task is to find a function which transforms sensor 
values into a Cartesian description of the change. While this 
is straightforward for “easy” sensors, e.g. distance sensors, 
it proves to be a lot more difficult for complex sensors, like 
images from cameras etc. Additionally the sensor values are 
nearly always blurred by some kind of noise.  The classical 
approach is to analytically determine a function describing 
this  mapping.  But,  for  complex  sensors  this  task  turns 
difficult  very  fast  and  sometimes  finding  an  analytical 
solution  is  simply not  possible  if  the  underlying  physical 
principles are unknown to the programmer.  In  these cases 
other  approaches  have  to  be taken  to  get  an  idea  which 
change has occurred for a given sensor signal as input.

In  this  paper,  we  introduce  a  systematic  approach  to 
recognize continuous changes in  manipulation tasks using 
external sensors, regardless of the type of sensor. The rest of 
this paper is organized as follows: In Section II,  we give a 
short  overview of related  work  concerning  this  topic.  In 
Section  III,  we  define  the  mathematical  properties  of 
continuous changes and define a change model.  Based on 
this model we show which requirements must be fulfilled by 
the change and the supervising sensors to allow a successful 
recognition of and adaptation to the change. In Section IV, 
we describe methods to recognize  and  adapt  to a  change 
during  execution  of the  task.  In  Section  V,  we show the 
validity of our approach with two experiments.  In  the last 
Section  VI,  we give  a  short  summary  of  our  work  and 
discuss further steps.

II. RELATED WORK

The task of infering information from noisy sensor data is 
covered  thoroughly  by  various  books  on  pattern 
classification,  e.g.  [8].  But  all  of these  describe  methods 
how to  extract  the  relevant  information  from  the  sensor 
values, assuming that  this information is somehow present 
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TABLE 1
CLASSIFICATION OF CHANGES THAT CAN OCCUR BETWEEN TWO EXECUTIONS OF THE SAME 

PROGRAM [5]. 

Origin of change

Caused by the task Caused by abrasion

Reaction  to 
change

One-step 
learning

Indeterminacies Faults and Errors

Continuous 
learning

Variations Drifts
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in the data.  Multiple papers exist dealing with the task of 
planning sensing strategies for robots, e.g. [15, 23]. Most of 
these  assume  a  specific  task  [1,  10]  or  are  aimed  at 
employing  multi-sensor  strategies  [3,  7].  Various  papers 
deal with the task of setting up the sensors in the work cell 
to allow information retrieval [12]. [14] proposes a general 
platform for sensor data processing, but once more assumes 
that  the sensors are  already capable of detecting changes. 
Papers  covering  the  topic of employing  sensors  for  robot 
tasks from a general point of view are [9, 21]. There is one 
paper dealing specifically with drift in the servo motors of 
robots joints [13], but again,  this work is geared towards a 
specific type of sensor.

Two types of sensors are typically used for manipulation 
tasks:  Force-/torque  sensors  and  cameras.  When 
force-/torque  sensors  are  employed,  maps  are  created 
describing the measured forces with respect to the offset to 
the  goal  position.  [4]  describes  possibilities  to  either 
analytically compute these maps and  or create these maps 
from samples.  Based on this,  [24] shows how these maps 
can be computed using CAD data of the parts involved in 
the task. In both cases, the maps must be created before the 
actual execution of the task and are only valid if the parts 
involved are  not  subject  to dimensional  variations.  When 
the information is acquired using cameras, the first step is 
to  perform  some  kind  of  pre-processing  of  the  data  to 
extract  the  relevant  information.  To  determine  in  which 
way this information relates to a positional variation is once 
more task of the programmer and highly dependent on the 
type of the task. Examples are given in [6, 20, 25].

In  summary,  all  of the  papers  mentioned  above either 
propose  specific  solutions  for  given  types  of sensors  and 
tasks  or  propose  algorithms  to  extract  the  relevant 
information from the sensor data.   Here, we are interested 
in defining the fundamental properties a sensor must fulfill 
in  order  to  allow such  an  information  extraction.  These 
properties should be independent from the actual  task and 
only define requirements which must be met by the sensor 
in order to allow for a recognition of and adaptation to the 
change.  Using  this  knowledge  a  programmer  can  decide 
which sensor can be employed to monitor  changes during 
executions of a robot task and how a change in the sensor 
data  can  be mapped  to  a  position  deviation  in  Cartesian 
space.

