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Abstract— The workspace of a robotic system is character-
ized to determine the actuator inputs required to achieve a
desired level of dynamic performance over a chosen percentage
of configurations. The dynamic capability equations (DCE)
allow designers to predict the dynamic performance of a robotic
system for a particular configuration and reference point on
the end-effector (i.e.,point design). Here the DCE are used
in conjunction with a reliability-based design optimization
(RBDO) strategy in order to obtain designs that can meet
dynamic performance requirements. The method is illustrated
on a robot design problem.

I. INTRODUCTION

The focus of this study is to characterize the workspace,

which is made up of all possible configurations, in an attempt

to determine the actuator torques required to achieve a

desired level of dynamic performance over a predetermined

percentage of configurations. Most of the previous work done

in this area attempted to find optimal path trajectories or

optimal link sizes for specific path tracking, which include

[1]–[4]. The work most similar to that presented here can

be found in [5], but sampling of the workspace is required

in order to complete the workspace characterization. The

novelty of this work is the use of an optimization method for

characterizing the workspace that does not require sampling

in order to determine the size of the optimal actuators. The

optimization used herein is reliability-based design optimiza-

tion (RBDO).

The characterization of a robotic system presented in

this work would allow a designer to be confident that the

system would be able to achieve a desired level of dynamic

performance over a desired range of configurations. For this

work dynamic performance is defined as a manipulator’s

ability to accelerate its end-effector, acceleration capability,

and to apply forces/moments to the environment at the end-

effector, force capability. There are several dynamic perfor-

mance measures and characterizations currently available in

the literature including [6]–[9]. In this work, the dynamic

capability equations (DCE) in [9] are used in conjunction

with RBDO in order to obtain a more robust solution to

the actuator selection problem. The characterization of the

dynamic performance will be addressed.

Sampling techniques could be used to solve this problem,

but they cannot take into account every possible configura-

tion. RBDO is used in order to avoid statistical sampling and,

since it is a gradient based method, is capable of taking into

account all possible configurations. In this case the density

functions allow for determination of the configuration with

the highest probability of having the worst performance. This

allows one to determine the probability that all configurations

within the feasible region will yield some level of desired

performance.

Reliability has often been associated with some type of

failure in the robotic system and there is much recent work

in this area. A popular area concerns addressing joint failure

in robotic manipulators, in which the system actually mal-

functions, from the standpoint of analysis [10], design [11],

and control [12] and each of these papers references several

other works on this topic. The failure model addressed by

the proposed RBDO application is more concerned with not

meeting performance goals rather than an actual malfunction

of the system.

In the following sections previous work in the area of

reliability methods is discussed first. The DCE and their use

in the actuator selection problem are discussed next. This is

followed by a discussion of reliability based optimization.

Finally the method is applied to actuator selection for a two

degree-of-freedom (DOF) planar manipulator.

II. RELIABILITY METHODS

There are a number of different reliability methods that

have been applied to robotic systems. These methods include

grey system theory, fuzzy Markov models and probabilis-

tic approaches. Grey system theory is discussed in [14],

Fuzzy Markov models are discussed in [15] and probabilistic

approaches are discussed in [13], [16]. These reliability

methods are used to determine the effects of errors due to

manufacturing and controls on the reliability of the system.

The application of RBDO, as discussed in this work, is to

determine the probability that the system will be able to

achieve a desired level of performance and at this stage does

not take errors into account.

III. THE DCE IN ACTUATOR SELECTION

Many different measures and characterizations of dynamic

performance can be used as a basis for actuator selection

including those proposed in [6]–[8], [17]–[19]. The DCE

are used here because it is one of the few analyses that: 1)

treats translational and rotational quantities in a consistent,

physically-meaningful manner which satisfies invariance to

units and rotation [20], [21], and 2) unifies the consideration

of many different aspects of dynamic performance including

accelerations, forces, and velocities. Few studies combine

these quantities in their analyses excepting [8], [22] which

consider accelerations and velocities, but do not address

rotational and translational quantities.
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The DCE are obtained from the equations of motion which

can be expressed as

E(q̄)

[

v̇

ω̇

]

+E(q̄)

[

f

m

]

+C(q̇, q̄,v,ω)+g(q̄) = Υ (1)

where

qT =
[

qT rT
]T

(2)

where q ∈ R
n contains the generalized coordinates and q̇ is

its time derivative. The vectors v and ω, [vT
ω

T ]T ∈ R
n, are

the translational and rotational velocities of the end-effector

and v̇ and ω̇ their time derivatives. The vectors f and m,

[fT mT ]T ∈ R
n, are the contact forces at moments, and

g(q) ∈ R
n and C(q̇,q,v,ω) ∈ R

n are the gravitational

and velocity forces. The terms E(q) ∈ R
n×n and E(q) ∈

R
n×n are the mass matrix and the transmission between end-

effector and actuator forces.

