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Abstract— In this paper a compliance control law for kine-
matically redundant manipulators is proposed. The controller
contains a Cartesian compliance part and a nullspace com-
pliance part which are complemented by a power-conserving
decoupling term. The approach deliberately avoids inertia
shaping in order to obtain a control law which does not
require the measurement of external forces and becomes less
sensitive with respect to model uncertainties. While the con-
troller formulation explicitly uses nullspace velocity coordinates,
no integration of these velocities is required. Except for the
kinematic singularities of the manipulator’s Jacobian matrix,
no further algorithmic singularities are introduced. Asymptotic
stability of the closed-loop system is shown by utilizing semi-
definite Lyapunov functions. Finally, a short planar simulation
study is presented which validates the effectiveness of the
approach.

I. INTRODUCTION

It is widely accepted in the robotics community that

kinematically redundant manipulators have many advantages

compared to non-redundant systems from a practical point

of view. Kinematically redundancy usually leads to a larger

dexterous workspace and provides the control engineer with

some freedom for incorporating other important subtasks like

optimizations of the joint configuration or obstacle avoidance

while performing a given main task related to the end-

effector motion [1].

The operational space formulation [2] provides a power-

ful framework for designing Cartesian controllers both for

non-redundant and for redundant manipulators. It aims at

achieving a decoupled linear dynamics for the end-effector

motion similar to the feedback linearization approach from

nonlinear control theory. For controlling the nullspace motion

a projection matrix based on the dynamically consistent

pseudoinverse of the Jacobian matrix is applied.

Park [3] proposed a dynamics formulation in which

the Cartesian coordinates are augmented by appropriate

nullspace velocities. This was done by extending the Jaco-

bian matrix such that the extended matrix becomes quadratic

and non-singular. Thereby, also the dynamically consistent

pseudoinverse from the operational space formulation was

incorporated. The controllers derived from this approach

usually also contain an exactly decoupled Cartesian error

dynamics [3], [4], [5].

Baillieul [6] proposed the use of an extended task space

in which the Cartesian coordinates are augmented by some

additional coordinates which describe the nullspace motion.

This, however, introduces in general also new algorithmic

singularities due to the particular choice of the new task

coordinates. Also a decoupling between the Cartesian motion

and the nullspace motion can be achieved only via shaping

of the Cartesian inertia matrix.

In this paper the focus is put on the implementation of a

compliance control law. Inertia shaping is avoided for two

reasons: Firstly, the inertia shaping would require feedback

of the external forces. While the external forces actuated

at the end-effector can often be directly measured via an

additional force/torque sensor mounted at the tip of the robot,

the forces exerted on the robot’s structure can usually not be

measured. Secondly, inertia shaping requires a precise model

also in the non-redundant case and therefore sometimes is

difficult to be implemented. Avoiding inertia shaping thus

allows to implement simpler control laws. However, while

the implementation of the controller gets simpler, the stability

analysis gets more involved, because the Cartesian dynamics

cannot be analyzed independently from the nullspace motion

any more [7].

The controller design from this paper is based on an aug-

mentation of the Jacobian matrix, which follows closely the

formulation proposed by Park [4], [3]. After a short discus-

sion of the problems in designing a Cartesian compliance

controller without inertia shaping in Section II, the proposed

approach is presented in Section III. First, the model is re-

formulated in Section III-A by introducing some nullspace

velocity coordinates which complement the Cartesian veloci-

ties. Then, the control law is formulated in Section III-B and

after a short discussion about the controller parametrization

in Section III-C its stability properties are analyzed in Section

III-D. A planar simulation study is presented in Section IV.

Finally, in Section V the paper is concluded with a short

summary.

II. CARTESIAN COMPLIANCE CONTROL

The dynamical model of a robot with n joints can be

written as

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ + τ ext , (1)
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with the symmetric and positive definite inertia matrix

M(q) ∈ R
n×n, the centrifugal and Coriolis terms

C(q, q̇)q̇ ∈ R
n, and the gravity torques g(q) ∈ R

n.

The state variables of the system are the n generalized1

coordinates q ∈ R
n and the corresponding generalized

velocities q̇ ∈ R
n. The generalized forces2 τ ∈ R

n are

the control inputs and τ ext ∈ R
n denotes the external

generalized forces acting from the environment on the robot.