III. REQUIREMENTS FOR CHANGE DETECTION

In  this  section,  we  will  define  the  term  continuous 
change and  show how this  change  can  be modeled using 
analytical  terms.  Based on this,  we show which  premises 
must  be  fulfilled  in  order  to  successfully  recognize  an 
occurring  change  during  a  manipulation  task.  Then,  we 
describe  methods  how  a  compensation  function  can  be 
determined that  computes a position deviation for a given 
sensor signal.

A. Definition and properties of a continuous change

We define a continuous change as a spontaneous position 
deviation in  Cartesian  space between an  estimated and an 
actual  position of an object in  the workspace of the robot 
between two consecutive executions of the same task. 

This means that we will approach the position  pobj of an 
object we believe to be correct during each execution t of a 
task and  measure  its  position deviation  Δpobj compared to 
the previous execution:

Δpobj= pobj t – pobj t−1 
This definition refers to the position deviation of the object 
in Cartesian space. But we will need a sensor to recognize 
this deviation.  This sensor must not be the same which is 
used to approach pobj, otherwise we are unable to recognize 
the change. This can be explained by two examples: In the 
first example, the position is determined using the internal 
sensors  of the  robot.  If  the  object has  moved,  we cannot 
recognize  this  change  solely  with  the  internal  sensors. 
Instead  we have  to  employ a  second,  external  sensor  to 
measure if a deviation has occurred. In the second example, 
we use a force/torque sensor to describe a force-dependent 
position. In this case, we can employ the internal sensors of 
the robot to check if this position has moved. 

We see that  the  position  pobj of an  object  in  Cartesian 
space is mapped to a (vector of) sensor value(s), mobj, in the 
measurement  space  of the  sensor,  so we have  a  function 
fchange: R6 → Rm, where m is the dimension of the sensor:

f change  pobj=mobj

B. Requirements of the drift function and sensor

To successfully adapt to the change, we must be able to 
infer the position deviation from the sensor values, that  is 
build the inverse function of fchange,    f -1

change: Rm → R6 with
 ∃ f change

−1 with f change
−1

 f change p obj= pobj
Based on this requirement, we can directly postulate that a 
physical change must modify the sensor signal.  Otherwise 
we would not be able to recognize a change, that is 

f change  pobj=c∀ pobj , c∈R
We  can  easily  see  that  there  exists  no  inverse  for  this 
function.  There  is  always  an  inverse  for  all  bijective 
functions. In addition, if fchange is continuous, fchange is strictly 
monotonic  as  well.  If  necessary  the  surjection  can  be 
guaranteed  by a  deliberate  constraint  of the  measurement 
range of the sensor.

Another requirement is that the dimension of the sensor 
must be at least as high as the degrees of freedom (DOF) of 
the change. Otherwise there can be no inverse for fchange. 

If  we are  only taking  the  physical  effect  into  account, 
which maps a position to a set of sensor values, there is no 
universal solution for  fchange. Instead the sensor values for a 
given position are highly dependent on the objects position 
in  the  workspace  and  the  type  of  object  which  is  to  be 
manipulated.  It  should  be  noted  though,  that  there  are 
similarities of the change function to the Jacobi matrix [19].

Another thing which must be kept in mind is the signal-
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to-noise ratio (SNR) of the sensor for the given object. We 
can only recognize a change if the alteration of the sensor 
values for a given position deviation is significantly higher 
than the noise generated by the sensor.

C. Determination of the change function

To be able  to  adapt  to  a  continuous  change,  we must 
specify a function fcomp: Rm → R6 with 

f comp mobj= f change
−1

 f change  pobj 
so that  we can  compute an  estimated change  for a  given 
sensor value. 

1) Analytical computation of  fcomp

The straightforward way to determine fcomp is to work out 
an analytical solution. But sometimes this task proves to be 
too complex: While the type of function may be known, it 
can be extremely difficult to determine a set of parameters, 
which fit the function well enough to the problem at hand.