The vector r in (2) represents the position of the op-

erational point from a chosen reference point on the end-

effector. It is assumed that r is a parameter in the problem

which is specified. Note that v and ω are the velocities of the

point specified by r and the rotation of the end-effector about

the point defined by r. This vector represents the variability

of the operational point.

The bounds on actuator torque, Υbound, are expressed as

−Υbound ≤ Υ ≤ Υbound (3)

The idea here is to compare the actuator torques required to

produce balanced acceleration and force capabilities, to the

total available actuator torques defined by the bounds in (3).

This is done by specifying all of the terms on the left-hand-

side of (1), including the configuration q and operational

point r, and determining the torque required to produce those

specified motions. The dynamic capabilities are specified in a

manner that allows each constraint to maintain homogeneous

units

v̇
T
v̇ = |v̇|2

v
T
v = |v|2

fT f = |f|2

ω̇
T
ω̇ = |ω̇|2

ω
T
ω = |ω|2

mT m = |m|2
(4)

where |v̇| represents the balanced translational acceleration,

which bounds the magnitude ‖v̇‖, and likewise for the other
balanced quantities. In general, each relation represents a

sphere.

Omitting the details, the performance of the robot is

described by the DCE expressed as

A

[

|v̇|

|ω̇|

]

+ C
(

|v|2, |ω|2
)

+ F

[

|f|

|m|

]

≤ T (5)

where

T =

[

Υbound

Υbound

]

− G (6)

and where A, C, F, G, and T are derived from E, C, E ,
g, and Υbound; see [9], [23]. The largest possible values of

the balanced quantities in the DCE define what is referred

to as the dynamic capability hypersurface (DCH). Since

the six-dimensional hypersurface is difficult to visualize,

three-dimensional sections of it are examined in order to

investigate its properties. A section of the hypersurface,

where |ω| = |f| = |m| = 0, is shown in Fig. 1a for the
PUMA 560 manipulator, at the configuration shown in Fig.

1b. Notice in Fig. 1a that the balanced accelerations go to

zero as velocity increases.
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Fig. 1. PUMA 560 Dynamic Capability Hypersurface Sections.

The DCE actually describe the worst-case combinations

of acceleration, velocity, and force which saturate at least

one actuator, referred to as worst-case motions/forces. The

saturated actuator, referred to as the limiting actuator, is

indicated by the numeric label on the surface of Fig. 1a.

The worst-case directions of motion that caused the partic-

ular actuator to saturate are indicated by the line segments

emanating from the end-effector of the PUMA 560 in Fig.

1b.

The DCE and DCH describe the robot’s dynamic perfor-

mance given a set of actuator torques. The inverse prob-

lem is to specify a desired dynamic performance and to

determine the actuator torques that will provide that level of

performance. This is the actuator selection problem discussed

in [5], [23], [24]. The desired performance is specified by

describing the desired shape of the DCH using performance

points of the form

pi = ( |v̇|i, |ω̇|i, |f|i, |m|i, |v|i, |ω|i ) (7)

where i = 1, . . . , n and each i refers to an individual

performance point. Actuators are then chosen such that the

DCH encompasses all of the performance points.

The basic idea is to substitute these points into the DCE

in order to determine whether the specified performance

is feasible or not. These relations act as constraints on

an optimization problem; see [5], [24]. The optimization
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problem is

min
Υbound, αi

cost =
Υbound1

Υmin1

+ · · · +
Υboundn

Υminn

s.t. Υmin ≤ Υbound ≤ Υmax

αi ≥ 1

gR
i = αi A

[

|v̇|i

|ω̇|i

]

+ α2
i C

(

|v|2i , |ω|
2
i

)

+

αi F

[

|f|i

|m|i

]

+ G −

[

Υbound

Υbound

]

≤ 0

(8)

where i = 1, . . . , p and p is the number of performance

points, Υmin and Υmax are the minimum and maximum

achievable torques and αi is a weighting factor for the

DCE constraint. The objective in (8) is to find the optimum

values of the motor torques and the scalars αi that minimize

the weighted sum of torques and satisfy the performance

constraints gR
i .

