2008 IEEE International Conference on
Robotics and Automation
Pasadena, CA, USA, May 19-23, 2008

Intuitive and Model-based On-line Programming of Industrial Robots:
A Modular On-line Programming Environment

Bjorn Hein and Martin Hensel and Heinz Worn
Institute for Process Control and Robotics (IPR)
Universitit Karlsruhe (TH)

[hein|hensel |woern]@ira.uka.de

Abstract— This paper focuses on the simplification of the
on-line programming process of industrial robots. It presents a
modular on-line programming environment (software and hard-
ware), which supports an intuitive way of moving and teaching
robots, while supporting the user with assisting algorithms like
collision avoidance and automatic path planning. Main idea
is the combination of different approaches from tele-operation,
programming by demonstration and off-line programming, and
reuse them in a new fashion on-line on the shopfloor. The
proposed programming environment is designed to evaluate the
usability of different combination of assisting techniques.

I. INTRODUCTION
A. Motivation

Programming of industrial robots is nowadays done in
simulation systems like em-Workplace, IGRIP, Robot Studio,
Solid-Works, KUKA-Sim, etc. Herein the complete robot
cell is modelled in 3D. The user can test the reachability,
fine-tune the motion properties of robot movements and
handle process related information. In principle, out of these
information, complete robot programs could be automatically
generated and transferred to the robot controller and PLC.
Of course, no available simulation system on the market has
already completely implemented this programming chain, but
a lot of parts exist already separately. Until now a lot of effort
was spent in algorithms for automating the programming
process in such simulation systems (e.g. algorithms for
collision free path generation). Thanks to efficient automatic
path-planning algorithms developed in the last ten years
[1], [2], [3], [4] manual work in simulation systems could
be significantly reduced for special applications (e.g. spot
welding, laser welding).

In the industrial environment a lot of energy was put
in off-line algorithms and only few efforts were spent in
supporting on-line programming/jogging with appropriate
user interfaces. But on-line programming is still necessary
for a number of reasons: currently the “optimal programming
chain” from simulation system directly down to the robot
is only working in special applications (e.g. spot welding).
Moreover, there are movements that can not be programmed
beforehand due to unknown CAD-data or there are tasks that
can only be on-line programmed by a human being - one of
the most flexible “sensors” existing.

However, from the ergonomic point of view manual
jogging of industrial robots is still not very satisfying:

978-1-4244-1647-9/08/$25.00 ©2008 IEEE.

Fig. 1. Typical motion modes - left: Motion is with respect to the axis of
the robot, mid: with respect to world coordinate system, right: with respect
to tool center point (TCP) coordinate system

”.... In the past, user interfaces for industrial robots have
sometimes been quite rudimentary. Still today, the personnel
working with robots is mostly very experienced and has often
learned to cope with whatever is available...[5]”. A com-
pact overview of usability in human-machine-cooperation
can be found in [6] and a good motivation for the need of
intuitive user-interface for on-line programming can be found
in [7]. Some recent works deal with new intuitive ways of
programming and describing the task a robot has to fulfill
[8], but that is not the focus of our study. The purpose of
our work is concentrating on the intuitive on-line jogging of
an industrial robot.

Common robot input devices are teach pendants like the
ones from KUKA, ABB or Reis. Since these pendants have
to give access to all functionalities provided by the robot and
the robot controller, they have some drawbacks: big, heavy
and not very intuitive to use. Indeed apart from the buttons,
most of the panels have special input devices (Joystick, or
6D-Mouse) and different moving modes (s. Fig. 1). But
jogging the robot with them requires a lot of experience.
There is especially one major drawback: The position of the
user with respect to the robot is not taken into account while
jogging the robot. Therefore, the user has to adapt himself
and always think in different coordinate systems (s. Fig. 1).

