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Abstract— The joint velocity jump for redundant robots in 
the presence of locked-joint failures is discussed in this paper. 
First, the analytical formula of the optimal joint velocity with 
minimum jump is derived, and its specific expressions for both 
all joint failure and certain single joint failure are presented. 
Then, the jump difference between the minimum jump solution 
and the least-norm velocity solution is mathematically analyzed, 
and the influence factors on this difference are also discussed. 
Based on this formula, a new fault tolerant algorithm with the 
minimum jump is proposed. Finally simulation examples are 
implemented with a planar 3R robot and a 4R spatial robot, and 
an experimental study is also done. Study results indicate that 
the new algorithm proposed in this paper is well suited for real 
time implementation, and can further reduce the joint velocity 
jump thereby improving the motion stability of redundant 
robots in fault tolerant operations. Also, the fewer the possible 
failed joints are, the more obvious the effect of this new 
algorithm is. 

I. INTRODUCTION 
HEN robots perform a task in harsh and/or remote 

environments, they are subject to actuator and sensor 
failures. For these cases, it is quite difficult or 

impossible for us to repair the failures on the spot without 
delays.  Therefore, the tolerance to failures is essential for the 
robots to carry out such tasks as space exploration [1], 
underwater exploration [2] and hazardous material disposal 
[3]. The so-called fault tolerance means that a robot can still 
continue the desired tasks in the presence of failures. The 
failure modes of a robot include locked-joint, free-swinging 
joint and following-motion joint [4], where the locked-joint is 
one of the most common modes. The locked-joint failure will 
be discussed in this article. This failure covers two cases: one 
is active locking, where a joint can be locked by fail-safe 
brakes when a robot is capable of detecting its failure in 
advance; the other is passive locking, where a joint is locked 
unexpectedly due to mechanical failures. 

Since redundant robots have “extra” degree-of-freedom 
(DOF) which can compensate the motions of failed joints to 
continue the desired tasks after failures, they are often used in 
fault tolerant operations [5]. When any joint of a redundant 
robot with one redundancy fails and is locked, the robot will 
degrade to a new robot with different structural parameters 

that is called reduced robot here. Obviously, the performance 
of the robot will inevitably degrade. The evaluation on the 
performance of a reduced robot is one of significant problems. 
The minimum singular value of the reduced Jacobian matrix 
and the reduced manipulability of the robot are two of 
common fault tolerant indexes, which can be used to evaluate 
the dexterity of the reduced robot at the instant of locking 
failed joint [5]-[7]. The volume of the fault tolerant 
workspace and the centrality index that describes the 
positional relation between the fault tolerant workspace and 
the operational task are the other two fault tolerant indexes, 
which are often used to quantify the dexterity of the reduced 
robot during post-failure operations [8]-[10]. Besides the 
dexterity of reduced robots, the joint velocity jump at the 
instant of locking failed joint is another critical issue that 
should have been studied [11]. At this instant the reduced 
robot will replace the healthy robot to continue the desired 
task. To exactly follow the desired trajectory of the 
end-effector, the velocities and torques of surviving joints in 
the reduced robot will produce a jump, which inevitably 
reduces the accuracy of the end-effector trajectory. This 
problem was addressed to some extent. Reference [12] 
proposed a fault tolerant control algorithm based on the 
minimum singular value of the reduced Jacobian matrix. This 
algorithm can avoid the singularity of the reduced robot to 
ease the joint velocity jump. Nevertheless, research results 
show that the jump inherently results from the structural 
difference between the healthy robot and the reduced robot, 
and so it occurs even if the reduced robot is not in singular 
configurations [13].  
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A fault tolerant algorithm with minimum joint velocity 
jump was proposed [13], [14]. However, its computation is 
heavy, and not suitable for real time control. The remainder of 
this paper is organized as follows. Section II defines the joint 
velocity jump. In section III, the analytical formula of the 
optimal joint velocity with minimum jump is derived, and its 
specific expressions for both all joint failure and certain 
single joint failure are presented. Besides some problems 
related to this formula including a comparison with the 
least-norm velocity solution, singularity and a new fault 
tolerant planning algorithm are also discussed in this section. 
Simulation examples of a planar 3R robot and a spatial 4R 
robot are presented in Section IV. An experimental study is 
done in section V. Finally, the conclusions are given in 
Section VI. 