2) Analytical approximation of  fcomp

If we cannot calculate the parameters of fcomp analytically, 
but at least have some idea about the type of the function, 
we must  create  a  training  set  T containing  pairs  of type 
<physical  change,  sensor  values>.  To  build  T,  we 
systematically  create  artificial  changes  and  measure  the 
sensor values for each change.  Using this training  set, we 
can approximate  fcomp,  so that  it  will  be close enough to  f  
-1

change to ensure a  valid  guess for an  existing  change.  The 
accuracy of fcomp is then determined by the size of T and the 
accuracy of each  sample  in  T.  The  minimum  size of the 
training set is determined by the complexity of fchange and is 
equal to the number of parameters in the change function, 
although  the  size  should  be  significantly  higher  to 
counterbalance the noise of the sensor data. 

Once we have  created  a  training  set,  we can  use it  to 
approximate  fcomp, provided  that  fchange fulfills  the 
requirements  mentioned in  Section III.B.  To achieve this, 
we use analytical or iterative methods to fit a given function 
to  the  data  which  minimizes,  e.g.,  the  mean  error  of all 
pairs  in  T.  Various algorithms  for curve fitting  exist,  the 
most  popular  are the Householder  algorithm [11, 18] and 
the Levenberg-Marquardt  algorithm [16, 17]. The problem 
with these and other approaches is that we must have some 
kind  of idea about the general  type of  fcomp,  that  is  which 
sensor values are influenced by which DOF of the change.

3) Estimation of fcomp for unknown function types
The problem gets even more complex, when the type of 

function  itself  is  unknown.  Here,  we will  need  the  same 
training  set  as  for  an  analytical  approximation.  Then we 
can  employ  series  expansion,  neural  nets  or  equivalent 
methods to obtain a solution for T. In this case, we estimate 
the  type of function  which  fits  the  training  set  best.  For 
example, we can use multilayer perceptron (MLP) networks 
[2,  22]  to  implicitly  learn  fcomp.  While  all  of  these 
approaches save us the task of analytically determining the 
general  outline of fcomp, the price we have to pay for this is 
that the size of T increases drastically, because we will need 

a lot more samples to train the MLP adequately. 
4) Learning algorithms to determine  fcomp

Both approaches for approximation or estimation of fcomp 

require  a  training  set.  So far,  we have  assumed  that  we 
create T offline before the actual execution. Another option 
is to create  T online, so we let the robot figure out which 
change  will  produce  which  sensor  values  during  the 
execution  of the  task.  The  actual  algorithms  to infer  fcomp 

from T remain unchanged.
The offline approach has the advantage of providing us 

with  very  exact  pairs  for  T,  resulting  in  a  very  well 
approximated function  fcomp.  This can be used directly and 
delivers the best possible results without having to re-train 
at a later point. The disadvantage is, that we need to know 
in which DOF the change will occur beforehand, in order to 
create  a  set  T which  covers  all  possible  changes.  If  we 
choose to place no external  restrictions on the change,  we 
must  deal  with  six  possible  DOF,  thus  enlarging  T 
drastically.

In case that there is no way to obtain some set of training 
data  offline,  we must  make use of learning  algorithms  to 
obtain  and  classify  training  data  during  the  actual  task 
execution,  called  online  creation  of  T.  Every  time  we 
measure a change, we add a new pair to T. In this case, we 
do not have to deal with the task of artificially building the 
training  set.  But  the  main  problem with  this  approach  is 
that we do not know the correct change for a given sensor 
value.

We further classify learning algorithms into three groups: 
Supervised,  reinforcement  and  unsupervised  learning.  In 
supervised learning,  the programmer checks the estimation 
and  corrects  it,  if  necessary.  Here,  this  approach  is 
impractical,  because  the  programmer  would  have  to  stay 
with the robot during execution, negating the desired time 
saving  of  online  creation  of  T.  Reinforcement  learning 
strategies have no need for supervision. Instead they guess 
the  change  and  check  its  correctness  by measuring  and 
evaluating after the adaptation.  Based on this rating,  each 
pair in T is modified. Unsupervised learning strategies don't 
even evaluate how well the change has been guessed in the 
last execution.

All  of  the  described  approaches  are  summarized  and 
ordered by their  complexity in  Table 2.  If  the underlying 
physical  relation  between sensor and  position  deviation is 
known, the accuracy of the approximation is only dependent 

TABLE 2
CLASSIFICATION OF APPROXIMATION METHODS TO DETERMINE THE COMPENSATION 

FUNCTION. 