Herein, the deterministic optimization problem in (8) is

transformed into an RBDO problem. The RBDO approach

is used to select actuators taking into account all possible

configurations of the system with a fixed operational point.

The RBDO finds actuators that will satisfy the performance

constraints to within a certain probability of failure. Inability

to achieve the performance point is the dominant failure

mode in actuator selection. These concepts are discussed next

in Sec. IV.

IV. RELIABILITY-BASED DESIGN OPTIMIZATION

The dynamic performance characterization over the con-

figuration space can be addressed statistically by sampling

a number of configurations. However, it is desirable to

address this problem without sampling. The RBDO approach

can achieve this over a configuration space that does not

contain singularities. Thus this technique is well-suited for

addressing this issue.
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Fig. 2. Two DOF Robot.

Here a simple example, the two DOF planar manipulator

shown in Fig. 2, is used to illustrate the RBDO approach.

The end effector is assumed to be located at the end of link

2. A feasible range of configurations can be defined as 0◦ ≤
q1 ≤ 180◦ and −90◦ ≤ q2 ≤ 0◦ for example.

A. Most Probable Point (MPP) of Failure

The RBDO approach relies on finding the most probable

point (MPP) of failure, the point (q1i
∗, q2i

∗) within the fea-
sible region most likely to violate the performance constraint

gR
i in (8). It is analogous to the worst-case motions/forces

which define the DCH discussed in Sec. III.

In (4) the accelerations, velocities, and forces were spec-

ified in terms of their magnitudes which allowed for de-

termination of worst-case performance. This was possible

because the equations of motion are linear with respect to

accelerations and forces, and purely quadratic with respect

to velocities. The dynamic model and the resulting DCE

are highly nonlinear with respect to the configuration q,

which appears as an argument to transcendental functions.

For this problem q1 and q2 are considered as variables, so

the dynamic model is nonlinear with respect to the variables.

Yet specifications for q1 and q2, which allow for analysis

of worst-case performance in terms of the MPP, can be

developed using probability density functions (PDF).

There are several methods for estimating the MPP such

as the first and second order reliability methods, (FORM)

and (SORM) [25], [26]. These methods reduce the compu-

tational time required to solve for the optimal solution. An

efficient and robust method using Taylor series expansion

and gradients is explained in [27]. Here the details of these

methods are omitted, but the following discussion explains

their underlying concepts.

gR
i (q1, q2) = 0

q 1

q290◦−90◦

1
180◦

180◦

Fig. 3. Uniform PDFs for q1 and q2.

There is no preferred configuration, so the parameters q1

and q2 are specified as random variables having uniform

PDFs as shown in Fig. 3. The goal here is to determine

the probability of failure, Pfi
,

Pfi
=

∫

gR
i (q1,q2)≥0

f(q1, q2) dq1 dq2 (9)
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that the ith performance constraint will be violated. This is

found by integrating the joint PDF, f(q1, q2), over the failure
domain gR

i (q1, q2) ≥ 0, represented by the hatched region in
Fig. 3. However, the joint PDF f(q1, q2) is nearly impossible
to find for random variables [25]. One must evaluate gR

i

at several sample points in the feasible region, yielding a

discrete joint PDF, to determine f(q1, q2) with any surety;
however, here the effort is to avoid sampling.

The integral in (9) can be approximated using the FORM

[25]. This technique uses a change of variables from the

uniform PDFs shown in Fig. 3 to standard normal PDFs

q1i(uq1i
) = 180◦ Φ(uq1i

)

q2i(uq2i
) = −90◦ + 90◦ Φ(uq2i

)
(10)

where

Φ(u) =

∫ u

−∞

N(u) du (11)

and where N(u) is a standard normal or Gaussian PDF with
a zero mean and −∞ ≤ u ≤ ∞. Realize that 0 ≤ Φ(u) ≤ 1
in (10), thus the range of Φ(u) covers the feasible range of
q1 and q2. Also note that with this change of variables the

performance constraints can be expressed as

GR
i (uq1i

, uq2i
) = gR

i

(

q1i(uq1i
), q2i(uq2i

)
)

. (12)

MPP
βi

G R
i (u

q
1
i , u

q
2
i ) = 0

φ(uq1
, uq2

)

u q 1

uq2

Fig. 4. Standard Normal Joint PDF φ(uq1 , uq2 ).