II. DEFINITION OF THE JOINT VELOCITY JUMP  
Assuming that a robot has n DOF and m absolute 

parameters of the end-effector. When one of robot’s joints 
fails and is locked, the robot will change into a reduced robot 
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and the velocity of surviving joints will also be redistributed 
due to the failed and locked joint. In this way, the difference 
of joint velocity between the healthy robot and the reduced 
robot may occur. The difference is defined as joint velocity 
jump (JVJ) and formulated as follows [13]. 

 jj
i

j
i θθλ && −=                               (1) 

where j  is the joint velocity of the healthy robot, and j
i  is 

the joint velocity of the reduced robot. Subscript “j” ranges 
from 1 to n, which denotes all joints; superscript “i” denotes 
the failed joints. When , 

θ& θ&

ij = jj
i θλ &=  since the failed joint 

is locked, i.e. . It is evident that the JVJ depends on 
not only the joint velocity of the healthy robot but also that of 
the reduced robot. The smaller j

i  is, the smaller the JVJ is, 
and namely, the failed joint has smaller influence on the 
kinematical properties of a robot. This means that the 
operational accuracy of the robot at the instant of failures is 
higher. Researches show that the excessive JVJ will result in 
vibration and jerk to a robot, which does reduce its 
operational accuracy at the instant of failures [13],[14]. 
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In (1), j
i  is decided by the reduced Jacobian matrix, 

which is given by the original Jacobian matrix  with its i-th 
column removed. Thus, the reduced Jacobian matrix can be 
expressed: . In the case of 
redundant robots with one redundancy, the  can be 
calculated by 
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where 1×∈ mRX&  is the velocity vector of the end-effector, 
and is the inverse of the reduced Jacobian. )1(1 −×− ∈ nm

i RJ

III. ANALYTICAL FORMULA OF THE JOINT VELOCITY AND 
RELATED PROBLEMS 

A. Derivation of the Formula 
Equation (1) indicates that the JVJ depends on the 

difference of joint velocity between the healthy robot and the 
reduced robot. For the redundant robot with one redundancy, 
when any joint of the robot fails and is locked, the joint 
velocities of the reduced robot are uniquely determined by the 
desired trajectory of the end-effector. For this reason, one can 
optimize the joint velocities of the healthy robot through the 
joint self-motion to make it get close to that of the reduced 
robots as much as possible. This optimal motion planning can 
be stated as: on condition that the end-effector’s motion is 
satisfied, optimize the joint velocities of the redundant robot 
to minimize the square sum of the JVJ. Assuming that any 
redundant joint of a robot is possible to fail, the optimal 
motion planning can be formulated as 
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2
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Subject to                          (4) θ&& JX =
By solving this optimization problem, a general analytical 

formula of the joint velocity that minimizes the JVJ of the 
redundant robot can be obtained as 
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where  is the Moore-Penrose 
generalized inverse of , 

mnRJJJJ ×−+ ∈= 1TT )(
J I nnR ×∈  is identity matrix, and “n” 

is the numbers of possible failed joints. 
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 is the 
extended joint velocity vector of the reduced robot, whose 
non-zero components can be calculated by (2). 

Equation (5) shows that the optimal joint velocity with 
minimum JVJ can be written in the standard pattern of the 
gradient projection algorithm [15]. The specific expression of 
the sum of the extended joint velocity vector  depends on the 
numbers of possible failed joints. 

For a robot with one degree of redundancy, if all joints are 
possible to fail, that is, on the condition that all single joint 
failure is considered, the sum of the extended joint velocity 
vector of the reduced robot can be calculated by 
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If only joint k is possible to fail and is locked, (6) then 
becomes 
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In this case, assuming that joint “n” is locked, an easy 
derivation will arrive at 
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This result indicates that, on the condition that only one of 
joints is possible to fail and is locked, to minimize the JVJ, the 
joint should be locked in advance. In this way, the joint 
velocities of the original robot are equal to those of the 
reduced robot, and so the JVJ keeps zero throughout. 
Obviously, this is only an extreme case. For most cases, all 
the joints, at least some of joints, are possible to fail. Hence, 
the joint velocity is usually not equal to zero. 

B. Comparison with the Least-norm Velocity Solution 
The least-norm velocity solution can operate a robot with 

the minimum joint velocity in square sum sense. Generally, 
the larger the velocity of the failed joint is, the larger the JVJ 
of the robot is. This implies that except the optimal joint 
velocity solution with minimum JVJ based on (5), the 
least-norm velocity solution is better than other solutions with 
respect to the JVJ index. It is therefore a natural question: 
What is the difference of the JVJ between the least-norm 
solution and the minimum JVJ solution? And, what are the 
key influence factors on the difference? They will be 
answered in this section.  

