
      

  
 

 

Elasto-Geometrical Modelling of Closed-Loop Industrial Robots  
 Used For Machining Applications 

 
S. Marie, P. Maurine 

 

Abstract— This paper presents the elasto-geometrical 
modelling of an industrial robot manipulator whose structure 
includes a closed-loop mechanism. This modelling is done for 
sensitivity studies and calibration purposes since the robot is 
involved in machining operations that require a high level of 
quasi static positioning accuracy. The kinematics of the 
machine is described first then the systematic approach that is 
proposed to calculate the elastic modelling of its architecture is 
presented. Simulations and experiments are presented next in 
order to evaluate the limitations and benefits of the proposed 
modelling approach. 

I. INTRODUCTION 
Nowadays, some industrial robots manipulators are 

used for machining applications. These applications usually 
involve some large, complex parts to be machined on a 4- or 
5- axis machining centers. As explained in [1], these parts 
are usually made of soft material such as plastics, fibreglass, 
carbon-fiber composites and materials used for prototyping. 
When it comes to machining metals, most parts require 
precision machining. As a result, considering the today’s 
robots positioning accuracy, there are some applications in 
which this accuracy is acceptable such as rough machining 
parts to prepare them for finish cutting on CNC machine 
tools. However for the others, both robot torque and 
positioning accuracy have to be significantly increased. The 
increased torque that robots need for metal machining can be 
obtained with more powerful spindles. However, for hard 
materials as metal, robots have then to be strong and 
mechanically stiff and rigid to withstand the machining 
forces. Moreover in terms of modelling the elasto-
geometrical behaviour of their mechanical structure has to 
be accurately known in order to compensate, with the 
control, the effects of the remaining elastic deformations of 
the robot links and joints onto the positioning accuracy [2-
6]. This is in this context that the presented works take 
place. The purpose of this paper is to present an original 
approach to derive the elasto geometrical model of an 
industrial robot with a closed-loop chain used to increase the 
stiffness of its structure. 

The paper is organised as follows. The kinematics and 
geometrical error model of the KUKA IR663 closed-loop 
robot on which the study focuses are described first. 
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Then the systematic approach that is proposed to 
calculate the elastic modelling of its architecture is 
presented. Simulations and experimental tests are presented 
next in order to evaluate the limitations and benefits of the 
proposed modelling approach. 

 
Fig. 1. KUKA IR663. 

II. KUKA IR663 KINEMATICS 
The KUKA IR663 that has been used is shown on Fig. 1. 
This robot architecture has been chosen for the study since:  
i) The closed-loop kinematic chain of its structure 

increases the global stiffness of the robot which fits well 
with the machining applications that we are interested in. 

ii) To our thinking it is one of the most complicated 
structures of industrial robots that can be modelled. 

 

Its kinematic structure can be described by Fig. 1 and Fig. 2. 
It has a special wrist made of 4 revolute joints among which 
two are coupled (biconic wrist). The wrist is carried by an 
articulated mechanical structure with 6 revolute joints. If n 
denotes the number of links excluding the one attached to 
the ground, the global robot structure has thus a number 
L 10=  joints and n 1 10+ =  links where link 0  is the fixed 
base and B L n 1= − =  closed loop. This loop is a four-bar 
linkage; two of those links are actuated by a slider-crank 
type mechanism as illustrated by Fig. 5. The number N  of 
active joints is equal to 6 that corresponds to the number of 
degrees of freedom of the robot. 
In order to derive the geometrical models of the structure 
that are required to establish the elastic model, the Khalil 
and Kleinfinger notation [7, 8] is used. The global structure 
is first described by an equivalent tree structure that is 
obtained by cutting the closed loop at joint 10 (see Fig. 2). 
The total number of frames that will be used is equal to 
n 1 2B 12+ + = (R0 is the reference frame) since 2 frames 
have been added while cutting the joint 10 and it is to be 
noted that the geometric parameters used to locate the frame 
11 relatively to the frame 9 are fixed.  
The whole structure can be described by Table I. The joint j 
connects link j to the link a( j)  where a( j)  denotes the link 
antecedent to the link j and the topology of the structure is 
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defined by a( j)  for j 1,  ...,  11= . The situation of the end-
effector E mounted on the link 7 corresponds to the line 
j E=  in the table. The parameter jµ  equals 1 if the joint j is 

