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Abstract— In this paper we introduce a shoe-integrated
system for human abnormal gait detection. This intelligent
system focuses on detecting the following patterns: normal gait,
toe in, toe out, oversupination, and heel walking gait abnor-
malities. An inertial measurement unit (IMU) consisting of
three-dimensional gyroscopes and accelerometers is employed
to measure angular velocities and accelerations of the foot. Four
force sensing resistors (FSRs) and one bend sensor are installed
on the insole of each foot for force and flexion information
acquisition. The proposed detection method is mainly based
on Principal Component Analysis (PCA) for feature gener-
ation and Support Vector Machine (SVM) for multi-pattern
classification. In the present study, four subjects tested the
shoe-integrated device in outdoor environments. Experimental
results demonstrate that the proposed approach is robust and
efficient in detecting abnormal gait patterns. Our goal is to
provide a cost-effective system for detecting gait abnormalities
in order to assist persons with abnormal gaits in the developing
of a normal walking pattern in their daily life.

I. INTRODUCTION

A. Motivation

Human gait can be generally divided into normal and
abnormal ones. An abnormal gait pattern will ultimately lead
to pain in the feet, ankles, legs and even skeletal disease if
prolonged. By monitoring the gait pattern of a human, proper
motion adjustments can be advised so as to improve their
walking style and long-term well being. Considering the vari-
ety of gait abnormalities, we select the typical ones including
macroscopic abnormalities (“toe in” and “toe out”) and
inconspicuous ones (“heel walking” and “oversupination”-
walking on the lateral portion of the foot). All of them are
known as the most common gait abnormalities generated
either by inborn reason or ill habit. We propose an intelligent
shoe-integrated system from which the information derived
can give efficient assistance in determining and alarming the
persons associated with abnormal gait patterns focusing on
the above gait abnormalities. This device is of particular
significance to provide feedback in the application of gait
abnormality rectification.

B. Related Work

In the past decade, as more and more studies on human
gait have been conducted, numerous systems for human
gait data acquisition and analysis were proposed, includ-
ing camera-based, floor-mounted, and in-shoe configuration
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systems. However, among all the available system, the in-
shoe device is most utilized due to the outstanding merit
of extending the usable location for human gait study. An
in-shoe multisensory data acquisition system was developed
by Morley et al. in 2001 [1]. In the system, including
pressure sensors, temperature and humidity sensors were
located in a shoe to monitor the corresponding information.
However, the system mainly focused on the hardware design
and little discussion on data interpretation and analysis was
introduced. Pappas proposed a gait phase detection system
based on a gyroscope and three force resistors [2]. Their
system can distinguish the phases of the stance as heel-off,
swing or heel-strike in order to the application of drop-foot
walking dysfunction. Also, Morris has developed a wireless
sensor system for realtime data acquisition which has the
potential use in clinical gait analysis [3]. The prototype
design was presented and the pattern recognition method
was not mentioned in detail. In addition, the Pedar insole
system (Novel, Munich) is a commercially available system
which is widely used in clinic sites and laboratories due to
its repeatability and accuracy [4]. J. Ray used to utilize the
Novel Pedar in-shoe system for gait analysis on subjects
with overpronated (fallen arches) and oversupination [5].
However, the limitations of Pedar insole system still exist,
including a heavy wireless and memory storage module, a
thick insole, and an expensive price.

In our group at CUHK, we have already developed the
platform for a shoe-integrated system. Based on this plat-
form, we developed an input device called Shoe-Mouse,
which can be used by people who have difficulties in using
their hands to operate computers or devices [6]. In [7],
the intelligent shoe-integrated system has been developed to
measure both the pressure distribution under eight special
plantar regions and the mean plantar pressure during a
subject’s normal walking. Ideal experimental results show
that it is possible to use only eight force sensing resistors
(FSRs) to calculate the mean pressure which used to be
acquired by a device equipped with numerous sensors, such
as the Pedar insole.

C. Overview of This Paper

In this paper, we aim to develop a cost-effective shoe-
integrated system for detecting human abnormal gaits. The
proposed pattern recognition approach is based on Prin-
cipal Component Analysis (PCA) for feature generation
and Support Vector Machine (SVM) for multi-classification.
This intelligent system has the potential application for gait
abnormality rectification. Fig. 1 displays the outside view of
the prototype.
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Fig. 1. Outside view of the intelligent shoe

This paper is organized as follows. In section II, the
architecture of the shoe-integrated system is introduced.
We describe the proposed approach of how to apply PCA
for feature generation and SVM for multi-classification in
section III. Experimental results are discussed in section IV.
We draw the conclusion and proposed future improvements
in the final section.