When a redundant robot operates in terms of the least-norm 
solution and the minimum JVJ solution respectively, 
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assuming that all single joint failure is considered, their 
square sum of the JVJ can be respectively expressed as 

=LNλ ∑
=

−
n

i
LN

i

1

2' θθ &&  (9)  

=OPTλ ∑
=

−
n

i
OPT

i

1

2' θθ &&  (10) 

where •  is 2 norm of joint velocity vector, LN  is 
least-norm joint velocity solution, and  is optimal 
solution with minimum JVJ. 
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OPTθ&

From (6), the minimum JVJ solution can be written 
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where  is a homogenous solution belonging to the null 
space, and orthogonal to . 
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Expanding (11) and collecting terms lead to 
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In similar manner, substituting (11) into (10), and noting the 
orthogonality of  and , we obtain Hθ& LNθ&
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Thus, the difference δ  in the square sum of the JVJ between 
the two solutions can be expressed as 
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Evidently, (14) is always greater than zero. This shows that 
in the case of the jump index the minimum JVJ solution does 
outperform the least-norm solution; and the difference 
depends on the homogenous solution of the joint velocity for 
a redundant robot and its numbers of possible failed joints.  
Generally, the fewer the possible failed joints are, the greater 
the difference is (noting that  consists of 1/n). H

It is worth explaining that the least-norm solution and the 
minimum JVJ solution all belong to a local solution and the 
comparison of joint velocities between the two solutions is 
also based on a specific joint configuration. Therefore, above 
conclusion is exactly true only when the two solutions have 
the same joint configuration. Nevertheless, the end-effector 
of a robot is often required to follow a continuous trajectory. 
At this time, if the two solutions are respectively used to 
generate a family of joint trajectories, even at the same instant, 
because the robot’s joint configuration is different, (14) is not 
satisfied, i.e. 

θ&

δ  is not always greater than zero. 

C. Singularity of A Reduced Robot 
When one of robot’s joints fails and is locked, the robot 

will change to a reduced robot with fewer DOF, and its D-H 
(Denavit-Hartenberg) parameters will also vary with the 
position where the failed joint is locked. Since robot failures 
may occur at random anywhere over its entire range of 
motion, all the reduced robots at any instant of possible 

failures must be non-singular and more dexterous. The 
minimum singular value and the reduced manipulability 
based on the reduced Jacobian matrix are commonly used to 
quantify the dexterity of a redundant robot at the instant of 
failures [5], [6]. These indexes have a dimension relative to 
length unit. To obtain a dimensionless index, the condition 
number of a robot can be introduced [16]. Therefore, we now 
define the reduced condition number of the Jacobian (RCN) 
as a new fault tolerant index, and sign it with  ik

1 /i ik riσ σ=  (15)  
where, i1σ  and riσ  are the maximum and minimum singular 
values of the reduced Jacobian matrix iJ  respectively. 
Obviously, ∞<≤ ik1 . The smaller the i  is, the stronger the 
dexterity of the reduced robot with locked joint “i” is, which 
means the robot has stronger fault tolerant ability at the 
instant of failures. When i =1, the reduced robot is isotropic 
and the most dexterous. If the fault tolerance of more than one 
joint is considered, the square sum of the dexterity for every 
joint can be taken, which is consistent with the JVJ index 
discussed above. Using the gradient of the RCN to replace the 
sum of the extended joint velocity vector in (5), we can obtain 
a fault tolerant algorithm with minimum dexterity. 

k

k

In most cases, although (5) can minimize the JVJ, it can not 
guarantee the reduced robot to avoid singular configurations. 
For a given task, the joint trajectories of a robot are related to 
the initial postures of its end-effector. Different initial 
postures correspond to different solution domains of the joint 
motion. Therefore, properly choosing the initial postures can 
avoid the singular configurations of a robot while minimizing 
the JVJ. 

D. A Fault Tolerant Planning Algorithm with the JVJ 
 The calculation procedures of this algorithm are as 

follows: 
(i) Arbitrarily choose the initial position of the end-effector, 
and let the end-effector’s velocity be zero. Determine the 
optimal initial configuration with minimum RCN through the 
joint self-motion in the null space [17]. 
(ii) Determine the joint trajectories under this initial condition, 
and calculate the RCN at any instant. 
(iii) Compare the calculated RCN with a specified threshold 
value. If the RCN is greater than the threshold value, the 
calculation ends; otherwise, return to step 1 until the 
requirement is satisfied. 

It is indicated that when (5) is adopted to minimize the JVJ 
in the fault tolerant motion planning, the singular 
configurations can be avoided by adjusting the end-effector’s 
initial position. Since our main interests in this paper are the 
JVJ problem of a robot but not its singularity problem, and the 
approach to choose the initial position to avoid the singularity 
of the robot was discussed in [13], this new algorithm does 
not include how to determine an optimal initial position for 
the robot. 