Knowledge about fchange Methods for approximation

Thorough / Complete Analytical computation

General type of function Analytical approximation

Evaluated training data only Function estimation

Unknown or no training data Reinforcement or unsupervised 
learning strategies
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on the signal-to-noise ratio of the sensor.
In  case  of  online  creation  of  T,  estimating  fcomp with 

neural  nets or similar  methods may not be reasonable:  In 
the  very first  executions  T will  be too small  for adequate 
training. Later on, we have to keep in mind that every pair 
in T describes a guess of a change for a given sensor value. 
The quality of T is determined by the quality of every guess. 
When we have to guess a lot of values, this will deteriorate 
the quality of  T thus reducing the net's ability to correctly 
calculate the drift for a given sensor value.

In all cases, fcomp must be continuous (or will be, should a 
neural  network  be  used),  otherwise  it  cannot  be 
approximated by the methods described above.

IV. SUPERVISING AND ADAPTING TO CHANGES DURING EXECUTION

In  this section, we will explain how an adaptive change 
compensation can be integrated easily into a robot program. 
We will use the basic principles described in Section III and 
show how these can be combined to form a powerful,  yet 
easy method to deal with manipulation changes.

For  all  applications,  one  can  sub-classify between  the 
tasks which must be accomplished during initialization and 
the supervising and compensation process during execution.

A. Setup and Initialization

The first thing to do is decide which positions are to be 
supervised for changes. This is usually easy: The positions 
were tools are placed, parts are delivered to the robot, etc. 
When a position is chosen, one must consider the possible 
DOF of the change. This task is not as easy as it may sound: 
Variations  are  usually  straightforward,  because  they 
represent the flexibility the robot is supposed to cope with. 
Unfortunately,  the  drift  is  an  unintentional  factor.  But 
usually it  is easy to make some assumptions about it.  For 
example, if an object is placed on a table, one can assume 
that the position and orientation of it may move along the x/
y-plane of table and that the object may rotate around its z-
axis.  Drifts  (or  variations)  along  the  z-axis  and  rotations 
around the x- and y-axis may happen, but are exceedingly 
rare.  So  here,  one  can  limit  the  change  which  is  to  be 
supervised to three DOF: The x- and y-axis for translations 
and the z-axis for rotation.

The next thing to be done is to decide which sensor will 
be used to supervise the change.  It  must be kept in  mind, 
that the sensor signal must alter when a change occurs and 
that the dimension of the sensor values is at least as high as 
the DOF of the change. Additionally one has to set a change 
threshold  cchange for  each  dimension  of  the  sensor.  The 
purpose  of  this  treshold  is  to  prevent  the  robot  from 
recognizing false or minimal changes due to the SNR of the 
sensor. The thresholds should be chosen at least as high as 
the SNR of the sensor.

The last thing to do during the setup is to move the robot 
to the  desired  position  pobj and  measure  the  initial  sensor 
values  minit.  This  set  of  values  defines  the  target  values 

against  which  the  robot  checks  for  an  occurring  change 
during execution. 

If  the training  set is to be acquired  offline,  this  step is 
extended to that point that either the object itself is moved 
deliberately by a preset, known deviation or the robot moves 
by a  preset  distance.  In  both  cases  the  resulting  pairs  of 
position deviation and corresponding sensor values (pi - pobj, 
mi  - minit) are  recorded and  added to the training  set.  The 
subtraction of pobj and  minit from all measured values yields 
the advantage that fchange(0)=0, so the input will be zero if no 
change has occurred. Then one can use one of the methods 
described  in  Section  III.C  to  derive  fcomp.  If  fcomp shall  be 
acquired online, one has to make an initial guess about the 
nature  of  fcomp,  that  is  set  some  initial  parameters  which 
roughly specify f -1

change. Otherwise the robot will not be able 
to perform a valid adaptation right from the beginning.

Additionally, the approximation can be used to extract a 
measure of the SNR of the sensor, which is simply the mean 
error  of all  samples compared to  fcomp. Then,  the accuracy 
error  of the adaptation is given by 

error= f comp
1
n ∑
i=1,. .. , n

mi− f comp  pi 

for n samples in T. It is impossible to compensate a change 
more exactly than this measure.