B. Related Work

Investigations were done concerning usability of teach
pendants or input devices to identify, which are the appro-
priate ways for jogging industrial robots for untrained users.
In [9] was investigated, how jogging in certain coordinate
systems influences the number of wrong user actions (e.g.
pressing the button for -X instead of +X). As result it
was found, that solving the given task in a robot centric

3952

Standard mode Compatible Mode

Time 615s 540s
Number of errors: Buttons 9.3 2.8
Number of errors: Joystick 4.8 2.0
TABLE I
COMPARISON TIME/#ERROR WITH DIFFERENT INPUT DEVICES AND
MODES [11]
User position
front o left o1 back O right 0
A o — T - @ 1)
) , monitored
. A i BANS o B : robot motion
ji 2 0 C < C O < for these
3| control keys
=Y o — T - ® 1 e 7+
o| DG G 35 - Br A
- - respectively these
o — — @ 6D-Mouse
¢ 1 1 movements
o | "D <> | T CO 354
D o — T - ® T
s | D 3 | VT Co S| - inoplane
O = out of plane

Fig. 2. Matrix of confusion jogging in world mode[11] - On the left are the
given inputs using the buttons or 6D-Mouse. The matrix shows the resulting
movement of the robot depending on the position of the user.

coordinate system took 24,5s instead of 12,8s in a user
centric coordinate system. Comparing buttons and joystick,
73% of the users preferred buttons. The joystick provoked
7% more errors.

In [10] jogging with joystick and buttons in world coor-
dinate system and controlling velocity was investigated. It
was recorded, how long a user needs for moving the robot
to a desired position. With joystick people were 25% faster.
Especially the learning curve with joystick was significantly
better.

In [11] the matrix of confusion was introduced (s. Fig 2). It
describes which input action causes which robot movement
depending on the relative position of user and robot. In [12]
the effect of this matrix on user input using teach pendants
was investigated. Besides the “standard mode” a new mode
was introduced: the “compatible mode”. In the compatible
mode the coordinate system is adapted in 90° degree steps
depending on the position of the user and therefore simplifies
the matrix of confusion drastically (s. Fig. 3). The time
and the numbers of errors for accomplishing a given task
was evaluated. As seen in Table I jogging in “compatible
mode” reduced time and number of erroneous actions. The
compatible mode decouples the coordinate systems of user
and robot. The user has only to “think” in his own coordinate
system and therefore can act safer and faster.

This idea is one of the basic concepts of the presented
“Modular On-line Programming Environment”.

C. Outline

The paper is organized as follows: In section SYSTEM
COMPONENTS the core parts of the developed on-line
programming environment are presented. The following

User position
front o

o — |
o| DG
o — 1
rog

o~ 1

Robot position

monitored
rTobot movement for
given input movement

o |26 F| 0G| 04| n6-P

O = out of plane

Fig. 3. Motion compatibility - input motion of the user is reflected by a
compatible robot motion: every matrix element exactly represents the input
values.

Model based
Intuitive .
input device on-li

programming ice
computation

Motion Human-
compatibility Machine-

Interface

Geometric
Model

Virtual

objects

Path
planning

Collision
Avoidance

Fig. 4. Concept of the developed “Modular On-line Programming Envi-
ronment” - It is based on the idea of combining an intuitive input device, a
geometric model representing the environment and assisting algorithms that
are based on the geometric model and react on the given input.

sections HARDWARE SETUP and MODULAR SYSTEM
ARCHITECTURE are giving a brief overview about the
used and developed hardware and the software architecture.
The paper closes with conclusions and an outlook on future
developments.

II. SYSTEM COMPONENTS

The proposed Modular On-line Programming Environment
is basically build on three main components (s. Fig. 4): an
intuitive Human-Machine-Interface to control the movement
of the robot using a mobile guiding device, a geometric
model representing the environment given by CAD or sensor
data and assisting algorithms working on the geometric
model supporting the user while moving the robot.

A. Human-Machine-Interface

1) Intuitive input device: Some of the developed in-
put/guiding devices are shown in Fig. 5. They are very simple
prototypes for testing different setups (number of buttons,
kind of analog knobs or sliders) and can be held in one
hand. The sphere markers are used to track the position and

3953

Fig. 5. Input devices - They are tracked via a tracking system by the
sphere markers. Left: General input device with different kind of knobs,
sliders and buttons installed; right: pen-like input device.