In this model the matrix C(q, q̇) can always be chosen such

that Ṁ (q) = C(q, q̇)+C(q, q̇)T holds, which is equivalent

to the skew symmetry of the matrix Ṁ(q) − 2C(q, q̇). It

is well known that this property corresponds to the passivity

of the system with respect to the input τ and the output q̇.

Furthermore, for the design of the Cartesian compliance a

set of m < n Cartesian coordinates are defined via the

mapping x = f (q) ∈ R
m. Accordingly, the mapping from

joint velocities to Cartesian velocities can be written with

the Jacobian matrix J(q) ∈ R
m×n as

ẋ = J(q)q̇, J(q) =
∂f(q)

∂q
. (2)

The control goal is now to achieve a given compliance

behavior specified by a symmetric and positive definite

Cartesian stiffness matrix K ∈ R
m×m and a positive

definite damping matrix D ∈ R
m×m at a constant Cartesian

virtual equilibrium position xd. As already mentioned in the

introduction, we avoid additional inertia shaping, because

this would require feedback of the external generalized forces

τ ext and usually also requires a precise model of the inertia

matrix.

In an area where the manipulator’s Jacobian matrix has

full row-rank, the desired compliance relation can be im-

plemented with a feedback law of the form

τ = g(q) + τ c , (3)

τ c = −J(q)T (K(x − xd) + Dẋ) , (4)

leading to the Cartesian dynamics

Λ(q)ẍ + h(q, q̇) + Dẋ + K(x − xd) =

Λ(q)J(q)M(q)−1τ ext , (5)

with

Λ(q) = (J(q)M (q)−1J(q)T )−1 ,

h(q, q̇) = Λ(q)
(

J(q)M−1(q)C(q, q̇) − J̇(q)
)

q̇ ,

describing the Cartesian behavior but not the nullspace be-

havior. Notice that for this controller the stability properties

of the Cartesian dynamics can not be analyzed independently

from the nullspace dynamics, because (5) depends on q and

not only on the Cartesian coordinates x. This situation would

be different for a control approach in which in addition to the

compliance implementation also inertia shaping/decoupling

would be included in the Cartesian control action.

In the next section the Cartesian control law (4) will be

1positions for prismatic joints and angles for rotational joints
2forces for prismatic joints and torques for rotational joints

augmented by an additional nullspace compliance as well

as a power-conserving decoupling between the Cartesian

dynamics and the nullspace dynamics.

Since (4) is specified with respect to some local Cartesian

coordinates x, the chosen orientation representation in these

Cartesian coordinates clearly affects the singularities of the

Jacobian matrix and therefore is a relevant issue in practice.

Alternatively, one can also use a singularity-free stiffness

implementation as the ones proposed by Zhang and Fasse

[8] or Natale [9].

III. NULLSPACE COMPLIANCE CONTROL

The goal for the design of the nullspace controller is

to achieve a compliance behavior specified by positive

nullspace stiffness and damping factors kn > 0 and dn > 0.

Since the control law does not include inertia shaping, there

will always be dynamic couplings between the Cartesian

dynamics and the nullspace dynamics. Despite these dynam-

ical couplings it is required that the static stiffness resulting

from the Cartesian compliance should not be affected by the

additional nullspace control action.

A. Model Reformulation

Before starting with the design of the complete control

law, the equations of motion will be reformulated in such a

way that the Cartesian dynamics and the nullspace dynamics

can be distinguished more easily. Baillieul [6] introduced

some additional task coordinates for describing the complete

dynamics in task coordinates. This, however, leads in general

to additional singularities depending on the particular choice

of the task coordinates. Therefore, we follow here instead the

approach of Park [4] in which n − m additional nullspace

velocity coordinates vn = N (q)q̇ are used. The matrix

N(q) must be designed such that the extended Jacobian

matrix JN (q) according to
(

ẋ

vn

)

= JN (q)q̇ =

(

J(q)
N (q)

)

q̇ . (6)

is non-singular. Notice that these nullspace velocities vn

in general are non-integrable, meaning that there do not

exist compatible nullspace coordinates n(q) such that

N(q) = ∂n(q)/∂q. This clearly is an obstacle for design-

ing nullspace compliance controllers. This problem will be

overcome in the analysis of this paper by utilizing a stability

theorem based on semi-definite Lyapunov functions.

