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Abstract—A wide number of robotic applications makes use
of priority-based kinematic control algorithms for redundant
systems. Starting from the classical applications in position
control of manipulators, the kinematic-based approaches were
lately applied to, e.g., visual servoing or multi-robot coordina-
tion control. The basic approach consists in the definition of
several tasks properly combined in priority. A rigorous stability
analysis that ensures the possibility to effectively achieve the
defined tasks, however, is missing. In this paper, by resorting to
a Lyapunov-based stability discussion for the prioritized inverse
kinematics algorithms, an effective condition is given to verify

that the tasks are properly matched; moreover, minimum bound
for the control gains are determined.

I. INTRODUCTION

A robotic system is kinematically redundant when it pos-

sesses more Degrees Of Freedom (DOFs) than those required

to execute a given task. Task-priority redundancy resolution

techniques [1], [2], [3] were proposed in that it allows the

specification of a primary task which is fulfilled with higher

priority with respect to a secondary task. Extensions of the

algorithm proposed in [2] to a large number of tasks is

given in [4]. Within the same framework, the work presented

in [5] investigates the use of a proper weighted pseudo-

inverse. In [6] the null-space projector is used together with

a projection based on the transpose of the Jacobian and the

stability analysis is presented for the two-task case.

An alternative approach is the augmented Jacobian [7]. In

this case, the secondary task is added to the primary task so

as to obtain a square Jacobian matrix which can be inverted.

The main drawback of this technique is that new singularities

may arise in configurations in which the primary Jacobian

is still full rank. Those singularities, named algorithmic

singularities, occur when the additional task causes conflict

with the primary task.

In the framework of task priority, in [8] a singularity

robust solution is proposed for two tasks. As noticed in [9],

[10], where the authors propose a solution to achieve visual

servoing by properly sequencing tasks, its generalization to a

generic number of tasks is not trivial. In [11] a task-priority

solution is used to implement a behavioral control for robotic

systems.
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Most of the papers devoted at implementing priority-based

approaches for robotic systems recognize the possible occur-

rence of undesired behaviors due to the non-commutativity

of the null-space projectors. A rigorous stability analysis,

however, still is missing to better understand the conditions

that ensure convergence of the defined tasks. In this paper,

a Lyapunov-based stability discussion is given that allows to

determine a minimum bound for the control gains; moreover,

a simple condition is given to verify that the tasks are

properly matched. An n dimensional planar manipulator is

used as case study to illustrate the obtained results.

II. MATHEMATICAL BACKGROUND

By defining as σ∈ IRm the task variable to be controlled and

as q∈ IRn the vector of the system configuration, it is:

σ = f(q) (1)

with the corresponding differential relationship:

σ̇ =
∂f(q)

∂q
q̇ = J(q)q̇ , (2)

where J(q) ∈ IRm×n is the configuration-dependent task

Jacobian matrix and q̇ ∈ IRn is the system velocity. Notice

that n depends on the specific robotic system considered, in

case of an industrial manipulator n is generally n = 6 and

q is the vector of joint positions. For a differential mobile

robot n = 3, and the term system configuration simply refers

to the robot position/orientation. For a multi-robot system n

is related to the number of robots, in case of a full actuated

underwater vehicle n = 6, finally, an anthropomorphic robots

can reach very large value of n.

Motion references qdes(t) for the robotic system starting

from desired values σdes(t) of the task function are usually

generated by inverting the (locally linear) mapping (2) [12].

A typical requirement is to pursue minimum-norm velocity,

leading to the least-squares solution (dependencies in the

Jacobian are dropped out to increase readability):

q̇des = J†σ̇des = JT
(
JJT

)−1

σ̇des . (3)

In order to avoid the well known problem of numerical

drift, a Closed Loop Inverse Kinematics (CLIK) version of

the algorithm is usually implemented [8], namely,

q̇des = J†
(
σ̇des + Λσ̃

)
, (4)
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where Λ is a suitable positive-definite matrix of gains and

σ̃ is the task error defined as

σ̃=σdes−σ.

In case of system redundancy, i.e., if n > m, the classic

general solution contains a null projector operator [1]:

q̇des = J†
(
σ̇des + Λσ̃

)
+

(
In − J†J

)
q̇null, (5)

where In is the (n×n) Identity matrix and the vector q̇null ∈

IRn is an arbitrary system velocity vector. It can be rec-

ognized that the operator
(
In − J†J

)
projects a generic

velocity vector in the null space of the Jacobian matrix. This

corresponds to generate a motion of the robotic system that

does not affect that of the given task; this is usually named

as internal motion inheriting its meaning from the original

application of these techniques where the primary task was

the end-effector position of a manipulator.