Delta

145°

o \ \ \ .
90\ 130?\ z7o\alpha 360° ™

45

90° 180° 270° alpha 360°

Fig. 6. Extended motion compatibility - (above) The matrix of confusion
shown in Fig. 3 is in [12] only valid in the middle of every 90° sector. At
every other position there is a certain amount of error (Delta), which forces
the user to adapt his input motions, (bottom) In our setup we benefit from
the 6D tracking system which gives us the absolute position and orientation
of the guiding device. With this information we have a compatible motion
in any position of the user.

orientation of this device using a multiple infrared-camera
system. Every movement of this device is transferred to the
robot and executed in real-time. The tracking system is at
the moment mainly used to demonstrate the possibilities
when using a freely movable input device. In the future it is
planned to replace the stationary tracking system by inertial
Sensors.

2) Extended motion compatibility: Initially the user has
to do a calibration step. He defines his desired coordinate
system by pointing three points in space using the guiding
device. From that moment on motion compatibility is in-
dependent of changes of the position and orientation of the
user. In [12] the space around the robot was split in 4 sectors
(90°). So real motion compatibility was only achieved at the
mid of every sector (s. Fig. 6 above) We can directly benefit
from the 6D information of the tracking system and achieve
motion compatibility in every point in work space (s. Fig. 6
bottom).

One of the input device’s knobs adjusts the scaling be-
tween user motion and robot motion. This kind of jogging is
so effective, that even untrained users could move the robot
intuitively. Using a high scaling factor, the users can move
the robot very fast, using only small movements of their
wrist, from the given start position to the end position. A

Fig. 7. Geometric Model of the laboratory at the IPR in Karlsruhe - A KR16
and a miniature car body for testing and education. Distance information are
computed in real-time and used for assisting algorithms (e.g. adjust jogging
speed depending on the distance to obstacles).

Fig. 8. Calibrated model - Simulation model and reality match exactly.

low scaling factor allows very accurate movements. Using
the pen-like input device (s. Fig. 5, right) it is e.g. possible
to write a name with a pen attached to the robot on a sheet
of paper (s. Fig. 10, left). All this could be done with none
or very little amount of practise.

B. Geometric Model

Besides supporting the user with motion compatible jog-
ging additional ways of assisting are planned to be inves-
tigated. Therefore a geometric model was included in the
developed programming environment. It contains the geo-
metric data of all objects in the working cell (e.g. obstacles
and robots) (s. Fig. 7). The position of the robot is updated
in real-time every 12ms. The model of the car is calibrated
so that it exactly match the real car body (s. Fig. 8).

1) Fast collision detection/distance computation: Based
on the geometric data a fast an efficient way of computing
distances between objects was integrated [13]. It is capable
of calculating distances in the same cycle time as the robot
is updated (12ms) and is used by the assisting algorithms
explained later.

2) Virtual objects: Virtual objects are not really existing
but describing some geometrical extension or properties used
by assisting algorithms (e.g. a region, where the tool center

3954

Fig. 9. TCP restriction - the user can only move the TCP inside the lucent
object.

point (TCP) of the robot is not allowed to leave or to enter).
It is possible to define paths and points with an additional
radius. Based on this radius, virtual forces can be integrated
influencing the robot movements (“snap paths/points®).

C. Assisting Algorithms

The “Assisting Algorithms” support the user during its
manual jogging. Either to simplify the jogging or to restrict
and protect the user or the equipment.

1) Real-time Collision Detection/Avoidance: Based on
this module, different supporting strategies were imple-
mented:

« Collision Avoidance: It prevents the user of navigating
the robot into self-collision or in collision with the
environment.

o Adapting jogging speed: Depending on the obstacle
distance or distance to the user, the jogging speed is
automatically adapted (s. Fig. 7). E.g. If the robot is
near the guiding device so is the user. To avoid fast
and harming movement the scaling factor has to be
automatically reduced.