II. SYSTEM DESIGN

Fig. 2 shows the system architecture, including the four
major components: insole, inertial measurement unit (IMU)
board, microprocessor-based data gathering module, and
wireless communication subsystem. The whole system is
compact and light so that it is easily integrated with a user’s
shoes.

 

Fig. 2. Outline of the system design

A. Insole Subsystem

The insole subsystem shown in Fig. 3 is a flexible in-
strumented part for sensing the force and flexion parameters
inside the shoe. Four FSRs (Interlink Electronics, Santa
Barbara, CA) and one bend sensor (Bend Sensor Images
SI, Inc.) are installed on one side of a thin insole made of
plastic. Considering the different sizes of subcutaneous bony
prominences, we select two kinds of FSRs. Two FSR-402s
(12.7 mm diameter active surface) are used under the first
metatarsal head and the position between the forth and fifth
metatarsal heads. Two FSR-400s (5 mm diameter) are placed
under the heel (which is divided into a posterior and inside
portion). The bend sensor is located at the center of the insole
in order to provide the flexion information of human foot.

Both the FSR and bend sensors exhibit changes in resis-
tance when force or bend are applied to the active area. In

 

Fig. 3. Photograph of the insole

our circuit design, a voltage divider is used to measure the
resistance change in order to obtain the relationship between
the applied force or bend degree and the voltage.

B. IMU Board

In biomechanics, body segment orientations (3D angles)
and kinematic data (such as 3D accelerations) are important
parameters for gait analysis, therefore, we designed the
inertial measurement unit (IMU) as one of the essential parts
for the whole system. Thanks to the development of MEMS
technology, environmentally safe and low-cost sensors are
available. The IMU board (51×25×7 mm in size) mainly
consists of two parts: the MEMS sensors and an analog-to-
digital converter. We select three single-axis gyroscopes and
one three-axis accelerometer to detect the angular rates and
accelerations of foot motion for the X, Y, and Z axes. The
analog-to-digital converter (ADS7844, Texas Instruments) is
used for transforming the analog voltage into a digital signal
which is then transmitted to the microprocessor for data
packaging.

C. Microprocessor-Based Data Gathering Subsystem

The subsystem used to gather information from the insole
and IMU is mainly composed of a microprocessor-based
circuit board (in Fig. 4). It includes a low-power and high-
performance 8-bit AVR microprocessor-ATmega16L, periph-
eral components (resisters, capacitors, etc.), and one battery.
The microprocessor runs at a clock frequency of 8 MHz.
All circuitry operates with 5 V power which is generated
by a LM78L05 regulator and powered by one 7.4 V/Li-ion
battery. We use five ADC channels with 10-bit resolution to
transform the analog voltage information generated from the
FSRs and bend sensor into scaled digital data.

 

Fig. 4. Circuit board together with battery

D. Wireless Communication Subsystem

The aim of this subsystem is to wirelessly transfer the
digital data processed by the ATmega16L to the host com-
puter in realtime. There were two major transfer methods of
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previous in-shoe data acquisition systems. One was to restore
the original information in FLASH RAM and then download
the data to PC after the gait test through a parallel port
for further analysis [8]. The other method was to transmit
the data immediately via the RS232 serial port [1]. Both
approaches introduce few transmission errors which make
the analysis result relatively stable. Despite this, there are
some limitations. For the former, it is impossible to monitor
human motion and provide the feedback in realtime. For the
latter, the wire between the data acquisition system and the
host computer makes it difficult to perform detection in a
relatively large space.

In our system, the small amount of digital data makes it
possible to use wireless communication with a high sampling
rate. Thus, a low-power radio frequency (RF) communication
module, GW100B (56×28×7 mm in size), is selected. The
RF transmitter and RF receiver are connected with the micro-
processor and the host computer respectively. The forward
error correction (FEC) processing of GW100B allows for a
low error rate making the whole system reliable.