For highly redundant systems, multiple tasks can be ar-

ranged in priority in order to try to fulfill most of them,

hopefully all of them, simultaneously. Let us consider, for

sake of simplicity, 3 tasks, that will be denoted with the

subscript a, b and c, respectively:

σa = fa(q)

σb = fb(q)

σc = fc(q)

where σa ∈ IR
ma , σb ∈ IR

mb and σc ∈ IR
mc . For each of

the tasks a corresponding Jacobian matrix can be defined, in

detail Ja ∈ IR
ma×n, Jb ∈ IR

mb×n and Jc ∈ IR
mc×n. Let us

further define the corresponding null space projectors as

Na =
(
In − J

†
aJa

)

Nb =
(
In − J

†

b
Jb

)
.

A generalization of the singularity-robust task priority

inverse kinematic solution proposed in [8] leads to the

following equation [11]:

q̇des = J
†
aΛaσ̃a + Na

(
J

†

b
Λbσ̃b + NbJ

†
cΛcσ̃c

)
(6)

= J
†
aΛaσ̃a + NaJ

†

b
Λbσ̃b + NaNbJ

†
cΛcσ̃c

where a regulation problem has been considered and the

priority of the tasks follows the alphabetical order. This

algorithm has a clear geometrical interpretation: the tasks

are separately inverted by the use of the pseudoinverse of

the corresponding Jacobian; the velocities associated with

the lower priority task are further projected in the null space

of the sole higher task.

However, as noticed in [9] and [10], the null space

projectors are not commutative and the solution in eq. (6)

may lead to undesired behaviors as detailed in the next

Section. A correct projection is considered where the generic

task is not projected onto the null space of the sole higher

priority task but onto the null space of the task achieved by

considering the augmented Jacobian of all the higher priority

ones. For the 3 tasks example, thus, by defining:

Jab =

[
Ja
Jb

]
, Nab =

(
In − J

†

ab
Jab

)
(7)

the desired velocities are

q̇des = J
†
aΛaσ̃a + NaJ

†

b
Λbσ̃b + NabJ

†
cΛcσ̃c (8)

It is worth noticing that the solution in eq. (8) looses

the geometrical interpretation of the solution in eq. (6)

and strongly couples all the tasks. On the other hand, the

approach in eq. (6) may lead to undesired behavior. It is of

interest, thus, to understand the stability of the two solutions

to better design the inverse kinematic solution. Moreover,

even with the solution in eq. (8) it is useful to derive a

condition among the tasks’ Jacobians that guarantees the

absence of conflicting requirements among them.

A. Definitions

To make easier the following readings the two approaches

investigated will be denote with a descriptive name. In par-

ticular, the approach in eq. (6) will be denoted as successive

projections method while the approach in eq. (8) will be

denoted as augmented projections method.

Applying basic geometric similarities, some definitions

concerning the relationships between two tasks will also be

given in this Section.

Given two generic tasks, denoted with the lower scripts x

and y, they will be defined as orthogonal if:

JxJ
†
y = Omx×my

(9)

whereOmx×my
is the (mx × my) null matrix. The two tasks

will be defined as dependent if

ρ(J†
x) + ρ(J†

y) > ρ
(
J

†
x

⋃
J

†
y

)
. (10)

where ρ(·) denotes the rank of the matrix. Finally, they will

be defined as independent if

ρ(J†
x) + ρ(J†

y) = ρ
(
J

†
x

⋃
J

†
y

)
(11)

and they are not orthogonal.

It is worth noticing that the three conditions of orthogo-

nality, dependency and independency given may be verified

by resorting to the transpose of the corresponding Jacobians

instead of the pseudoinverse, in fact, they share the same

span. Thus, the independency condition becomes:

ρ(JT
x ) + ρ(JT

y) = ρ
(
JT
x

⋃
JT
y

)
. (12)

Moreover, the orthogonality condition between two tasks

is equivalent to a existence of a π/2 angle between the
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subspaces JT
x and JT

y [13], the dependency condition cor-

responds to a null angle and the independency condition to

an angle strictly included in the range ]0, π/2[.

In the following section it will be demonstrated that these

definitions, and condition in eq. (12), play an important role

in the eventual convergence of the task errors. Moreover,

the independency condition can be easily verified on the

symbolic definition of the Jacobians; it is not necessary, thus,

to resort to numerical investigation of the matrices.