active and 0 if it is passive. In order to calculate the 
mathematical relationships required to locate all the links, a 
frame Ri attached to each link i is defined as follows: 
- iz  is along the axis of the joint i; 
- ix  is taken along the common normal between iz  and one 
of the succeeding joint axis that are fixed on link i. 
If R  and T denote respectively the homogeneous matrices 
of rotation and translation, the homogeneous transformation 
matrix i

jT  that describes the location of the frame Rj relative 
to frame Ri such as i a( j)=  is calculated according to: 
- i

j j j j j= ( ,α ) ( ,d ) ( ,θ ) ( , r )T x x z zR T R T  (1) 
if ix  is taken along the common normal between iz  and jz . 

- i
j j j j j j j= ( ,γ ) ( ,b ) ( ,α ) ( ,d ) ( ,θ ) ( , r )T z z x x z zR T R T R T (2) 

if ix  is not taken along the common normal between iz and 

jz . In that case, the description of the situation of  Rj 
relative to the frame Ri requires six geometrical 
parameters j j j j j j,  d ,  ,  r ,  and bα θ γ .  
The definition of these geometrical parameters is available 
in [8]. The numerical values for the Kuka IR663 are given in 
Table II. 

 
Fig. 2.  Linkage, frames and notations. 

 

TABLE I 
GEOMETRICAL PARAMETERS OF THE KUKA IR663. 

 

j a(j) µj γj bj αj dj θj rj 
1 0 1 0 0 0 0 θ1 0 
2 1 1 0 0 - π/2 0 θ2 - π/2 0 
3 2 0 0 0 0 d3 θ3 0 
4 3 1 0 0 - π/2 0 θ4 - π/2 r4 + d10 
5 4 1 0 0 π/6 0 θ5 0 
6 5 0 0 0 - π/3 0 θ6 = - θ5 0 
7 6 1 0 0 π/6 0 θ7 0 
8 1 1 0 0 - π/2 0 θ8 0 
9 8 0 0 0 0 d9 θ9 0 

10 3 0 π/2 0 0 d10 θ10 - π/2 0 
11 9 0 0 0 0 d11 θ11 = 0 0 
E 7 0 0 0 0 0 0 rE 

TABLE II 
NUMERICAL VALUES OF GEOMETRICAL PARAMETERS. 
Parameter 1r  3d  4r  9d  10d  11d  Er  

Numerical Value (mm) 885 1047  1760  473  400 1212 244

III. GEOMETRICAL MODELS 
In this part, the approach used to derive the geometrical 
models of the robot is presented. In spite of many works 
have been already achieved on the calibration of closed-
loops robots [2, 9, 10], these explanations are, to our 
thinking, useful to well understand the kinematics of the 
robot structure before introducing the systematic method 
that we propose to derive the elastic model of its structure. 
 

A.  Forward and Inverse Geometrical Models  
In order to derive the Forward and Inverse Geometrical 

Models of the structure (FGM, IGM), one has to establish 
the mathematical relation connecting the situation of the 
frame  ER  attached to the end-effector E (spindle) to the 
situation of the actuated robot joints. For that purpose, one 
open kinematic chain has been selected after cutting the joint 
10 as represented in bold on Fig. 3. 

 
Fig. 3. Kinematic chain for the FGM calculation. 

By writing the homogeneous matrices describing the relative 
situation of the frames of that chain and by multiplying 
them, the relation from which the FGM and IGM are 
deduced is obtained: 

1 2 4 5 73 6

0 0 1 2 3 4 5 6 7
E 1 2 3 4 5 6 7 E= ( ) ( ) ( ) ( ) ( ) ( ) ( )θθ θ θ θ θθT T T T T T T T T  

The matrix 0
ET  gives the situation of E within R0. However, 

as one can see, the joints 3 and 6 are passive and relations 
linking their values to the actuated joints values of the robot 
have to be calculated (see Fig. 4). 
For that purpose, the trivial relation expressing the fact that 
the rotation angle of the wrist joints 5 and 6 are of opposite 
sign is written: 
 6 5= -θ θ .  (4) 
Then the relation F is derived in order to link the value of 

3θ  to the actuated joint values 2θ , 8θ  and the geometrical 
parameters of the four-bar linkage 3d , 9d , 10d  and 11d : 
 ( )3 2 8 3 9 10 11= F , ,d ,d ,d ,dθ θ θ . (5) 

 
Fig. 4. Description of the four-bar linkage. 