III. HUMAN GAIT DETECTION USING MACHINE
LEARNING

We aim to separate the human gaits including both normal
and abnormal ones into five classes: normal, toe in, toe
out, oversupination, and heel walking, according to a group
of features. The process of generating SVM multi-classifier
mainly consists of the following parts:
(1) Set up gait database of “normal”, “toe in”, “toe out”,
“oversupination”, and “heel walking”, based on the data ob-
tained from each subject wearing the shoe-integrated system;
(2) Use Fast Fourier Transform (FFT) to convert data from
the time domain to the frequency domain;
(3) Apply Principal Component Analysis (PCA) for feature
generation;
(4) Train with Support Vector Machines and generate SVM
multi-classifier.

Fig. 5 and Fig. 6 respectively illustrate the frameworks for
training and detection.
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Fig. 5. Training framework

A. PCA for Feature Generation

It is necessary and important to apply feature generation
and reduction in data preprocessing for modeling human gait
patterns, since failures in feature selection can significantly
diminish the efficiency of system performance. In addition,
even though the present features contain enough information
about the classification problem, they cannot be used for
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Fig. 6. Detecting framework

predicting the output result correctly since the dimension of
the feature space is so large that it requires large numbers
of instances to determine the result.

Among several feature extraction methods, Principal Com-
ponent Analysis (PCA) is widely utilized in the field of
pattern recognition and in many signal processing applica-
tions. PCA generates a new set of variables, called principal
components (PCs), by projecting the original variables to
mutually orthogonal axes. In the routine, singular value
decomposition (SVD) is applied to efficiently computer PCs
[9].

B. Support Vector Machines

We address our classification problem as a multi-pattern
recognition using support vector machines (SVMs). The
feasibility of support vector machine in the application of
classification problem has been proved, being used in the
fields of musical genre classification, image classification,
gender classification and so on.

(1) Support Vector Classification (Binary Case)
The basic training principle of SVMs is to map a set

of training data {(x1, y1), · · · , (xl, yl)}, (xi ∈ X ⊆ Rn,
yi ∈ {−1, 1}, l is the total number of training samples)
from the input space X into a high-dimensional feature space
via a nonlinear function φ so that the optimal separating
hyperplane (OSH) can be found with the maximum mar-
gin between the two classes. A separating hyperplane in
canonical form (Vapnik, 1995) determines a function that
can classify unseen examples accurately with the following
constraints:

yi[〈ω, xi〉 + b] ≥ 1, i = 1, · · · , l. (1)

where 〈·, ·〉 denotes the dot product in X .
Among several separating hyperplanes, the optimal one

is given by maximizing the margin which is the distance
between the hyperplane and the closet point of each class.
Since the distance is 2

‖ω‖ with the constraints of (1), finding
the OSH is equivalent to minimizing the following equation:

Φ(ω) =
1
2
‖ω‖2 (2)

Considering in most cases, the data is linearly nonsepara-
ble, we introduce positive slack variables ξi (i = 1, · · · , l) to
deal with these cases. Equation (2) can be transformed into
the following equation:

min Φ(ω, ξ) = 1
2 ‖ω‖2 + C

l∑
i=1

ξi (3)

s.t. yi[〈ω, xi〉 + b] ≥ 1 − ξi, i = 1, · · · , l. (4)
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In (3), minimizing the term 1
2 ‖ω‖2 which is called as the

regularized term will make the function as flat as possible.

The second term,
l∑

i=1

ξi, representing the empirical risk, is

calculated by ε-insensitive loss, which is the most widely
used cost function [10]. The parameter C, which is selected
empirically by users, calculates the penalties to errors by
determining the trade-off between the empirical risk and
the regularized term. The larger the value of C, the more
penalties are assigned to errors.

We then construct a Lagrange function under the con-
straints of (4) in order to solve the optimization problem
of (3):

L =
1
2
‖ω‖2 + C

l∑

i=1

ξi −
l∑

i=1

βiξi

−
l∑

i=1

αi(yi[〈ω, xi〉 + b] − 1 + ξi) (5)

where α, β are the Lagrange multipliers. Because classical
Lagrangian duality can solve the primal problem, (5) can be
transformed to its dual problem which is given by,

max W (α) =
l∑

i=1

αi − 1
2

l∑
i=1

l∑
j=1

αiαjyiyjxi.xj

s.t.

0 ≤ αi ≤ C i = 1, · · · , l,
l∑

i=1

αiyi = 0.