One particular choice for N (q) which uses the manipulator’s

inertia matrix as a metric is given by

N(q) =
(

Z(q)M(q)Z(q)T
)−1

Z(q)M (q) , (7)

where Z(q) is a full row-rank nullspace base matrix of J(q)
fulfilling the condition J(q)Z(q)T = 0 [4]. Such a matrix

Z(q) can be found, e.g., numerically based on a singular

value decomposition of the Jacobian or even in analytic form

using the techniques described in [10], [11]. One can show

that by this choice the extended Jacobian JN (q) is non-

singular indeed and the inverse is given by

JN (q)−1 =
[

JM+(q) Z(q)T
]

, (8)
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where JM+(q) denotes the dynamically consistent weighted

pseudo-inverse defined as

JM+(q) = M(q)−1J(q)T (J(q)M (q)−1J(q)T )−1 .

The joint velocity q̇ can thus be computed from the Cartesian

velocity ẋ and the nullspace velocity vn via

q̇ = JM+(q)ẋ + Z(q)T vn . (9)

From this it is straightforward to rewrite (1) in the extended

velocity coordinates as

ΛN (q)

(

ẍ

v̇n

)

+ µN (q, q̇)

(

ẋ

vn

)

=

JN (q)−T (−g(q) + τ + τ ext) , (10)

with the matrices ΛN (q) and µN (q, ẋ, vn) given by

ΛN (q) = JN (q)−T M(q)JN (q)−1 ,

=

[

Λx(q) 0

0 Λn(q)

]

,

Λx(q) = (J(q)M (q)−1J(q)T )−1 ,

Λn(q) = Z(q)M (q)Z(q)T ,

and (omitting dependence on q)

µN (q, ẋ, vn) =

[

µx(q, ẋ, vn) µxn(q, ẋ, vn)
µnx(q, ẋ, vn) µn(q, ẋ, vn)

]

,

µx(q, ẋ, vn) = Λx

(

JM−1C(q, q̇) − J̇
)

JM+ ,

µxn(q, ẋ, vn) = Λx

(

JM−1C(q, q̇) − J̇
)

ZT ,

µnx(q, ẋ, vn) = −µxn(q, ẋ, vn)T ,

µn(q, ẋ, vn) = Λn

(

NM−1C(q, q̇) − Ṅ
)

ZT .

Notice that the particular choice in (7) for N (q) led to a

block-diagonal matrix ΛN (q). Based on this the property

µnx(q, ẋ, vn) = −µxn(q, ẋ, vn)T follows directly from

the skew symmetry property Λ̇N (q) = µN (q, ẋ, vn) +
µN (q, ẋ, vn)T which is due to Ṁ(q) = C(q, q̇) +
C(q, q̇)T . A direct proof of this property using the above

expressions, however, requires a lengthy derivation. From

now on we will use the variables (q, ẋ, vn) as the state

variables instead of (q, q̇). The relation between these two

sets of coordinates is given by (6) and (9). Furthermore, it

will be convenient to rewrite the external generalized forces

τ ext as the sum of some Cartesian forces F x and some

nullspace forces F n which are related to τ ext via

τ ext = J(q)T F x + N(q)T F n . (11)

B. Controller Design

In the following a compliance control law for the model

(9)-(10) is proposed in which a nullspace compliance term

τn and a power-conserving decoupling term τ d are added

to (4), see also Figure 1. The term τn is designed simply by

projecting the output torque of a joint level stiffness onto the

complement of the range of J(q)T and adding a damping

term for the nullspace velocities vn:

τn = −N(q)T Z(q)kneq − N(q)T dnvn .

Herein, eq := q−qd denotes the deviation of the generalized

coordinates from a desired virtual equilibrium configuration

qd. In the stability analysis the use of such a projection

N(q)T Z(q) is often problematic, because in general one

cannot find a potential function for the complete stiffness

term −N(q)T Z(q)kn(q − qd). In the analysis below, this

problem will be resolved by utilizing some results from the

stability theory using semi-definite Lyapunov functions.

The role of the term τ d is to eliminate undesired coupling

Fig. 1. Control structure.

terms in the dynamical equations for ẋ and vn. While the

inertia matrix ΛN (q) is already in block-diagonal form due

to the particular choice of N(q), the matrix µN (q, ẋ, vn)
is still fully occupied. Therefore, the corresponding coupling

terms in µN (q, ẋ, vn) are compensated by the feedback

τ d = J(q)T µxn(q, ẋ, vn)vn + N (q)T µnx(q, ẋ, vn)ẋ .