Base 

.(3) 
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For the calculation of F, we made the assumption that the 
four bar linkage is a plane mechanism. In other words, the 
axes of the joints 2, 3, 8, 9 and 10 are perfectly parallel. As 
well, in a first approach, the joints 2 and 8 are seen as 
revolute ones. Then by using the closure equation of the 
linkage 11 9 8 1 2 3

9 8 1 2 3 10 4=T T T T T T I , the value of 3θ  is 
calculated as a function of the other loop parameters as 
follows: 
 ( ) ( )( )3 3 3= Atan2 sin ,cosθ θ θ   

with:  ( )
2 2 2

1 3 2 1 2 3
3 2 2

1 2

B B - B B + B - B
sin

B + B
θ = , 

 ( )
2 2 2

2 3 1 1 2 3
3 2 2

1 2

B B - B B + B - B
cos

B + B
θ = , 

 2 2 2 2
1 2 2 2 3 2B = 2Z X, B = -2Z Y, B = W - X - Y - Z ,  

and:  9 3 9X = d cos( - ), Y = d - d sin( - ),2 8 2 8θ θ θ θ  
 1 2 10 11Z = 0, Z = -d ,W = -d . 

As the joints 2 and 8 are actuated by ball screws, the 
relations linking the actuated translational displacements '

2r  
and '

8r  and the parameters of the screws to the joint values 

2θ  and 8θ  have been written. These two actuating systems 
viewed as slider crank type mechanism are described by Fig. 
5.  

 
Fig. 5. Ball screws for the actuation of joints 2 and 8. 

For 2θ , by writing the closure equation of the mechanism in 
the plane, the following relations is obtained: 
 ( )'

2 2 2 2 12 32= G r , , , l , lθ κ λ  (6) 

with: ( ) ( )( )2 2 2 2= - Atan2 sin ,cos
2
π

θ κ θ θ + , 

 ( )
2 2 2

2 2 2 2 2 2
2 2 2

2 2

X Z + Y X + Y - Z
sin

X + Y
θ = , 

 ( )
2 2 2

2 2 2 2 2 2
2 2 2

2 2

Y Z - X X + Y - Z
cos

X + Y
θ =  

and:  
2 B 12

2 B 12
' 2 2 2

2 2 B B 12

X = 2y l
Y = 2x l

Z = r - x - y - l

 
B 32 2

B 32 2

πx = l cos -
2
πy = l sin -
2

⎛ ⎞λ⎜ ⎟
⎝ ⎠
⎛ ⎞λ⎜ ⎟
⎝ ⎠

. 

The same approach is applied to the slider crank 
mechanism that drives the joint 8 in order to calculate the 
function H linking 8θ  and the ball screw parameters: 

 ( )'
8 8 8 8 18 38= H r , , , l , lθ κ λ . (7) 

By using the relations (3), (4), (5), (6) and (7), the situation 
EX  of ER  defined by both the position of its origin EP  and 

its orientation EΨ  within 0R  is computed with the FGM 
through the relation: 

 E
E

E
FGM( , )⎡ ⎤= =⎢ ⎥⎣ ⎦

PX qΨ ξ . (8) 

And for the IGM (obtained with Paul’s method), it comes: 
 EIGM( , )=q X ξ ,  (9) 
where: 
- T' '

1 2 8 4 5 7θ , r , r ,θ ,θ ,θ⎡ ⎤⎣ ⎦q = stands for the (6x1) vector of 
actuated joint values. 
- ξ  is the (37x1) vector of KUKA geometrical parameters 
(including also the all ball screw parameters) defined by: 