The FORM version of the MPP is obtained as the solution

to an optimization problem referred to as the Performance

Measure Approach (PMA) [28], [29]

min
uq1i

, uq2i

cost = GR
i (uq1i

, uq2i
)

subject to uT
i ui = β2

i where ui =

[

uq1i

uq2i

]

where the value of the reliability index βi determines the

probability that the ith performance constraint is satisfied.

The solution, (u∗
i )

T =
[

u∗
q1i

u∗
q2i

]T

, is used to find the

MPP in terms of q1
∗
i (u

∗
q1i

) and q2
∗
i (u

∗
q2i

). An estimate of
Pfi
in (9) can be found as:

Pfi
=

∫

GR
i (uq1i

,uq2i
)≥0

φ(uq1
, uq2

) duq1
duq2

(13)

≈ 1 − Φ(βi) = Pallowi

where the composition of φ(uq1
, uq2

) and the distance βi

are shown in Fig. 4. The function Φ is defined in (11) and
its use in (14) is discussed in [25]. The volume beneath

φ(uq1
, uq2

) bounded by the dashed circle shown in Fig. 4
is Φ(βi) which is subtracted from the total volume beneath
φ(uq1

, uq2
), 1, yielding the estimate of Pfi

given in (14). It

is an estimate because the domain defined by 1−Φ(βi) can
be larger/smaller than that defined by GR

i (uq1i
, uq2i

) ≥ 0,
shown as the hatched region in Fig. 4. Note that this estimate

is obtained without sampling the feasible region of q1 and

q2 shown in Fig. 3. The allowable probability of failure,

Pallowi
, is determined by the choice of βi.

The assumption that q1 and q2 are random variables with

uniform probability distributions may not be entirely correct,

but this assumption greatly simplifies the problem presented

here and does not affect the goal of this research. The goal

here is to determine the feasibility of applying RBDO to a

robotic system. An approach for solving RBDO problems

with uncertain probability distributions is presented in [30].

B. RBDO

The RBDO version of (8) is expressed as

min
Υbound αi

cost =
Υbound1

Υmin1

+ · · · +
Υboundn

Υminn

subject to Υmin ≤ Υbound ≤ Υmax

αi ≥ 1

GR
i (u∗

i ) ≤ 0
(14)

where the performance constraints represented by GR
i are

evaluated at the MPP found in (13).

The formulation in (14) involves a sub-optimization, the

problem in (13), which must be solved at each iteration.

This is computationally inefficient and therefore a unilevel

optimization problem has been formulated. The concepts

underlying the unilevel method are the same as those for

(14) so it will not be discussed in detail; see [27]. However,

the unilevel approach is used in the example presented in

Sec. V and it is expressed as:

min
Υbound, αi, ui

cost =
Υbound1

Υmin1

+
Υbound2

Υmin2

(15)

subject to Υmin ≤ Υbound ≤ Υmax

αi ≥ 1

GR
i (ui) ≤ 0

uT
i ui = β2

i (16)

h1i
(uq1i

, uq2i
) = 0 (17)

where

h1i
(uq1i

, uq2i
) ≡ ‖ui‖ ‖∇uGR

i ‖ + uT
i ∇uGR

i . (18)
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In the unilevel RBDO, the constraint from (13) is added

to the main problem as (16), and the minimization of the

cost function in (13) is replaced by the corresponding first

order necessary Karush-Kuhn-Tucker optimality conditions

in (18). The RBDO problem developed in this section for

the example in Fig. 2 can easily be generalized.

Other methods such as Sequential Optimization and Re-

liability Assessment (SORA) can also be used to reduce

problems such as the one presented here to a unilevel

problem. The details for SORA are presented in [31], [32].

However, the SORA method solves the deterministic opti-

mization problem and then applies a reliability assessment.

The desire to avoid the sampling of the design space required

with use of the deterministic optimization, due to the highly

nonlinear nature of the problem, makes the SORA method

less attractive for this application.

V. EXAMPLE

Here the unilevel RBDO is performed on the two DOF

planar manipulator shown in Fig. 2, using the theory de-

veloped in Sec. IV. The dynamic model parameters are the

link lengths, link masses, and moments of inertia which are

given in Table Ic. The desired level of performance, see (7),

is specified as

p1 = ( 9.8 m/s2, 0, 0, 0, 0, 0 ) . (19)

The parameters for the RBDO are given in Table Ib. Three

different allowable failure probabilities were used to test

this method for varying degrees of reliability. The allowable

failure probability of 0.0013, which corresponds to a desired
reliability index of 3 is a strong requirement stating that
99.87% of all configurations in the feasible range, given in
Table Ia, will satisfy the performance point p1. Similarly, the

reliability indices 1 and 2 correspond to 84.13% and 97.72%
of configurations satisfying the performance point p1.