(6)

By replacing x with its mapping in the feature space Φ(x),
(6) can be rewritten as:

W (α) =
l∑

i=1

αi − 1
2

l∑

i=1

l∑

j=1

αiαjyiyjΦ(xi).Φ(xj)

=
l∑

i=1

αi − 1
2

l∑

i=1

l∑

j=1

αiαjyiyjK(xi, xj) (7)

As shown in (7), the dot product can be replaced with a
function K(xi, xj) defined as the kernel function. The advan-
tage of using the kernel function is that the dot product can
be performed in a high-dimensional feature space without
having to know the nonlinear transformation φ(x) explicitly.
Any function that satisfies Mercer’s condition can be used
as the kernel function. Radial Basis Function (RBF) kernel
K(xi, xj) = exp(−γ ‖xi − xj‖ 2), γ > 0 and polynomial
kernel K(xi, xj) = (xi · xj + 1)d are the commonly used
kernel functions for the classification problem in nonlinear
SVMs.

Only a number of nonzero Lagrange multipliers αi , αj

which fulfill the requirement can be used for the construction
of the optimal hyperplane. Any vector xi corresponding to
a nonzero α is defined as the support vector (SV) of the
optimal hyperplane. As a remark, the sparsity of the SVM
classifier is regarded because support vectors are usually a
small subset of the training data points.

The decision function for identifying the class of the input
data x is obtained by

y(x) = sgn(
l∑

i=1

yiαiK(xi, x) + b) (8)

(2) Multi-Classification with SVMs

Two of the conventional approaches that apply SVMs to
multi-classification problem are one-against-one and one-
against-rest. The kernel concept of each approach is to
convert the multiple problem into several binary ones. In
order to reduce the training time, we select the one-against-
one method in which N(N−1)

2 classifiers are created for N
total classes.

The binary classification problem for training data xk from
class i and class j can be shown in the following equation:

min Φ(ωij , ξij) = 1
2

∥∥ωij
∥∥2 + C

∑
k

ξij
k

s.t.

(〈ωij , xk〉 + bij) ≥ 1 − ξij
k , xk ∈ class i

(〈ωij , xk〉 + bij) ≤ −1 + ξij
k , xk ∈ class j

ξij
k ≥ 0.

(9)

We regard each binary classification as a voting. Then for
the test observation sequence xt will be designated into the
class with maximum number of votes. If more than one class
has identical votes, xt is unclassifiable. We comply with the
strategy of selecting the class with the smallest index.

IV. EXPERIMENTS AND ANALYSIS

A. Data Acquisition and Database Formation

After A/D transformation, the digital data of all sensors
are packaged, which effectively decrease the transmission
error and increase the sampling frequency to 50 Hz which is
adequate for the activity of walking [11]. Then in the host
computer, we obtain the corresponding information applied
for each sensor based on data reconstruction and calibration.
Fig. 7 and Fig. 8 respectively display the force waveforms
under each FSR and 3D inertial parameters during Subject
A’ s normal walking as a function of time.

Four healthy adults with normal weight and height were
invited for this investigation. Since we do data analysis by
examining both the left and right feet, the training data
segment in a 3010×22 matrix for each of the five gait
patterns is produced. After applying Fast Fourier Transform
(FFT) processing, we transfer each data segment into a
3000×66 matrix with three primary coefficients selected.
Since the number of inputs for a SVM model cannot be
too large, we apply Principal Component Analysis (PCA) for
feature generation which reduces the data segments from 66-
D to 10-D. Experimental results demonstrate that the training
process of SVM model becomes more efficient after reducing
the dimension of the input data.

B. SVM Model Selection

For what has been discussed in Section III-B, SVM model
and parameter selection are very important for obtaining the
best generalization in SVM training. In comparison with
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Fig. 7. Force waveforms under 4 right foot regions during normal walking
(M1 = 1st metatarsal head, M4-5 = the position between 4th and 5th
metatarsal heads, PH = posterior heel, and IH = inside heel)
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Fig. 8. Accelerations and angular rates in 3D

other generally used kernel functions, RBF kernel is selected
for our experiments because of the following reasons. Firstly,
unlike the linear kernel function, RBF kernel can nonlinearly
map training data into the high-dimensional feature space in
order to solve the problem when the relationship between at-
tributes and different classes is not linear. The second reason
is that the RBF kernel function has less hyperparamters that
influences the complexity of model selection than polynomial
and sigmoid kernels.