[

]

1 1 1 2 2 2 2 2 12 32 3 3 3 3

4 4 4 5 5 5 6 6 6 7 7 7 E E
T

E E 8 8 18 38 9 10 11

d r d r l l d r
d r d r d r d r

d r l l d d d

= α α κ λ β α

α α α α β α

κ λ

ξ

 

B.  Error Model for the Geometrical Calibration 
For a joint configuration kq  of the KUKA, the 

situation E,kX  of E (8) usually differs from the real situation 
r
E,kX . The resulting positioning error r

E,k E,k E,k∆ = −X X X  
can be due to the errors on the geometrical parameters such 
as the offsets in the actuated joints but also the assembly and 
manufacturing errors of all robot links. In order to enhance 
the robot accuracy for machining, the effects of these errors 
have to be studied and compensated through calibration 
process [11, 12]. For this purpose, a geometrical error model 
is derived by calculating for each situation k, the generalized 
Jacobian matrix G,kJ  linking the positioning error E,k∆X  to 
the vector of the geometrical errors ∆η  according to the 
relation: 
 E,k G,k∆ = ∆X J η .  (10) 
The columns of G,kJ  are computed by considering the 
variations of each geometrical parameter involved in the 
homogeneous matrices i

jT  used to describe the kinematic 
chain of Fig. 3. As a result G,kJ  can be viewed as the 
concatenation of submatrices as follows: 

G,k 1,k 2,k 3,k 4,k 5,k 6,k 7,k E,k⎡ ⎤= ⎣ ⎦J J J J J J J J J . 

j,kJ are the submatrices corresponding to i
jT  for j = 1, 2, 3, 

4, 5, 6, 7 and E. The calculation of the columns of each 
submatrix j,kJ is related to the expression of i

jT . All these 
homogeneous transformations are calculated according to 
the relation (1) excepting the one used to describe the 
situation of frame R3 with respect to R2. For that one the 
following relation is involved: 
 2

3,k 3 3 3 3,k 3= ( , ) ( ,α ) ( ,d ) ( ,θ ) ( , r )βT y x x z zR R T R T . 

. 
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In that case, the parameter 3β  allows considering small 
orientation errors between the joint axes 2 and 3 which are 
assumed to be parallel [13]. This will represent the possible 
orientation errors of the whole four bar linkage with respect 
to the rest of the open kinematic chain. It comes for the 
expression of the submatrix 3,kJ : 

 
3,k 3,k 3,k 3,k 3,k3,k d rβ α θ

⎡ ⎤= ⎣ ⎦J J J J J J . 

For j = 1, 2, 4, 5, 6 and 7, the parameter jβ  is not used and 

j,kJ is defined as follows: 

 
j,k j,k j,k j,kj,k d rα θ

⎡ ⎤= ⎣ ⎦J J J J J . 

For size considerations of the paper the details of the 
calculation of the columns

i,kβJ , 
i,kαJ , 

i,kdJ , 
i,kθJ  and 

i,krJ  are 
not given here but they are available in [8]. 
At this point, the relations (4), (5), (6), and (7) have to be 
considered since the geometrical parameters of which they 
are function of can also be affected by some errors. Since 
these errors decrease the global accuracy of the robot, they 
have to be included in the vector ∆η  and their related 
column have to added to the generalized Jacobian matrix 

G,kJ . This has been done by differentiating those relations 
with respect to the geometrical parameters. The results can 
be written as follows: 

5 6d = -dθ θ ,  (11) 

( )3,k 3,k 2 8 3,k 3 3,k 9 3,k 10

3,k 11

d a d - d b dd c dd d dd

e dd

θ = θ θ + + +

+
, (12) 

'
2,k 2,k 2 2,k 2 2,k 2 2,k 12 2,k 32d a dr b d c d d dl e dlθ = + κ + λ + + , (13)    

'
8,k 8,k 8 8,k 8 8,k 8 8,k 18 8,k 38d a dr b d c d d dl e dlθ = + κ + λ + + . (14) 