« Extended user notifications: According to the distance
to any obstacle, an alarm (like the parking distance
control for automobiles) is sounding.

2) TCP restriction: This module was implemented to
restrict the possible movements of the TCP:

Geometrical restriction: An object of arbitrary shape can
be defined which the TCP cannot leave or enter. In Fig. 9, an
example of a “working place combined with transfer tube”
is shown. It has one huge region on the left in which the user
can do complex tasks with the robot whereas when moving
to the right he is forced to keep the TCP in a specified
corridor, avoiding collisions with the car. The geometrical
restriction was also used to protect the user while writing
with the virtual pen (s. Fig. 10, right).

Based on the same algorithms a sliding along arbitrary
planes in given orientation (e.g. perpendicular) is achieved.
A typical use-case for this could be painting with an airbrush,
which has to be kept in a certain distance.

Fig. 10. Left: Writing with a virtual pen - The manual movement is
executed and copied at the same time by the robot; right: TCP restriction
and virtual walls protect the user.

Fig. 11. Automatic smoothing - left: Path generated manually by the user
with input device; right: Online optimized path.

Path restriction: Similar to the geometrical restriction
mentioned above, the TCP can be restricted to paths. But
paths have additional information (e.g. length, orientation
along path,...). For this reason two moving modes were
implemented. One mode moves the robot forward and back-
ward along the path by pulling the guiding device from left
to right. In the second mode one can use the analog slider
on the guiding device to determine the forward or backward
speed along the path. The two modes are mainly used in
conjunction with the automatic path planning algorithms
described in the following.

3) Automatic path planning: As we have a geometric
model, we could make use of the implemented path planning
algorithms [14], [15] to support the user. We added to the
programming framework a module that enables the user to
move the robot by just pointing out the start and the goal po-
sition. A collision free path is then generated automatically.
Then, it is very easy to move the robot, using the module path
restriction. Our research will focusing in the future especially
on combining manual jogging and automatic path planning.

An approach for combining manual input and automated
smoothing algorithms supporting programming in simulation
systems was presented in [16]. This approach could be
directly applied to the on-line programming environment
and was integrated as module. In Fig. 11 on the left the
manually recorded path is shown. Whereas on the right the
automatically smoothed path is shown.

3955

(5)

Fig. 12. Hardware setup - The guiding device (1) is tracked by cameras
(2), the Tracking-PC (3) sends the information about the position to the
Master-PC (4). Based on the position of the guiding device, it’s status and
the used assisting modules, joint values are generated and sent via real-time
Ethernet every 12ms to the KR-C2 Controller (5), which drives the robot
(6).

IIT. HARDWARE SETUP

The hardware setup is shown in Fig. 12. It consists of:

+« KUKA KR16 Industrial Robot

o KR-C2 Edition2005 Controller

¢ Real-time-Linux PC running RTAI and RTnet

o Tracking-cameras

e Tracking-PC

e Guiding Device
The Real-time-Linux PC is the master. It gets the information
about the position of the guiding device via Ethernet from
the Tracking-PC, and via USB the status of the knobs,
sliders and buttons of the guiding device. The entire on-
line programming environment is running on the master PC.
Based on the given user input and used assisting modules,
it generates the necessary motion profiles and sends/gets
the joint values every 12ms to/from the robot controller.
The robot controller is then driving the robot with these
commanded values.

IV. MODULAR SYSTEM ARCHITECTURE

The On-line Programming Environment is implemented
in C++ and has a flexible, modular and component-based
design. As mentioned in the abstract, this programming
environment should be used for usability studies of different
combination of the proposed assisting algorithms. Therefore
control and data flow have to be freely configurable. A
component has input and output ports (s. Fig. 13), which can
be freely interconnected between other components as long
as their data types match. Simple and complex data types
such as: double, float, int, bool, vectors,...are supported.