Notice that this is a power-conserving feedback in the sense

that the transmitted power Pd = τT
d q̇ is always zero due to

µxn(q, ẋ, vn) = −µnx(q, ẋ, vn)T . While in practice these

terms admittedly are of minor importance, this term τ d is

required for the stability analysis.

Summarizing all the different controller actions, we finally

have a control law of the form

τ = g(q) + τ c + τn + τ d , (12)

τ c = −J(q)T (K(f (q) − xd) + Dẋ) ,

τn = −N(q)T (knZ(q)eq + dnvn) ,

τ d = J(q)T µxn(q, ẋ, vn)vn + N(q)T µnx(q, ẋ, vn)ẋ .

Accordingly, the closed-loop dynamics can be derived from

(9)-(10) with (11) and (12) as

Λx(q)ẍ + (µx(q, ẋ, vn) + D)ẋ + K(f(q) − xd) = F x ,

Λn(q)v̇n + (µn(q, ẋ, vn) + dn)vn + knZ(q)eq = F n .

C. Controller Discussion

First of all, one may wonder why the controller depends

on a virtual Cartesian equilibrium position xd as well as

on a virtual joint space equilibrium configuration qd (via

eq). In practice it is indeed the best solution if xd and qd

are chosen in a compatible way, i.e. such that f (qd) = xd

holds. Given only a Cartesian equilibrium position, one can

use an appropriate optimization criterion, like e.g. collision

2001



avoidance or optimization of a manipulability measure, for

determining an optimal pose qd compatible to xd in a higher

planning level. In case that these values are not chosen in

a compatible way, the controller still achieves convergence

of the joint configuration q to the set of local constraint

minima q∗ = minf(q)=xd
||q−qd||2, while for f (qd) = xd

the equilibrium is asymptotically stable (see Proposition 1 in

Section III-D below).

Notice that the nullspace compliance term τn for itself is not

really a new contribution. The term N(q)T Z(q) occurring

in the expression for τn is nothing else than a dynamically

consistent nullspace projection matrix based on Z(q). The

main motivation of this work indeed was to find a way how to

extend a projection based nullspace compliance control law

(without inertia shaping) in order to give a formal proof of

asymptotic stability. The inclusion of the power-conserving

feedback τ d, however, deserves a closer examination. In-

stead of exactly decoupling the Cartesian dynamics and the

nullspace dynamics, it merely eliminates the outer-diagonal

parts of µN (q, ẋ, vn). While its computation requires J(q),
J̇(q), and Z(q), the time derivative of the nullspace base

matrix is not needed. This is an important feature because

the computation of Z(q) (e.g. if done by a numerical method

like a singular value decomposition of J(q)) does not require

the elements of Z(q) continuous. In the next section it will

be shown that the incorporation of the term τ d enables the

proof of asymptotic stability of the closed-loop system.

D. Stability Analysis

The stability properties of the closed-loop system can be

summarized as follows

Proposition 1: Consider the system (9),(10) with the con-

trol law (12). The matrices K, D ∈ R
m×m are assumed

to be symmetric and positive definite and kn and dn are

positive controller gains. Then the closed-loop system is

strict output passive with respect to the input F x and the

output ẋ. Suppose also that the Jacobian matrix J(q) has

full-row rank in the considered workspace and consequently

JN (q) is non-singular. If the virtual equilibrium position qd

is compatible with the virtual Cartesian equilibrium position

xd such that f(qd) = xd holds, then the equilibrium point

(q = qd, q̇ = 0) is asymptotically stable for the case of free

motion, i.e. for τ ext = 0.

Proof: The passivity statement can be easily proven by

considering the positive semi-definite function

S =
1

2
ẋT

Λx(q)ẋ +
1

2
(f (q) − xd)

T K(f (q) − xd)

as a storage function. Using the property Λ̇x(q) =
µx(q, ẋ, vn) + µx(q, ẋ, vn)T one can show that the time

derivative of this function along a solution of the closed-

loop system is given by

Ṡ = −ẋT Dẋ − ẋT F x ,

from which the passivity property of the Proposition follows

immediately.