The analytical values of am,k, bm,k, cm,k, dm,k and em,k (m = 2, 
3, 8) have been obtained using symbolic Matlab® Software 
and have been merged into the expression of G,kJ  of 
equation (10) . The resulting formulation of G,kJ can be 
written as follows: 

' ' ' ' ' ' '
G,k 1,k 2,k 3,k 4,k 5,k 6,k

' ' ' ' ' '
7,k E,k 8,k 9,k 10,k 11,k

⎡= ⎣
⎤⎦

J J J J J J J

J J J J J J
 (15) 

where: 

1,k 1,k 1,k 1,k

'
1,k α d r= θ

⎡ ⎤
⎣ ⎦J J J J J , 

( ) ( )
( ) ( ) ( )
2,k 2,k 2,k 2,k 3,k 2,k 3,k

2,k 3,k 2,k 3,k 2,k 3,k

'
2,k α d r 2,k 3,k 2,k 3,k

2,k 3,k 2,k 3,k 2,k 3,k

= a + a b + a

c + a d + a e + a

θ θ θ θ

θ θ θ θ θ θ

⎡
⎣

⎤
⎦

J J J J J J J J

J J J J J J

( )3,k 3,k 3,k 3,k 3,k

'
3,k β α d 3,k r= + b θ

⎡ ⎤
⎣ ⎦J J J J J J , 

4,k 4,k 4,k 4,k

'
4,k d r= α θ

⎡ ⎤
⎣ ⎦J J J J J , 

( )5,k 5,k 5,k 6,k 5,k

'
5,k α d r= -θ θ

⎡ ⎤
⎣ ⎦J J J J J J , 

6,k 6,k 6,k

'
6,k α d r= ⎡ ⎤

⎣ ⎦J J J J , 

7,k 7,k 7,k 7,k

'
7,k α d r= θ

⎡ ⎤
⎣ ⎦J J J J J , 

E,k E,k E,k E,k

'
E,k β α d r= ⎡ ⎤

⎣ ⎦J J J J J , 

3,k 3,k 3,k

3,k 3,k

'
8,k 8,k 3,k θ 8,k 3,k θ 8,k 3,k θ

8,k 3,k θ 8,k 3,k θ

= -a a -b a -c a

                                       - d a -e a ,

⎡
⎣

⎤
⎦

J J J J

J J
 

3,k

'
9,k 3,k θ= c⎡ ⎤

⎣ ⎦J J , 

3,k

'
10,k 3,k θ= d⎡ ⎤

⎣ ⎦J J , 

3,k

'
11,k 3,k θ= e⎡ ⎤

⎣ ⎦J J . 

and : 
[

]

1 1 1 1 2 2 2 2 2 2 12

32 3 3 3 3 4 4 4 4 5 5

5 5 6 6 6 7 7 7 7 E E
T

E E 8 8 8 18 38 9 10 11

d r d r r ' l
l d r d r d

r d r d r

d r r ' l l d d d

∆ = ∆α ∆ ∆θ ∆ ∆α ∆ ∆ ∆ ∆κ ∆λ ∆

∆ ∆β ∆α ∆ ∆ ∆α ∆ ∆θ ∆ ∆α ∆

∆θ ∆ ∆α ∆ ∆ ∆α ∆ ∆θ ∆ ∆β ∆α

∆ ∆ ∆ ∆κ ∆λ ∆ ∆ ∆ ∆ ∆

η

As one can see, for each robot joint configuration k, the 
calculation of the (6x43) matrix '

G,kJ  allows to calculate the 
effects of the 43 geometrical errors ∆η  onto the positioning 
error E,k∆X . Among them, 29 are related to the description 
of the robot structure [14, 15], 5 are necessary to model the 
errors in each ball screw and only 4 (one angular and one 
dimensional parameters are assumed to be known) 
parameters have been used to model the positioning errors of 
the spindle onto the robot fringe. 
This resulting error model will be used for both sensitivity, 
identifiability study and linear identification of the 
geometrical errors during calibration process [8, 16]. The 
error model could have been more accurate by integrating 
the gear ratio of the actuators. 