TABLE I

RBDO OPTIMIZATION DATA FOR THE CONFIGURATION SPACE.

a.) Statistics for the Random Variables

Distribution Range

q1 Uniform 0◦ ≤ q1 ≤ 180◦

q2 Uniform −90◦ ≤ q2 ≤ 0◦

b.) RBDO Optimization Parameters

β1 Pallow1

1 0.1587

2 0.0228

3 0.0013

c.) Parameters for the Actuator Selection

Link 1 Link 2

Mass kg 1 1

Length m 0.3048 0.3048

Inertia kgm2 0.001 0.001

The ranges for q1 and q2 are shown in Table Ia. A

singularity occurs when q2 is at 0◦, so that is the reason
for the chosen range. The variable q2 is allowed to range

up to the singularity, but is not allowed to pass through

it. Singularities are a cause of concern in gradient based

optimization methods. This is due to the fact that these

methods use the derivative of the original function to find

the direction of steepest ascent or descent. At singular points

the derivative goes to infinity, so a steepest ascent or descent

direction does not exist. Therefore, these methods are not

able to find extremum points, or points where the derivative

goes to zero, since it continues to search at the location of

the singularity. For this reason singular configurations were

avoided in this example, but singularity avoidance methods

are discussed at the end of this chapter.

The purpose of this example is to show that RBDO can be

used to characterize the dynamic performance of a robotic

system over all possible configurations without having to

resort to sampling methods. This ensures that all possible

configurations of the system are taken into account. The goal

of this is to find actuators that will produce a desired level

of performance over a desired percentage of configurations.

If no singularities are present in the system it is possible to

find actuators that will provide a desired level of performance

over the entire configuration space. Due to the singularity in

this example it is only possible to provide a desired level of

performance over almost all configurations.

Table II shows results obtained for the RBDO method

using the three beta values. The effects on dynamic per-

formance of a change in configuration can be highly non-

linear so it was necessary to compare the results with the

corresponding reliability values obtained from a monte carlo

simulation. The monte carlo simulation sampled 100,000

points in the configuration space using the optimal actuator

torques obtained from the RBDO method shown in Table II.

TABLE II

RBDO OPTIMIZATION DATA FOR VARIABLE CONFIGURATIONS.

Results of RBDO

β Υbound1
Nm Υbound2

Nm α1 Des. Rel. M.C. Rel.

1 18.59 3.66 1 84.13% 86.19%

2 89.66 15.45 1 97.72% 97.85%

3 1414.70 236.28 1 99.87% 99.88%

The results show that the method works very well when

compared with a monte carlo simulation. The results are

especially close for very high reliability values. The fact

that an approximate method, namely FORM, is used in

the optimization explains the loss of accuracy with lower

reliability values. However, even those results are very close

to the values obtained through the monte carlo method.

For this simple example the singularity could be avoided

by limiting the range of q2 without loss of information

about the system due to the symmetry from one side of

the singularity to the other. The location of the singularity

was also easily determined, however for a more complex

system it may not be as easy to locate the singularity and
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if it can be located limiting the range of a joint variable

may cause loss of information. Some performance measure

approaches have been proposed, which are used to avoid

singularities and may provide solutions that do not cause a

loss of information. These methods include singular value

decomposition, manipulability and condition number. These

methods are discussed in [33]. These performance index

methods are all used to locate singularities for the purpose

of avoiding these locations, but the application of RBDO to

determine the dynamic performance of a system needs to take

these singularities into account. These methods could likely

be used with the RBDO method to locate singularities and

account for them in order to avoid failure of the optimization.

VI. CONCLUSIONS

This investigation focuses on improving the design and re-

liability of robotic systems by characterizing the workspace.

Implementation of a novel unilevel approach for RBDO

facilitates the improved design of robotic systems which

can more reliably achieve their desired performance level.

This RBDO method eliminates the need to sample the

workspace, therefore it is a robust method for characterizing

the workspace of the robotic system. The unilevel RBDO

approach for robotic system design will have a significant

impact in applications where a high level of performance is

critical, such as site cleanup where failure or inability of the

robot to handle a toxic payload may result in spillage, which

could be catastrophic for the environment.
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