γ and the cost of constraints violation C which controls the
balance between model complexity and the training error are
the two parameters while using RBF kernel function and C-
SVM proposed by Vapnik. We set γ as 1

k , where k means the
number of attributes in the input data. Since the dimension
of input data is 10, the value of γ equals 0.1. We compare
the number of iterations and the number of support vectors
(SVs) for the SVM model with the parameter C set to 1, 5,

10, 20, 50, and 100. The value range of C is usually from 1
to 1000, however, large C will result in overfitting problem.
The comparison results for Subject A are shown in Fig. 9
and Fig. 10.
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Fig. 9. Number of iterations versus C (Subject A)

After several experiments, we find that the variation of
success rate is settled in a small region less than 1% with
C set to 1, 5, 10, 20, 50, and 100. The same investigation
result happens for all the four subjects. However, as shown
in Fig. 9, larger C corresponds to more iteration steps.
When C equals 1, the number of iteration is 21089, while C
increases to 100, the number of iteration increases to 79556.
Fig. 10 displays the comparison results for the number of
support vectors when different values of C are selected. As
contrasted with the regularity of iteration versus C, less C
corresponds to more number of support vectors. Considering
the above experiment results and avoiding overfitting prob-
lem, we select C equal to 1.
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Fig. 10. Number of SVs versus C (Subject A)

C. Sensor Configuration Evaluation

The multi-classification results for the four subjects based
on the trained SVM classifiers with C=1 are shown in Fig.
11. For each subject’s each gait pattern, 1000 sampling points
are selected as the testing data. The average success rates
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listed in Table I demonstrate the SVM classifiers we built
are robust and efficient for the problem of human abnormal
gait detection.

Multi-classification Results
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Fig. 11. Multi-classification results for the 4 subjects

TABLE I

AVERAGE SUCCESS RATES FOR THE FOUR SUBJECTS

Subject ID A B C D

Average Success Rate 92.3% 89.6% 87.72% 93.38%

Moreover, we make comparisons of the classification
results utilizing insole sensors and IMU inputs respectively,
in order to find the possibility of reducing the hardware
design of the intelligent shoe focusing on our problem. Table
II lists the detailed experiment results for Subject A only
using insole or IMU sensors. We found that the average
success rate of using insole sensors is higher than only using
IMU and around 3.5% lower than the value of utilizing both
IMU and insole sensors. Based on the same experimental
method for the other three subjects, we obtain the conclusion
that insole sensors play a more important role in solving our
classification problem and it is still necessary to utilize both
IMU and insole parameters for the analysis in order to obtain
the better detection result.

TABLE II

COMPARISON OF CLASSIFICATION RESULTS USING DIFFERENT SENSOR

PARAMETERS

Gait Pattern
Success Rate

Insole IMU

Toe in (1000 samples) 82.3% 84.7%
Toe out (1000 samples) 94.5% 90.9%
Oversupination (1000 samples) 96.9% 74.2%
Heel Walking (1000 samples) 85.4% 79.5%
Normal Pattern (1000 samples) 85.1% 79.4%
Total (5000 samples) 88.84% 81.74%

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we present a shoe-integrated system for
detecting human abnormal gaits. First, the prototype of
the intelligent system is designed which includes a suite
of sensors for acquiring force, flexion, three dimensional
angular rate and acceleration parameters of foot. Secondly,
since the goal of this study is to investigate the approach for
detecting gait abnormalities, focusing on toe in, toe out, over-
supination, and heel walking, we apply Principal Component

Analysis (PCA) for feature generation and Support Vector
Machine (SVM) for multi-class classification. Experimental
results of the four subjects demonstrate the proposed method
is robust and efficient in solving the problem of abnormal
gait detection. The compact, wireless, and wearable system
has the potential application for detecting gait abnormalities
in order to assist persons with abnormal gaits in developing
normal walking pattern in their daily life.

In the future work, we will do more experiments for ab-
normal gait pattern recognition not only focusing on the gait
abnormalities mentioned above but also others. Other intelli-
gent learning algorithms, such as Cascade Neural Networks
with Node-Decoupled Extended Kalman Filtering (CNN-
NDEKF) will be introduced to built multi-pattern model for
our problem. The scalable and programmable platform can
be further used for other exciting research directions, such
as gait-based human-computer interface.
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