IV. ELASTIC MODELLING 
The purpose of this part is to evaluate the elastic 

deformations of the robot structure when a wrench is applied 
onto the end-effector E during machining [2-5, 10]. In order 
to derive the stiffness model of the KUKA, all links of the 
closed-loop kinematic chain are considered as beams and 
nodes. The method that we recently proposed in [17] is 
involved to derive in an analytical way, the stiffness matrix 
of the structure. The assumptions that we made to derive the 
stiffness model the KUKA structure are the following ones: 
- The beam theory is applicable to all links. 
- The wrist is stiff enough to be neglected in the stiffness 
modelling (rigid body). 
- The structure is modelled only in the plane 1 1 1(O )x z  since 
the model can be easily extended to the space by identifying 
the stiffness matrix of joint 1 separately by acting on joint 1 
and keeping the other joints blocked (not presented in the 
paper). For the elastic modelling, all nodes of the robot have 
been numbered (see Fig. 9). This numbering is deduced 
from the geometrical modelling previously achieved with 
the beam indexes b 1,..,6= . 

, 

, 

. 
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A.  Nodal displacement and nodal wrench 
Expressed in the reference frame bR  of the beam bB , the 
wrench acting on the node j  is defined by 

[ ]T
j Xj Yj Zj Xj Yj Zj= F F F M M MF . The corresponding 

displacement due to jF  is [ ]T
j j j= d∆X P δ , where 

[ ]T
j j j jd = u v wP stands for the vector of the elastic linear 

displacements and [ ]T
j Xj Yj Zj= θ θ θδ  stands for the vector 

of elastic rotation displacements (Fig. 8). 

 
Fig. 8 Nodal wrench and nodal displacement. 

 

B.  Stiffness matrix of the links 
Based on the numbers used in Fig. 9, the stiffness 

matrix links the nodal i and j wrenches to the nodal 
displacements. The stiffness matrix of an element depends 
on its geometrical and mechanical parameters. These 
parameters are recalled in Table III. 

TABLE III 
GEOMETRICAL AND MECHANICAL PARAMETERS. 

Geometrical 
Parameters Length & Cross-sectional area L & S 

Young’s & Coulomb’s modulus E & G Mechanical  
Parameters Quadratic & Polar moments Iy ,Iz & J 

For a beam bB  defined by two nodes i and j, the 
stiffness matrix is a well-known 12 dimensional square 
matrix bR bK . Defined in its local coordinate system bR , it 
can be expressed by using four sub-matrices as follows: 

 
b b

b

b b

R Rb b
ii ijR b

R Rb b
ji jj

=
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

K K
K

K K
. (16) 

bR bK  components can be expressed in the global coordinate 
system 0R  by the relation: 0 bR Rb -1 b

b b=K P K P , with: 

 

b 3 3 3

3 b 3 3
b

3 3 b 3

3 3 3 b

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

G 0 0 0
0 G 0 0

P
0 0 G 0
0 0 0 G

. (17) 

Matrix bG  (3x3) stands for the rotation matrix from the 
local coordinate system bR  to the global coordinate system 

0R . bG  is calculated during the geometrical modelling. 
0R bK  is the stiffness matrix formulated in the global frame 

0R : 

 
0 0

0

0 0

R Rb b
ii ijR b

R Rb b
ji jj

=
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

K K
K

K K
. (18) 

C.  Stiffness matrix of deformable joints 

To fully describe the elastic behaviour of the closed-
loop kinematic chain, the compliance of the joints has to be 
integrated in the model. In a first approach, we assume that 
the used compliance matrix expressed in its local frame 

u,vR  between nodes u and v is given by: 

 
u ,v u ,v

u ,v

u ,v u ,v

R u,v R u,v
R u,v

R u,v R u,v

⎡ ⎤−= ⎢ ⎥−⎣ ⎦

K KK
K K

, (19) 

with: u ,vR u,v u,v u,v u,v u,v u,v u,v
r r a rr rr ardiag K K K K K K⎡ ⎤⎣ ⎦K  =  . 