B. Adaptation to changes during execution

Each time the robot approaches the position in question 
in execution  i, it will record a new set of sensor values  mi 

and  subtract  minit.  If  the resulting  value exceeds  cchange for 
this  dimension  of  the  sensor,  a  significant  change  has 
occurred.  The  estimated  change  pguess is  obtained  by 
applying  fcomp to mi. Note, that  pguess describes the deviation 
of the object in  question in  regard  to its original  position 
and is not a position in world coordinates. In which way the 
robot  deals  with  this  deviation  depends  on  the  type  of 
change: If we deal with a variation the robot should adapt to 
it  and  modify the following movements  and  operations to 
take care of the fact that  the object has moved. If we deal 
with a drift, we can either choose to try to compensate the 
drift,  that  is  put  the  drifted  object  back  to  its  original 
position or simply adapt to it and treat it like a variation.

In summary, the proposed method is independent of the 
type of sensor  and  can  be applied  to all  situations  if  the 
sensor is capable of detecting a change. 

V. EXPERIMENTS

In this section, we will show the validity of our approach by 
two experiments.  In  the first  experiment, we implement  a 
recognition of rotational variations around an objects z-axis 
using distance sensors.  We determine the change function 
first  analytically and  then  approximate it  using a training 
set  generated  offline.  Afterwards,  we  compare  both 
approaches. In the second  experiment, we train the robot to 
react to translational deviations along the x- and y-axis of a 
disk placed on a table. First, we fit a given function to our 
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training set and afterwards train  a neural  network to learn 
fchange and then compare both approaches.

A. Measuring the rotation of a steel ruler

In the first experiment, we want to find a measure for the 
rotation of a steel ruler lying on a table, so we do not have 
to ensure that the ruler is orientated correctly every time we 
want  to  grasp  it.  For  this  purpose  we  use  three  Sharp 
GP2D120 distance sensors set up in  a  straight  line facing 
the ruler (Figure 1, left). Each sensor has a resolution of 1 
cm in the range from 4 to 30 cm. The sensors are set up 20 
cm apart from each other. While it is a straightforward task 
to determine the rulers distance from the sensors, which can 
be  solved  analytically  quite  easily,  we  are  interested  in 
allowing rotational variations of the ruler. In theory, we can 
measure  this  variation  by subtracting  two  sensor  values 
from each  other  and  comparing  this  value  to  one  of the 
original  sensor  values.  Then  the  rotation  of  the  ruler  is 
simply 

f comp s i−s j=arctan 
s i−s j
d



where  si and  sj describe distance  measurements  of two 
sensors i, j. The parameter d describes the distance that the 
two sensors are set up apart from each other. Note, that this 
is the only parameter in the change adaptation function. In 
theory,  we would determine  this  parameter  and  set up an 
appropriate  algorithm to calculate the rotational  drift.  But 
here,  we  will  try  to  determine  this  parameter 
experimentally. To achieve this, we have grasped the ruler, 
rotated  it  counterclockwise  in  steps  of  one  degree  and 
measured the sensor values. This compromises our training 
set (Figure 1, right) of 30 samples for angles from 0 to 30°. 
To approximate this function we have used a computational 
approach  described  in  Section  III.C.2  employing  the 
Levenberg-Marquardt algorithm. We have used two general 
types of functions for the approximation. The first is of the 
same  type  as  the  theoretical  drift  function,  an  arctan-
function with one free parameter, dguess. The second function 
is a simple linear function of type aguess  + bguess*x, with two 
parameters to approximate. In the case, where we used the 
sensors spaced 40 cm apart,  we could only use the first 22 
of the 30 training pairs, as for rotations bigger than 22°, the 
measured distance of the ruler to the third sensor exceeded 
the sensor  range.  The functions are displayed in  Figure 2 
and  the  results  are  summarized  in  Table  3.  We  have 
calculated the mean error of each sample to the theoretical 
value,  giving  us  an  impression  about  the  SNR  of  the 
sensors.  This  is  relatively low,  so we can  only recognize 
changes  which  are  larger  than  2°,  but  the  width  of  the 
gripper  is  big  enough  to  deal  with  this  tolerance.  To 
evaluate how well the approximated functions compare to 
the theoretical function, we have analytically computed the 
integral  error  of the  difference of the  two functions  on  a 
range from 0 to 10 cm. We have chosen this range because 
it is significantly higher than the SNR of the sensors and a 

difference of 10 cm in  two sensors  values would mean  a 
rotation of 26° and 21° for a sensor distance of 20 cm and 
40 cm respectively. This gives us an idea of how well we 
can  estimate  the  variation  adaptation  function  with  the 
given training  data.  We can see, that  if we know that  the 
change  function  is  an  arctan  function,  we can  form  an 
estimate  with  a  relatively  low  error.  The  error  is 
significantly higher  if we do not know the type of change 
adaptation function and guess it to be linear.