= =

Fig. 13. Example for a component of the programming environment with
two input and one output ports.

Fig. 14 gives an example for the buildup for the basic
jogging functionality comprising things like calibration of
wrist rotation, user orientation, stabilization,...and so on.

V. CONCLUSIONS AND FUTURE WORKS
A. Conclusions

In this paper we presented a modular on-line programming
environment for industrial robots. The main goal of this
programming environment is to evaluate the usability of of
different assisting algorithms for on-line programming of
industrial robots. In this study, the numerical analysis of
the system is not included. But remarkable results can be
observed with the satisfactory experimentations performed
by students:

e Untrained people could solve immediately complex
tasks due to the implemented combination of the ex-
tended compatibility mode and the assisting algorithms.

— Moving robot to different positions in presence of
obstacles.

— Writing/Painting on a sheet of paper.

— Following pre-printed patterns with a pen mounted
on the robot.

o The system requires only a small amount of brain work.
— Natural Hand-Eye-Coordination.
o Complex trajectories are generated intuitively.

— With buttons: impossible to be performed.
— With joystick: control not very intuitive.

o Using the “park distance control” module mentioned
above, students could move the robot out of the car
model (s. Fig. 7) with closed eyes.

Some of the ideas presented are seen in tele-operated envi-
ronments and systems using programming by demonstration.
In contrast to these systems our system focuses on the on-line
control of the robot. The user is working in the robot cell and
the motion of the guiding device is immediately interpreted
and executed as a robot motion (except for the automatic
path planning module). So the user directly interacts with the
robot and is assisted by our algorithms. For human-machine-
interaction in Service Robotics or in Humanoid Robotics
force-torque-sensors are often used as guiding device. Parts
of the presented programming environment are of course also
applicable to this kind of interaction.

B. Future Works

Regarding the usability, the next steps are to develop sce-
narios/benchmarks and evaluate different assisting algorithms
with the traditional approach.

3956

inputFrameA() [inputFrameAHub calibrateRotation calibrateOrientation

——>> inputframeAR ——>> inputR Y > outputSl_» —>» inputFrameR Y outputFrames » ——————> inputFrameR >
— .
D outputBoolS > ——————> inputBoolR_>
restart
=
 outputBoolS > — inputBoolR > b s
[o) waitForRestartAR > -
& I convertToFrame
——> inputframeAlnvisibleR > StopR_> —
ing :
3 2.
) (stahﬂjstaﬁonx } [convertToXYZRPY -
inputBool A()
inputTransXR < outputs €L inputR € outputXR
S upuitooiak 3 2 oputeok Ko K s K s L cupes €
inputFrameR <-
stabilistationY

'Reo‘g;ﬁo‘;sg““:‘; o CinputTransyR & outputs K inputk € outputyR

~«— outputsi inputR < inputk {e— outputs rﬁabﬂist =
X —7 > T S ationZ
inputTransz. 15 < inputk € outputzR
currentRobotPositionHub < Pdsenar. & "L"‘P" <<%<< - P <
inputToOutput frameHubl
“actorInt] s
> 1S
e D cutpus D npui

Fig. 14. Example for the basic jogging

Concerning the guiding device it would be beneficial to
skip the expensive tracking system using inertial sensors.
Indeed, this is one goal for the future. For most use-cases it
is not necessary to know the absolute position of the guiding
device but the relative motion. Nowadays sensors can keep
calibration at least for about 15-20 seconds. In combination
with the human as flexible compensating sensor, such an
inertial sensor based guiding device could be used for 30-
50 seconds before drift is getting to worse. This amount of
time would be completely sufficient for movement control.
Especially calibration of such a guiding device could be
easily achieved: just pointing to the robot (=1 sec) and again
30-50 seconds of programming.

There is currently one special drawback regarding the
automatic path planning module: the geometric model has
to be calibrated to match exactly with reality. This is of
course the same drawback when programming in off-line
simulation systems. One possibility to overcome this would
be to record and incorporate sensor data (e.g. Laser-scanner,
PMD-Sensors,.. .) in the geometric model. But this is not in
focus of our investigations.