In this expression, u,v
rK  and u,v

aK  stand respectively 
for the axial and the radial stiffness of the revolute joint 
between nodes u and v. u,v

arK  and u,v
rrK  are the axial 

rotational and the radial translational stiffness. 
In this way, for the passive joints 3, 9 and 10 on Fig. 2, 

the axial rotational stiffness is close to zero. However, for 
numerical problems, u,v

arK  cannot be null. So it has been 
chosen to set this parameter to 10-7 N.rad-1. For the active 
joints 2 and 8, the parameter stands for the axial stiffness of 
the actuator. By identification through measurements made 
directly on the robot [17], the stiffness of the joints has been 
identified and the u,v

arK  parameters for the active joints have 
been identified to 2.109 N.rad-1 using the Matlab’s lsqnonlin 
function. The mechanical parameters of the beam keep their 
nominal values calculated using the nominal dimensions of 
the links. 

 
Fig. 9. Elastic modelling with deformable joints. 

 

The well-known stiffness assembly technique involved 
in matrix structural analysis is then used to derive the global 
stiffness matrix 0

GK  of the robot structure [18]. For that 
purpose, all the stiffness matrices of the beams of Fig. 9 are 
expressed within the reference frame R0 and they are then 
mapped into a global matrix as follows: 

 
0 0

0 0

R R T
0 1 3

R RG
3 2 66x66

= ⎡ ⎤
⎢ ⎥
⎣ ⎦

K KK
K K

, (20) 

where: 

0

1 1
00 01 6 6 6 6 6
1 1 1,2 1,8 1,2
10 11 6 6 6 6

1,2 2 1,2 2
6 22 23 6 6 6

R 2 2 3,3' 3,3'
1 6 6 32 33 6 6

3,3' 3 3,3' 3
6 6 6 3'3' 3'10 6

3 3 4 10,11 4
6 6 6 6 103' 1010 1010 E11

6 6 6 6 6 E

0 1 2 3 3 ' 10 E

+ +
− +

= + −
− +

+ +

K K 0 0 0 0 0
K K K K -K 0 0 0 0
0 K K K K 0 0 0

K 0 0 K K K K 0 0
0 0 0 K K K K 0
0 0 0 0 K K K K K
0 0 0 0 0 K 4 4

10 EE

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦K

 

0

5 1,8 5
88 89 6 6

5 5 9,9' 9,9'
R 98 99 6

9,9' 6 9,9' 62
6 9 '9 ' 9 '11

6 6 10,11
6 6 119 ' 1111

8 9 9 ' 11

+
⎡ ⎤+
⎢ ⎥−= ⎢ ⎥

− +⎢ ⎥
⎢ ⎥+⎣ ⎦

K K K 0 0
K K K K 0K
0 K K K K
0 0 K K K

 
, 

,
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0

1,8
6 6 6 6 6 6

R 6 6 6 6 6 6 6
3

6 6 6 6 6 6 6
10,11

6 6 6 6 6 6

⎡ ⎤−
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

0 K 0 0 0 0 0
0 0 0 0 0 0 0K
0 0 0 0 0 0 0
0 0 0 0 0 K 0

 

The vectors 0
G∆X  and 0

GF  that describe the nodal 
displacements and the nodal wrenches of the structure 
expressed within R0 are defined as follows:  

T0 0 0 0 0
G 0 1 9' 11⎡ ⎤= ⎣ ⎦∆X ∆X ∆X ∆X ∆X , (21) 

T0 0 0 0 0
G 0 1 9' 11⎡ ⎤= ⎣ ⎦F F F F F . (22) 

 

D.  Boundary conditions 
Boundary conditions are introduced to express the fact 

that the robot is embedded in the ground at the node 0. 
These conditions are expressed by the system: 

 0 3,1

0 3,1

d =⎧⎪
⎨ =⎪⎩

P 0
0δ

.  (23) 

To integrate these conditions, the size of the stiffness 
matrix 0

GK  has been reduced by deleting the rows and the 
columns corresponding to the blocked displacements. Its 
new dimension is (60x60). 