The proof of asymptotic stability will be based on the

following two theorems concerning the stability analysis with

semi-definite Lyapunov functions [12]. The used notation of

conditional stability is clarified in the Appendix.

Theorem 1: [12] Consider a system of the form ż = f(z),
z ∈ R

n, with equilibrium point z∗. Let V (z) be a C1

positive semi-definite function which has a negative semi-

definite time derivative along the solutions of the system, i.e.

V̇ (z) =
∂V (z)

∂z
f (z) ≤ 0 . (13)

Let A be the largest positively invariant set contained in

{z ∈ R
n|V (z) = 0}. If z∗ is asymptotically stable condi-

tionally to A, then it is a stable equilibrium of ż = f(z).
In [13] a further extension of this theorem for passive sys-

tems is given. The particular case of strict output passivity3

is stated in the following theorem.

Theorem 2: [13] Let the system

ż = g1(z) + g2(z)u ,

y = h(z)

with state z ∈ R
n, input u ∈ R

m, and output y ∈ R
m be

strictly output passive for the output y = h(z). Let further

be A the largest positively invariant set contained in {z ∈
R

n|h(z) = 0}. If the equilibrium z∗ is asymptotically stable

conditionally to A, then it is asymptotically stable for u = 0.

The passivity property required in this theorem was already

shown above. From the closed-loop system one can easily

see that for the case of free motion the largest positively

invariant set contained in (q, ẋ = 0, vn) is given by A =
{(q, ẋ = 0, vn)|f (q) = xd}. It remains to prove that the

equilibrium (q = qd, ẋ = 0, vn = 0) is asymptotically

stable conditionally to the set A. Consider, therefore, the

Lyapunov function candidate

VA(eq, vn) =
1

2
vT

nΛn(q)vn +
kn

2
eT

q eq

which is positive definite in A and only positive semi-definite

in the whole set (q, q̇). Utilizing Λ̇n(q) = µn(q, ẋ, vn) +
µn(q, ẋ, vn)T one can compute the time derivative of this

function as (note that τ ext = 0)

V̇A(eq, vn) = −dnvT
nvn − vT

n knZ(q)eq + kneT
q q̇ .

In the set A the relation (9) reduces to q̇ = Z(q)T vn, such

that V̇A(eq, vn) simplifies to

V̇A(eq, vn) = −dnvT
nvn ≤ 0

which ensures stability conditionally to A. In order to show

asymptotic stability one can refer to LaSalle’s invariance

principle. According to this the state converges to the largest

positively invariant set contained in {(q, ẋ = 0, vn =
0)|f(q) = xd}. By observing the closed-loop system equa-

tions one can see that this set is given by {(q, ẋ = 0, vn =

3A system ż = f(z, u) with input u and output y is said to be strictly
output passive if there exists a non-negative function S(z) and an ǫ > 0
such that S(z(t))−S(z(0)) ≤

∫

t

0
(y(s)T u(s) − ǫ||y(s)||2)ds holds [13]

for all t > 0.
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0)|f(q) = xd, Z(q)eq = 0}. Since Z(q) is a full row-

rank nullspace base matrix, the point q = qd is an isolated

point in this set. Consequently, the system is asymptotically

stable conditionally to the set A. By applying the theorem

above also shows the asymptotic stability of the closed-loop

system.

IV. SIMULATION

For evaluation of the proposed nullspace compliance con-

trol law a simulation of a planar four degrees-of-freedom

robot was performed. Figure 2 shows a sketch of the model

in the starting configuration for the simulations. As Cartesian

coordinates the position coordinates of the end-effector have

been chosen. Therefore, one has m = 2, and consequently a

degree of redundancy of r = n − m = 2. The computation

of Z(q) (as well as all the other dynamics and kinematics

components) was performed symbolically in Maple and

exported as a C-code function.

In a first simulation a step of 10cm in the x-direction of the

y

x

0.5kg

0.5kg

0.5kg

0.5kg

0.5m

Fig. 2. Simulation model in the start configuration.

Cartesian virtual equilibrium position xd was commanded

with a compatible choice of qd, i.e. such that f(qd) = xd

holds. The Cartesian errors in x− and y−direction are shown

in Figure 3. Moreover, Figure 4 shows the Euclidean norm

of the joint configuration error eq. In this simulation qd

was chosen compatible to xd. Therefore, the joint error

0 0.5 1 1.5 2 2.5
−0.02

0

0.02

0.04

0.06

0.08

0.1

time [s]

x
−

x
d

Fig. 3. Step response for the Cartesian coordinates in x− (solid line) and
y−direction (dashed line).