REFERENCES

[1] G. Sénchez and J. C. Latombe, “A single-query bi-directional proba-
bilistic roadmap planner with lazy collision checking,” in Proceedings
International Symposium on Robotics Research, 2001.

J. P. v. D. Berg and M. Overmars, “Using workspace information as a
guide to non-uniform sampling in probabilistic roadmap planners,” in
International Journal of Robotics Research, The, 2005, vol. 24, ch. 12,
pp- 1055-1071, http://ijr.sagepub.com/cgi/content/refs/24/12/1055.

K. E. Bekris, B. Y. Chen, A. Ladd, E. Plaku, and L. E. Kavraki,
“Multiple query probabilistic roadmap planning using single query
primitives,” in Proceedings IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2003.
S. M. LaValle, Planning Algorithms.
2006.

[2]

[4]

Cambridge University Press,

frameHub4] (sendqu:utFrameA()
 outputs1 Y —>> outputFrameAR >

functionality build out of components

[5] A. Kazi, J. Bunsendal, D. Haag, B. Raphael, and R. Bischoff,
Advances in Human-Robot Interaction. Springer-Verlag, 2005, ch.
Next Generation Teach Pendants for Industrial Robots, pp. 47-66.

S. Thrun, “Towards a framework for human-robot interaction,”
Human-Computer Interaction, vol. 19, no. 1-2, pp. 9-24, 2004.

R. Schraft and C. Meyer, “The need for an intuitive teaching method
for small and medium enterprises,” in SR 2006 - ROBOTIK 2006 :
Proceedings of the Joint Conference on Robotics, ser. VDI-Berichte,
no. 1956. VDI-Wissensforum, May 2006, p. 95.

J. Pires, T. Godinho, K. Nilsson, M. Haage, and C. Meyer, “Program-
ming industrial robots using advanced input-output devices: test-case
example using a cad package and a digital pen based on the anoto
technology,” International Journal of Online Engineering (iJOE),
vol. 3, no. 3, 2007.

S. V. Gray, J. R. Wilson, and C. S. Syan, Human Robot Interaction.
Taylor Fancis, 1992, ch. Human control of robot motion: orientation,
perception and compatibility, pp. 48—46.

H. Brantmark, L. A., and U. Norefors, “Man/machine communication
in asea’s new robot controller,” Asea Journal, vol. 55, no. 6, pp. 145—
150, 1982.

E. C. Morley, C. Syan, and J. Wilson, “Robot control and the matrix of
confusion,” in 9th International Conference on CAD/CAM, Robotics
and Factories of the Future, Newark, NJ, August 1993.

E. C. Morley and C. S. Syan, “Teach pendants: how are they for you?”
in Industrial Robot. MCB University Press, 1995, vol. 22, no. 4, pp.
18-22.

M. Salonia, B. Hein, and H. Worn, “Fast approximated conversion of
workspace distances into free regions in configuration space of robots,”
in Proc. of 37th International Symposium on Robotics ISR 2006 and
4th German Conference on Robotics. VDI Verlag, 2006.

D. Mages, B. Hein, and H. Worn, “A deterministic hierarchical local
planner for probabilistic roadmap construction,” in Proc. of 37th
International Symposium on Robotics ISR 2006 and 4th German
Conference on Robotics, 2006, Munich.

B. Hein and H. Worn, “Fast hierarchical a* path planning for industrial
robots based on efficient use of distance computations,” in Proc. of
37th International Symposium on Robotics ISR 2006 and 4th German
Conference on Robotics, vol. 1956, 2006.

H. Worn, B. Hein, D. Mages, B. Denkena, R. Apitz, P. Kowalski,
and N. Reimer, “Combining manual haptic path planning of industrial
robots with automatic path smoothing,” in Proceedings of the Second
International Conference on Informatics in Control, Automation and
Robotics, Barcelona, Spain, 2005.

[6]
[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

3957