As the boundary conditions are perfectly defined, 
preventing any possibilities of overall displacements of the 
structure, the stiffness matrix is symmetric positive definite 
and then invertible (see [17]). Hence the nodal 
displacements 0

G'∆X  of the closed loop kinematic chain can 
be obtained according the relation: 
 0 0 -1 0

G G G' = ' '∆X K F . (24) 
From that last relation, the positioning error 0

E∆X  of the 
end-effector E due to the elastic deformations of the 
structure can be calculated as a function of 0

G'F  and then as 
a function of the wrench 0

EF  applied directly on E during 
the process (machining). 

 

E.  Validation of the stiffness model 
In order to verify the validity of the stiffness model, the 

elastic displacements derived from the proposed model have 
been compared first with the ones given by a FEA model of 
the robot achieved on CASTEM® software. As one can see 
in Table IV, the analytical results do fit well with those 
obtained through CASTEM®. This can be explained by the 
fact that this software uses the same method as the one that 
we applied to derive the elastic model. Contrary to the FEA 
modelling, the analytical model can be used for real time 
compensation of the elastic deformations 

TABLE IV 
COMPARISON BETWEEN ANALYTICAL AND FEA MODELS 

 

The real elastic displacements have then been measured on 
the KUKA by using the same measurement system that the 
one we used in [17] (Fig. 10). This system allows measuring 
the three translational displacements of the E due to the 
elastic deformations of the structure under loads applied on 
E. Three loads of 30, 60 and 100 kg have been used. The 
norms of the measured displacements within the plane 

1 1 1(O )x z  are summarized by Fig. 11. They show the the 
elastic significant deformations of the structure. The norm of 
these measured displacements has then been compared to 
those calculated with the proposed model. As shown in Fig. 
12 (a), the calculated measurements fit well with the realistic 
elastic behaviour of the robot. 

 
 

Fig. 10.  Methodology of measurement. 

 
Fig. 11. Measured elastic displacements. 

 

 

 
Fig. 12. Comparison between analytical model with flexible joints and 

measured displacements for 60 kg load, (a) : norm of the displacements, 
(b) : displacement difference along 1z  axis 

Measured displacements 

Calculated displacements 

M = 30 kg 

M = 60 kg 

M = 100 kg 

. 

(a) 

(b) 
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F.  Discussion 
Another elastic model has been established by 

considering all the joints of the closed loop as perfectly 
rigid. The comparison between that last model and the 
previous one has shown that the main source of flexibility is 
related to the compliance in the joints. It has been shown by 
simulations that the links deformations represent only 20% 
of the overall elastic displacement of E. This can be easily 
understood if one considers the design of the robot parts 
which gives them a high level of stiffness. 

Moreover, we can see on Fig. 12 (a) and (b) that the 
norm of the displacement is well estimated when the wrist is 
far from 1z axis (along 1x axis). On the contrary, when the 
end-effector E is moved by the structure close to 1z axis, the 
model is too stiff and do not fit anymore with the reality. To 
our thinking, this is due to the fact that the stiffness of the 
two ball screws has been represented by a equivalent 
stiffness located only at the center of the joints 2 and 8. This 
does not fit with the reality and a better model should have 
described each ball screw by using extra beams connected to 
the robot links 2 and 8 on one hand and to the first link 
through prismatic and revolute joints on the other hand (Fig. 
13.).  

 
Fig. 13. Elastic modelling integrating the ball screws. 

V. CONCLUSION AND PERSPECTIVES 
In this paper, we have presented the elasto-geometrical 

modelling of an industrial robot including a closed-loop 
kinematic chain actuated by two slider crank type 
mechanisms. The main originality of that work is that both 
the geometrical and elastic error models have been derived 
in a systematic analytical way. These models will be now 
involved to study in a first time, the sensitivity of the robot 
positioning accuracy to the geometrical and elastic 
parameter errors of its structure. Then, in a second time, its 
elasto-geometrical calibration will be achieved in order to 
enhance its global positioning accuracy for machining. 

To our thinking, the same approach could be used to 
derive the elasto-geometrical models of other serial 
structures used for quasi static tasks that require a high level 
of accuracy. Moreover, due to the fact that the formulation 
of the elastic model is analytical, it could be implemented in 
the robot controller for a real-time compensation of the tool 
elastic positioning errors. 
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