In  summary,  even with  the  relatively low resolution  of 
the sensor we are able to enable the robot to flexibly grasp 
the steel ruler,  even if it  is displaced by up to 13 cm and 
rotated by up to 21°. All we had to to is build a training set 
by  deliberately  rotating  the  ruler  and  measuring  the 
resulting sensor values.

B. Measuring the drift of a disk on a table

In  this  experiment,  we  use  a  force/torque  sensor  to 
recognize the deviation of a round disk along the x- and y-
axis of a  table.  The use of this sensor has  the advantage, 
that  it  is  mounted  at  the  robots tool-tip,  so no additional 

Figure  2:  Theoretical  and  approximated  functions  for  a  rotational  drift 
compensation function. The training data is shown as red dots. The theoretical 
function is shown in green. The approximated functions are shown in blue 
(arctan) and purple (linear).

Figure 1:  Left: Setup of experiment A. Three distance sensors are used to 
determine the rotation of the steel ruler. Right: Measured distances for given 
angles and theoretical values.
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TABLE 3: 
ACCURACY OF APPROXIMATED CHANGE FUNCTIONS COMPARED TO THEORETICAL FUNCTION 

FOR TWO DIFFERENT SENSOR DISTANCES.

Sensor 
distance 
[in cm]

Number of 
samples used

Mean error of 
raw data to 
theoretical 

model 
[in °]

Integral error 
of arctan 
approx. to 
theoretical 

model 
[0-10cm]

Integral error 
of linear 

approx. to 
theoretical 

model 
[0-10cm]

20 30 2.63 1.64 17.83

40 22 2.28 0.92 11.46
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sensors have to placed in the robots workspace (Figure 3).
The idea is, that if the disk drifts along the table, we can 

measure  a  significant  moment  along  the  x-  and  y-axis 
because we will not grasp the disk in the center. While it is 
still possible to analytically determine a drift compensation 
function, this is highly dependent on the weight of the disk, 
its  position,  etc.  Because of this,  we try to determine  fcomp 

experimentally.
We have  chosen  to  acquire  the  training  set  T with  an 

offline approach and have set up a simple algorithm which 
moves along a grid of a specified size around the center of 
the  disk,  picks  it  up at  given  intervals  and  measures  the 
resulting moments.

We  know  that  the  relation  between  the  measured 
moments and the drift is linear and have set up the general 
drift compensation function in that way: 

f comp mX

mY =
a 1b1∗m Xc1∗mY
a2b2∗m Xc 2∗mY 

We have assumed that  a deviation along the x- and y-axis 
influences the moments along both axes. The sensor values 
along  the  grid  and  the approximated  functions  for a  grid 
size of 9*9 are shown in Figure 4. 

We have  used  the  same  training  sets  to  train  a  MLP 
network to learn the same drift compensation function. The 
MLP consists  of  three  layers  with  two input  and  output 
neurons and three neurons in the hidden layer. Each MLP 
was  trained  for  a  maximum  of  100000  epochs  with  an 
desired error  of 0.001. The functions learned by the MLP 
network for a grid size of 15*15 are shown in Figure 5. 

It  can  be seen that  a deviation along the x-axis mainly 
influences the moment along the y-axis and vice versa. We 
have  calculated  the  mean  error  of  the  approximated 
function and the training  set for various grid sizes, giving 
us an  idea about the SNR of the sensor.  To test our drift 
compensation function, we have deliberately moved the disk 
by a  random  offset  preal and  recorded  the  corresponding 
sensor values  mreal.  Afterwards,  we have entered  mreal into 
our compensation function and compared the estimated drift 
pguess against the real drift  preal. We have repeated this with 
100  different  offsets  for  every grid  size.  The  results  are 
summarized in Table 4.

We can see that due to the SNR of the sensor, which is 
about 3.5 Nm, we need at least 16 samples in our training 
set to obtain a reasonable approximation for fcomp. Below this 
value  the  noise  of  the  sensor  inhibits  a  reasonable 
approximation.  On  the  other  hand,  it  is  unnecessary  to 
create  excessively  large  training  sets  with  hundreds  of 
samples.  Above  81  values,  there  is  no  significant 
improvement  of  the  approximation  if  we  increase  the 
number of samples. 