III. STABILITY ANALYSIS

For sake of simplicity the stability analysis will be first

discussed with respect to solely three tasks, its generalization

to a generic number of task will then be provided.

Let us define σ̃ ∈ IRma+mb+mc as

σ̃ = [ σ̃T
a σ̃T

b σ̃T
c ]

T
, (13)

that is the stacked vector of tasks’ errors. A possible Lya-

punov function candidate is given by

V =
1

2
σ̃Tσ̃ (14)

whose time derivative is

V̇ = σ̃T ˙̃σ = σ̃T
(
σ̇des−σ̇

)
(15)

that, assuming a regulation problem, yelds

V̇ = −σ̃T




Ja
Jb
Jc


 q̇ (16)

that, substituting the system velocity in eq. (6) or in eq. (8)

into eq. (16), can be rearranged as

V̇ = −σ̃T




Λa Oma,mb
Oma,mc

JbJ
†
aΛa JbNaJ

†
bΛb JbNJ†

cΛc

JcJ
†
aΛa JcNaJ

†
bΛb JcNJ†

cΛc


 σ̃

= −σ̃T




M 11 Oma,mb

Oma,mc

M 21 M22 M23

M 31 M32 M33



 σ̃

= −σ̃TMσ̃ (17)

where

N =

{
NaNb for eq. (6)

Nab for eq. (8).

The sign of V̇ in eq. (17) is not determined and need to

be further analyzed. The matrix M were decomposed into

sub-matrices M ij of proper dimensions. In general, all the

sub-matrices are different from the null matrix except for

the elements corresponding to the first ma rows and columns

ranging from ma +1 to ma +mb +mc, i.e., the sub-matrices

M12 and M13, that are null by construction.

In wath follows, the assumption that the Jacobians are full

rank will be made.

A necessary condition for M to be positive definite is

that all the sub-matrices on the main diagonal are positive

definite (see the Appendix). The (ma×ma) sub-matrixM 11

is obviously positive definite as long as the gain matrix

Λa > O. The (mb×mb) sub-matrixM22 is positive definite

if tasks a and b are independent, i.e., if condition in eq. (12)

holds and if the gain matrix Λb > O. The (mc × mc) sub-

matrixM33 is positive definite for the augmented projection

method, eq. (8), if the task c is independent to the augmented

Jacobian obtained by stacking tasks a and b and if the gain

matrix Λc > O. For the successive projection method,

eq. (6), the sign of this sub-matrix depends also on the angle

among the subspaces and the independency is not sufficient

to prove its positive definitiveness, however, a sufficient

condition is that an orthogonality relationship between two

of the three tasks holds.

Given the sub-matricesM ii positive definite, a sufficient

condition for M to be positive definite is given by its

eventual lower triangular form (see Appendix), thus, it is

of interest to verify this condition.

The sign of the sub-matrices holding to the lower triangle

are not determinant for the overall identification of the sign of

M . For sake of completeness, however, it is worth noticing

that the sub-matrices M 21 and M31 are null if the tasks b

and c, respectively, and a are orthogonal, otherwise they are

not determined in sign. The sub-matrix M 32 is not null if

c and b are independent in the null of a, otherwise it is not

determined in sign.

The sub-matrix M23 with N = Nab, i.e., for the

augmented projection method, is always null by construction

since the first matrix multiplication JbNab = O. The use

of successive projection method, i.e., with N = NaNb
does not guarantee that this sub-matrix is null, in particular,

M23 = O only if two successive tasks are orthogonal to

one other, i.e., a is orthogonal to b and/or b is orthogonal to

c.

Overall, the successive projection method, eq. (6), leads

to a positive definite M , and thus, according to eq. (17)

to a strictly negative Lyapunov function, if there exists an

orthogonality condition between successive tasks while an

independency condition with respect to them is sufficient for

the remaining task. For the augmented projection method,

eq. (8), the condition necessary and sufficient is that an

independency condition in eq. (12) holds between the second

and first tasks and between the third task and the augmented

Jacobian obtained stacking the first two tasks.

Extension to N tasks

So far the 3-task case has been discussed. The generalization

to N tasks leads to the conclusion that, implementing the
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augmented projection method, the matrix M is always

a lower block-triangular matrix. The sub-matrices on the

main diagonal, however, are positive definite only if the

condition (12) holds between each task and the Jacobian

obtained by stacking all the higher-priority tasks. In the

latter case, a choice of positive definite matrix gains leads

to a negative definite Lyapunov function and thus to the

convergence of all the task errors to zero.