0 0.5 1 1.5 2 2.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

time [s]

||
q
−

q
d
||

2

Fig. 4. Joint configuration error for the Cartesian step response.

converges to zero after convergence of the Cartesian error.

In a second simulation the role of the decoupling term τ d

is analyzed more closely. Therefore, a step in qd, with fixed

xd, is commanded. The proposed controller is compared to

a controller of the form τ = g(q)+τ c+τn, with τ c and τn

given in (12), but without τ d. The Cartesian error is shown

in Figure 5. While there is no error at all for the proposed

controller (solid line), the error for the simplified controller

(dashed and dotted lines) stems from the excitation of the

Cartesian dynamics via the centrifugal and Coriolis term

µxn(q, ẋ, vn)vn. But notice that there still is a coupling

between the Cartesian dynamics and the nullspace dynamics

due to the dependence of Λx(q) and µx(q, ẋ, vn) on q and

ẋ. This can be seen in Figure 6, where the deviation of

the eigenvalues λi (i = 1, 2) of the Cartesian inertia matrix

Λx(q) from their initial values are depicted. Finally, the joint

error for this simulation is shown in Figure 7. Since qd is

not chosen compatible to xd in this case, the joint error does

not converge to zero, but it converges to a constraint local

minimum q∗ = minf(q)=xd
||q − qd||2.

0 0.5 1 1.5 2
−4

−2

0

2

4

6
x 10

−4

time [s]

x
−

x
d

Fig. 5. Cartesian coordinates for the step in qd, with fixed xd The solid
lines (equal to zero) show the simulation result with the proposed controller,
while the dashed (x−coordinate) and dotted (y−coordinate) line show the
result for the controller without τd.
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i
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=
0
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%

]

Fig. 6. Change of the eigenvalues of the Cartesian inertia matrix for the
step response in qd for the proposed controller.

0 0.5 1 1.5 2
0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

time [s]

||
q
−

q
d
||

2

Fig. 7. Joint configuration error for the proposed controller.

V. SUMMARY

The main contribution of this paper is the formulation

of a compliance control law which allows to implement a

Cartesian compliance and a nullspace compliance without re-

quiring inertia shaping. A power-conserving decoupling term

was needed in order to eliminate some undesired centrifugal

and Coriolis terms in the equations of motion. Using this

partial decoupling it is possible to prove asymptotic stability

by applying a result from the stability theory with semi-

definite Lyapunov functions.
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APPENDIX

The following definitions taken from [14] summarize the

notion of conditional stability, which is utilized for the

stability proof in Section III-D. Consider, therefore, a time-

invariant system of the form

ż = f(z) (14)

with state z ∈ R
n. Assume that the point zs is a stationary

point of (14), i.e. f(zs) = 0. Suppose that the solution

z(t) to (14) with initial state z(0) = z0 exists for all

t > 0. For the conditional stability all requirements of

the stability definitions must hold only for those initial

conditions which lie in a particular set A ⊂ R
n. The notion

of conditional stability is therefore weaker than the usual

(Lyapunov) stability.

Definition 1: A stationary point zs of (14) is said to be

stable conditionally to A ⊂ R
n, if zs ∈ A and for each

ǫ > 0 there exists δ(ǫ) > 0 such that for any initial condition

z0 ∈ A the following implication holds:

||z0 − zs|| < δ(ǫ) ⇒ ||z(t) − zs|| < ǫ , ∀t ≥ 0 . (15)

Definition 2: A stationary point zs of (14) is said to be

attractive conditionally to A ⊂ R
n, if zs ∈ A and there

exists an η(zs) > 0 such that for any initial condition z0 ∈ A
the following implication holds:

||z0 − zs|| < η(zs) ⇒ lim
t→∞

z(t) = zs . (16)

Definition 3: A stationary point zs of (14) is said to be

asymptotically stable conditionally to A ⊂ R
n if it is both

stable and attractive conditionally to A.

Definition 4: The stationary point zs of (14) is said to be

globally asymptotically stable conditionally to A ⊂ R
n if it

is asymptotically stable conditionally to A and η(zs) = +∞.
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