In  case we do not know the type of function and use a 
neural  network to approximate the function we need more 
than  twice  as  many  samples  to  approximate  the  change 
function  with  the  same accuracy.  But  for  training  sets of 
this size, an equally good approximation is possible.

TABLE 4: 
COMPARISON OF  APPROXIMATION WITH A GIVEN TYPE OF FUNCTION AND A MLP NEURAL 

NETWORK.

Number of 
samples used 

to 
approximate 
drift function

Mean error of 
raw data to 

approximated 
model using 
the analytical 

function
[in mm]

Mean 
accuracy for 
100 random 
drifts using 
analytical 
function
[in mm]

Mean error of 
raw data to 

approximated 
model using 

the MLP 
network
[in mm]

Mean 
accuracy for 
100 random 
drifts using 
the MLP 
network
[in mm]

4 3.13 10.99 0.31 12.47

9 3.28 6.33 1.23 8.99

16 3.57 4.03 1.97 7.92

25 3.61 3.57 3.10 4.88

81 4.01 3.62 4.55 4.05

121 4.09 3.60 4.65 4.03

225 4.05 3.62 4.04 3.50

The accuracy of the approximated change functions determined with the 
Householder  algorithm and  a  neural  net  for  various  sizes of  supervised 
training data.  The  accuracy is  determined by testing both functions with 
samples which were not used for the approximation.

 

Figure  5:  Measured  moments  mX  and  mY  (red)  of  the  disc  for  given 
deviations and approximated drift functions (green) for supervised acquisition 
using a neural network with a  training set of 225 samples.

 
Figure  4:  Measured  moments  mX  and  mY  (red)  of  the  disc  for  given 
deviations and approximated drift functions using the Householder algorithm 
(green) for supervised acquisition with a  training set of 81 samples.

Figure  3:  Setup of the  second experiment. 
The  vacuum  gripper  grasps  the  disk  at 
specified  offsets  from  the  center  and 
measures  the  forces  and  torques  for  each 
position. Based on this information the drift 
compensation function is approximated using 
a  Householder  approximation  and  a  MLP 
neural network.
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In  both cases the low mean error  of the approximations 
for low grid sizes is caused exactly by this fact: There are 
only a few training samples, so it is possible to find a very 
good  approximation  with  a  low cumulative  error  for  all 
samples,  but  the mean  error  for samples not  used for the 
approximation  is  relatively high.  After  a  certain  sample 
size, the mean error of the approximation remains constant, 
thus enabling us to determine the SNR of the sensor.

With both approximations,  we are able to automatically 
check if and how far the disk has moved along the table and 
use the result to adapt to the environment accordingly. The 
approximations  are  precise  enough  to  allow  for  an 
adaptation without the need to re-grasp the disk.

In summary, we have shown that it is possible to easily 
approximate  change  functions  independent  of the  type of 
sensor  with  relatively low effort.  The  less  knowledge we 
have  entered  into  the  approximations,  the  bigger  the 
training set must be in order to successfully approximate the 
function.

VI. CONCLUSION

The aim of this paper is to enable a programmer to easily 
employ external  sensors for flexible robot programms. The 
focus of this  work is to show that  the function describing 
the  connection  between  sensory  data  and  positional 
variations  can  be  acquired  automatically   and  task 
independent  by the  robot  without  the  need  for  intricate 
calculations by the programmer. We have outlined the basic 
requirements on both the sensor and the physical relation of 
sensor  data  and  position  deviation  that  must  be  met  to 
compute a change from a sensor signal. We have presented 
methods to determine this function automatically and have 
ordered them by the amount of knowledge necessary for the 
approximation.  The  presented  requirements  and  methods 
are independent from the type of sensor and can easily be 
incorporated  into  a  robot  program.  Finally,  we  have 
presented  two  experiments  to  validate  our  research.  We 
have shown that is possible to employ the proposed methods 
to  successfully  approximate  the  change  function  for  two 
given applications using different sensors.

Further work needs to be in finding ways to generate the 
training  set online and develop a rating function which is 
capable  of  telling  how  good  an  estimated  change  was 
guessed depending on sensor data gained in  the very next 
executions.  Additionally,  we want  to  develop  approaches 
how this change function can be employed to deal with both 
variations and drifts adaptively in a systematic way, that is 
independent from the actual type of application. Finally, we 
want to check if fuzzy rule based sets describing the change 
function may be employed.
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