IV. SIMULATION EXAMPLES 

A. Planar 3R Robot 
Fig. 1 is a planar 3R robot. For positional tasks it is a 

redundant robot with one degree of redundancy. The three 
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algorithms including the JVJ algorithm (JVJA), the least 
norm velocity algorithm (LNVA) and the maximum dexterity 
algorithm (MDA) will be respectively implemented with this 
robot for the following two cases: all joint failures and two 
joint failures. And the comparisons of these algorithms on the 
JVJ and the RCN indexes will also be made. The simulation 
conditions are as follows. The three links of the robot are 
identical and each is 0.5 m long. Assume the velocity of its 
 end-effector ,  
simulation time t=1.0 s and calculation time dt=0.001 s. 

m/s t  t T)]2cos(2.0),2sin(2.0[ ππππ=X&

 

 
1) All Joint Fault Tolerance: Fig. 2(a) and (b) are the 

simulation results obtained respectively by the JVJA, the 
LNVA and the MDA, where the initial position of the 
end-effector , and the two indexes, m ]0,35.0[ T=X λ  and k 
are in their square sum sense. It is seen that on the joint 
velocity jump the JVJA is the best while the MDA is the 
poorest; on the dexterity, it is quite reverse. The two indexes 
of the LNVA are in the middle of the three algorithms. 

It is noted that the solutions may cross in quality at a certain 
point: for instance, the MDA solution in Fig. 2(b) grows over 
the ones with JVJA and LNVA at t=0.85. This is due to the 
local characteristics of these algorithms as motioned above.   

 

 
Next, we change the initial position of the end-effector and 

let . Similar simulation results are presented 
in Fig. 3(a) and (b). It is shown that the initial positions of the 
end-effector affect the absolute values of the JVJ and the 
RCN of these algorithms, but almost do not affect the relative 
values of the two indexes. Generally, the two indexes of these 
algorithms conflict with each other, i.e., adjusting the initial 
position of the end-effector can improve one index, 
meanwhile it will worse the other. In addition, for the all joint 

fault tolerance of a robot, no matter where the initial position 
is, the LNVA is always close to the JVJA on the jump index, 
and the closing extent is related to the D-H parameters of the 
robot. 

m ]0,4.0[ T=X

 

 
2) Two Joint Fault Tolerance: If only joints 2 and 3 are 

possible to fail, and the initial position of the end-effector is 
taken as , we can obtain the simulation 
results shown in Fig. 4(a) and (b). These results indicate for 
the jump index the optimal effect of the JVJA in this case is 
more obvious than in all joint fault tolerance; but for the RCN, 
there is no big difference among the three algorithms. It is still 
true for other initial positions. This means that the JVJA is 
more effective if only some of joints are possible to fail. 
Besides, the influence of the initial position of a robot’s 
end-effector on the two indexes is similar to the case of the all 
joint fault tolerance. 

m ]0,35.0[ T=X
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Fig. 3. Fault tolerant indexes of the three algorithms for all joint fault 
tolerance when initial position of the end-effector X . (a) 
Joint Velocity Jump, (b) Reduced Condition Number. 
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Fig. 1.  A Planar 3R Robot. 

 
B. Spatial 4R Robot 
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Fig. 4. Fault tolerant indexes of the three algorithms for two joint fault 
tolerance. (a) Joint Velocity Jump, (b) Reduced Condition Number. 
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Fig. 2. Fault tolerant indexes of the three algorithms for all joint fault 
tolerance when initial position of the end-effector X . (a) 
Joint Velocity Jump, (b) Reduced Condition Number. 

m ]0,35.0[ T=
A spatial 4R robot and its D-H coordinate system are given 

in Fig. 5. It is also a redundant robot with one degree of 
redundancy relative to a positional task. Assume the D-H 
parameters 1 , 2 , 3 , 4 , and td  to be 0.5m, 0m, 0.4m, 
0.1m, and 0.3m respectively; the velocity of the end-effector 

, the other 
simulation conditions are the same as that of the planar 3R 
robot. And only all joint fault tolerance is discussed here. It is 
noted that the so-called all joints actually only include joints 1, 
2, and 3 since the joint 4 of this robot is a non-redundant joint, 
whose motion is uniquely decided by the end-effector’s 
motion. 