When the successive projection method is implemented,

however, the matrix M is not anymore guaranteed both to

be a lower block-triangular matrix and to exhibit positive

definite sub-matrices on the diagonal. In such a case the

matrix M does not exhibit evident properties concerning

its definiteness and general stability conclusions can not be

made.

In conclusion, the successive projection method is stable

when two tasks are considered and they are at least in-

dependent, in case of three tasks it is required that there

exists an orthogonality condition between two successive

tasks while an independency condition with respect to them

is sufficient for the remaining task. For more than three tasks

no simple property exists. The augmented projection method

on the other hand, can be used with the desired number of

tasks as long as the independency condition (12) holds when

an additional task is considered with respect to Jacobian

obtained by stacking all the higher-priority tasks.

IV. CASE STUDY

A number of case studies may be considered to verify the

presented results such as, e.g., industrial robotics or multi-

robot systems; in this section an hyper-redundant planar

manipulator will be considered. This specific robot allows

to appreciate the practical meaning of condition (12).

Let us consider an hyper-redundant n-link planar manip-

ulator with revolute joint positions q ∈ IRn, let us assume

n >> 1. The i th manipulator’s link has length li.

A natural control objective is the position of the end

effector xee ∈ IR
2:

σa = xee(q) =




n∑

i=1

li cos




i∑

j=1

qj





n∑

i=1

li sin




i∑

j=1

qj







whose Jacobian Ja ∈ IR
2×n can be computed as

Ja =




· · · −

n∑

i=k

li sin




i∑

j=1

qj



 · · ·

· · ·

n∑

i=k

li cos




i∑

j=1

qj




︸ ︷︷ ︸
k column

· · ·




where k is a generic column of the matrix. The rank of Ja

is always ρ(Ja) = 2 except when the manipulator reaches a

singular configuration given by an alignment of all the n joint

positions. In the following the assumption that this situation

does not occur will be made.

An additional task may be the end-effector orientation

σb =

n∑

i=1

qi

whose Jacobian Jb ∈ IR
1×n is

Jb = [ · · · 1 · · · ]

whose rank is always full: ρ(Jb) = 1.

The two defined tasks for this simple case are arranged in

priority according to:

priority task’s description task’s dim.

1 end-effector position 2

2 end-effector orientation 1

Thus, according to the results presented in this paper, it

is possible to analytically verify the appropriateness of this

additional task checking condition in eq. (12). This can be

done resorting to symbolic or numerical instruments and, in

this case, leads to the evident conclusion that the two tasks

are indeed independent and thus compatible as long as the

manipulator is not in a singular configuration and n > 2. If

only two tasks are considered, both the approaches can be

used and lead to an error convergent to zero.

Given the large number of degrees of freedom it is possible

to add additional tasks. For instance, let us consider that

the position of an intermediate position corresponding to a

joint n < n needs to be controlled. This might the case,

for instance, of a planar macro-micro manipulator. Let us

assume that this task is added as last-priority task:

priority task’s description task’s dim.

1 end-effector position 2

2 end-effector orientation 1

3 robot intermediate position 2
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Its task function is

σc =




n∑

i=1

li cos




i∑

j=1

qj




n∑

i=1

li sin




i∑

j=1

qj








with corresponding Jacobian Jc ∈ IR
2×n

Jc =




· · · −

n∑

i=k

li sin




i∑

j=1

qj



 · · ·

· · ·

n∑

i=k

li cos




i∑

j=1

qj


 · · ·

0 · · · 0

0 · · · 0

︸ ︷︷ ︸
n−n




.

where the last n−n columns are null and the index k refers

to a value smaller than n−n.

The condition in eq. (12) between the last task and the

augmented Jacobian obtained by stacking the previous tasks

in priority gives the condition

ρ (JT
c ) + ρ ([ JT

a JT

b ]) = ρ ([ JT
a JT

b JT
c ])

that is verified with n ≥ 5 and n ≤ n−2. Since the condition

of independency holds, but not the orthogonality one among

any of the tasks, it is possible to assert the stability for the

augmented projection method but no conclusion can be made

for the successive projection method.