d d d d
T[0,0.15 sin(2  t), 0.15 cos(2  t)]π  m/sπ π π=X&
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To compare with the planar 3R robot, two different initial 

positions of the end-effector,  and 
 are taken to do simulations, whose 

results are presented in Fig.6-Fig.7. At the first initial position, 
the jump index of the JVJA is much smaller than that of the 
other two algorithms. Meanwhile its reduced condition 
number is quite close to that of MDA. However at the second 
initial position, the three algorithms are all quite close on the 
two indexes. This phenomenon mainly results from the local 
characteristics of these algorithms. Vast simulation results 
show that the fault tolerant planning effects of spatial robots 
are more sensitive to the initial positions than that of planar 
robots. It is because spatial robots possess stronger non-linear 
properties on kinematics. In the case of spatial robots, the 
initial positions of the end-effector affect not only the 
absolute values of the JVJ and the RCN of these algorithms, 
but also the relative values of the two indexes, which is 
essentially different from the planar robot case. This implies 
that when the JVJA is applied in the fault tolerant planning of 
spatial robots, on one hand, the initial positions have to be 
carefully chosen, otherwise, the desired optimal effects can’t 
be obtained; on the other hand, this new algorithm can 
provide much better joint trajectories by optimizing the initial 
positions. By optimizing the initial positions the global 
characteristics of the algorithms can be improved [13]. 
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V. AN EXPERIMENTAL STUDY 
In this section, an experimental study is done with a 

Power-cube planar 3R robot shown in Fig. 9 to demonstrate 
that the influence of joint velocity jump on the operational 
accuracy of robot’s end-effector at the moment of locking 
failed joint. The test bed shown in Fig. 8 consists of a 
Power-Cube planar 3R robot and Optotrak 3D motion 
measurement system, where the three links of the robot are 
0.29m, 0.32m and 0.23m long, and the end-effector’s motion 
is prescribed by . 
It is assumed that only joint 3 is possible to fail and to be 
locked at the moment of maximum and minimum jump 
respectively. 
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Fig. 7. Fault tolerant indexes of the three algorithms for all joint fault 
tolerance when initial position of the end-effector 

. (a) Joint Velocity Jump, (b) Reduced Condition m ]350 ,20 ,210[ T...X −=
Number. 

 
Fig. 5.  A Spatial 4R Robot. 
 

 

 
For convenience and not losing generality, the experiment 

is implemented with the least norm velocity algorithm. The 
minimum and maximum jumps occur when t=4.5 s and t=3.1s 
respectively. Fig.9 and Fig.10 are the paths of the 
end-effector and their errors when joint 3 is locked at the 
moments of minimum and maximum jumps respectively. 
Fig.10 shows that in the two cases the robot all can still finish 
the desired circle path even in the presence of locking-joint 
failures. However, the jump of path error at the maximum 
jump moment is far greater than that at the minimum jump 
moment as shown in Fig.10, where the path error is measured 
by the difference between its least square values and actual 
values. These results show that the motion stability of 
redundant robots in fault tolerant operations can be 
effectively improved by reducing the joint velocity jump at 
the moment of locking failed joints. It is therefore concluded 

 
 
Fig. 8.  Power-cube Planar 3R Robot 
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Fig. 6. Fault tolerant indexes of the three algorithms for all joint fault 
tolerance when initial position of the end-effector 

. (a) Joint Velocity Jump, (b) Reduced Condition m ]270 ,210 ,090[ T...X =
Number. 
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that the new algorithm with a lower joint velocity jump can 
increase the accuracy of the end-effector in fault tolerant 
operations. 

 

 

VI. CONCLUSIONS 
The research results indicate in comparison with the 

LNVA and the MDA, the new algorithm proposed can reduce 
the joint velocity jump at the instant of locking failed joint, 
and, the fewer the possible failed joints are, the more obvious 
the effect of this new algorithm is. In the case of planar robots, 
the initial positions of the end-effector affect the absolute 
values of the JVJ and the RCN of these algorithms, but almost 
do not affect the relative values of them on the two indexes. 
However, in the case of spatial robots, the initial positions of 
the end-effector affect not only the absolute values of the JVJ 
and the RCN of these algorithms, but also the relative values 
of the two indexes. That is to say, the fault tolerant planning 
effects of spatial robots are more sensitive to the initial 
positions than that of planar robots, which is an essential 
difference between spatial robots and planar robots. 

In addition, a study indicates that, in the case of a spatial 
robot the joint layout and the D-H parameters affect the 
optimal effect of the new algorithm more seriously. It is not 
difficult to imagine that, for a given operational task, there at 
least exists one robot with a specific joint layout and 
corresponding D-H parameters that can minimize the joint 
velocity jump while satisfying the RCN requirement. How to 
determine the joint layout and the D-H parameters, that is, the 
dimensional synthesis of a robot based on the two fault 

tolerant indexes is our next step in the future researches. 
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