V. CONCLUSIONS

Use of kinematic control is of great importance in robotics

applications. In recent years, complex structures as hu-

manoids with large degrees of freedom were used as realistic

test-beds. Priority-based inverse kinematic algorithms were

often used to achieve several control objectives simultane-

ously. A rigorous stability analysis, proving what kind of list

of tasks may be fulfilled simultaneously, has been presented

in this paper. In particular, the successive projection method

turns out to be stable only if up to three tasks are defined

and there is at least an orthogonality condition between

two successive tasks while an independency condition with

respect to them is sufficient for the remaining task. The

augmented projection method on the other hand, can be used

with the desired number of tasks as long as the independency

condition holds between each task and the Jacobian obtained

by stacking all the higher-priority tasks.
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APPENDIX

Given the matrix M with the structure given in eq. (17)

M =




M 11 Oma,mb
Oma,mc

M 21 M22 M23

M 31 M32 M33




a necessary condition to claim its positive definiteness is

that the sub-matrices on the main diagonalM ii are positive

definite; moreover, a sufficient condition is that M is lower

block-triangular. These conditions will give corresponding

constraints on the matrix gains Λi and on the Jacobians.

Let us define the vector ζ ∈ IRma+mb+mc as

ζ = [ ζT
ma ζT

mb ζT
mc ]

T

where ζma, ζmb and ζmc are non-null arbitrary vectors

of dimension ma, mb and mc, respectively. The necessary

condition follows immediately from the definition of positive

definite matrix applied to M :

ζTMζ > 0 ∀ζ 6= 0 (18)

selecting ζma = 0ma and ζmb = 0mb. This immediately

gives the necessary condition thatM 33 needs to be positive

definite. Extension to the remaining sub-matrices on the main

diagonal is trivial.
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The sufficient condition gives the following structure for

the matrixM

M =




M 11 Oma,mb
Oma,mc

M 21 M22 Omb,mc

M 31 M32 M33




and applying the definition (18):

ζTMζ = ζT

maM11ζma + ζT

mbM22ζmb +

+ζT

mcM33ζmc + ζT

mbM21ζma +

+ζT

mcM31ζma + ζT

mcM 32ζmb

that can be underestimated as

ζTMζ ≥ λ11 λaζ
2

ma + λ22 λbζ
2

mb + λ33 λcζ
2

mc +

−λ21 λa ‖ζmb‖ ‖ζma‖ +

−λ31 λa ‖ζmc‖ ‖ζma‖ +

−λ32 λb ‖ζmc‖ ‖ζmb‖ ,

where the underline (upperline) denotes the smallest (largest)

singular value of the corresponding (sub)matrix. It is conve-

nient to rewrite the relation above resorting to the matrix

formalism:

ζ
T
Mζ ≥

1

2



‖ζma‖
‖ζmb‖
‖ζmc‖




T

P



‖ζma‖
‖ζmb‖
‖ζmc‖




where P ∈ IR3×3 is an Hermitian matrix defined as

P =




2λ11 λa −λ21 λa −λ31 λa

−λ21 λa 2λ22 λb −λ32 λb

−λ31 λa −λ32 λb 2λ33 λc




that, having the scalar diagonal elements positive, is positive

definite if

2 |pij | ≤ pii + pjj ∀i, j

In the following, for sake of simplicity we will assume λa =

λa = λa, λb = λb = λb and λc = λc. Notice that this

correspond to select, e.g., Λa = λaIma×ma. After some

basic manipulations, it is possible to extract the conditions

on the gains:

λa > 0

λb > max

{
0,

λ21 − λ11

λ22

λa

}

λc > max

{
0,

λ31 − λ11

λ33

λa,
λ32 − λ22

λ33

λb

}
.

It is worth noticing that a proper selection of the gains always

allows to impose the positive definiteness to the matrix M .

The extension to N tasks can be achieved iterating the

discussion above and it is omitted for brevity.

An alternative sufficient condition is that M is upper

block-triangular, this implies that the matrixM exhibits the

following structure

M =




M 11 Oma,mb

Oma,mc

Omb,ma
M22 M23

Omc,ma
Omc,mb

M33





In Section III the conditions for having the sub-matrices

M21, M 31 and M32 null are reported: the sub-matrices

M21 and M31 are null if the tasks b and c are orthogonal

with respect to the task a. The sub-matrix M32 is null if c

and b are orthogonal in the null of a. Moreover, when using

eq. (8) the sub-matrix M23 is always null by construction.

Using both the approaches in eq. (6) or in eq. (8) this

alternative sufficient condition provides more conservatives

constraints with respect to the requirement to have a lower

block-triangular matrix.
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