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Abstract— We present an easy-to-use calibration method for
MEMS inertial sensor units based on the Factorization method
which was originally invented for shape-and-motion recovery
in computer vision. Our method requires no explicit knowledge
of individual motions applied during calibration procedure.
Instead a set of motion constraints in the form of an inner-
product is used to factorize sensor measurements into a calibra-
tion matrix (that represents intrinsic sensor parameters) and a
motion matrix (that represents acceleration or angular velocity).
These motion constraints can be collected quickly from a low-
cost calibration apparatus. Our method is not limited to just
triad configurations but also applicable to any coordination of
more than three sensor elements. A redundant configuration
has the benefit that all the calibration parameters including
biases are estimated at once. Simulation and experiments are
provided to verify the proposed method.

I. INTRODUCTION

MEMS-based inertial sensors with low cost and affordable

performance are becoming prevalent in many applications

such as land vehicles, air vehicles, and hand-held devices. An

Inertial Measurement Unit (IMU) composed of such sensors

is, for example, used solely for body attitude estimation in

game controllers, or integrated with other sensors to either

improve vehicle state estimation [1] or cope with intermittent

loss of GPS data [2]. The low cost and small size of the

inertial sensors encourage using redundant configurations

that provide lower estimation variance as well as fault

tolerance [3][4]. Sensor calibration prior to real use, however,

remains tedious and becomes more complex as the number

of sensor elements used increases.

In calibration, obtaining the ground-truth reference is

always one of the key and often costly processes. Because

gravity force is an ideal reference for accelerometers, a

mechanical platform has traditionally been used to either

place an IMU at precisely known orientations or turn it

at known constant speeds for gyroscope calibration [5][6].

Other types of equipment that can measure accurate reference

motions, such as an optical tracking system, have also been

used [7]. Recent work on IMU calibration, however, aims

at eliminating the need for such an expensive calibration

apparatus [8]. Skog and Händel [9] relaxed the requirement

to know orientation angles in accelerometer calibration and

presented a nonlinear method that minimizes the magnitude

error in force recovery. They used a misalignment model

of triad sensor configuration and it prevents to extend their

method to redundant configuration cases.

The most relevant work to this paper is Voyles et

al. [10] They proposed the shape-from-motion approach to

force/torque sensor calibration based on the well-known

Factorization method in the computer vision community [11].

The same basic principle is applicable to IMU calibration.

When a camera or an IMU follows an affine linear model,

measurements can be factorized as the product of two

matrices: one corresponding to the object shape in computer

vision and to the intrinsic configuration of sensor elements in

the IMU, and the other corresponding to the camera motion

in computer vision and to the motion (force or angular

velocity) of the IMU. Since ambiguity still remains after the

Factorization, calibration methods should provide a way to

clear this ambiguity in order to recover the true intrinsic

parameters.

The main contribution of our work is to formulate an in-

ertial sensor calibration problem to a reconstruction problem

by the Factorization approach. By virtue of a generalized

description of the sensor configuration, our method is not

just limited to triad configurations but also applicable to

redundant configurations where sensors’ biases can be si-

multaneously estimated. No prior knowledge of the sensor

configuration is necessary for our method. The rest of the

paper is organized as follows. Section II describes the

Factorization method. Section III explains how to resolve

the ambiguity for true reconstruction. Section IV shows full

steps of calibration procedure. And finally Section V presents

simulation and experiment results.

II. FACTORIZATION: SHAPE-FROM-MOTION

A. Affine Linear Sensor Model

An inertial sensor element based on MEMS-technology

has a good linear input-output response with a non-zero

output for null input (See Figure 1). Nonlinearity of ADXL-

203 used in our experiments is, for example, typically

less than 0.5% of full scale [12]. Since no difference exists

between accelerometers and gyroscopes in our calibration

method, either force or angular velocity that the inertial sen-

sor experiences is referred to as a motion. The measurement

of a single sensor element, z, for a motion fs is expressed

as

z = a fs + b (1)
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Fig. 1. Left: Linear inertial sensor model with the gain s and the bias
b. Right: Inertial sensor unit composed of at least more than three sensor
elements to measure either accelerations or angular velocities in 3D.

where a is the gain and b is the bias of the element. Suppose

n sensor elements are assembled as a unit to measure 3D

motions. The output of each element in the unit is rewritten

in a vector form for i = 1, . . . , n.

zi = f⊤si + bi (2)

So, the motion f is projected on each sensitivity axis s i of

which magnitude is the same as the gain ai = ‖si‖.

B. Measurement Matrix

Let Z be a measurement matrix after m different motions

are applied to the sensor unit of total n elements. z ij is the

output of the sensor element j for the motion f i. Replacing

it with the linear sensor model (2) gives

Z =





f⊤1 s1 + b1 f⊤1 s2 + b2 · · · f⊤1 sn + bn

f⊤2 s1 + b1 f⊤2 s2 + b2 · · · f⊤2 sn + bn

...
...

...

f⊤ms1 + b1 f⊤ms2 + b2 · · · f⊤msn + bn




(3)

The measurements Z are rewritten as the product of two

matrices, Fb and Sb, which are called a true motion matrix

and a true shape matrix, respectively.

Z =





f⊤1 1
f⊤2 1
...

...

f⊤m 1





[
s1 s2 · · · sn

b1 b2 · · · bn

]
(4)

=
[
F 1

] [
S

b

]
= Fb Sb (5)

Note that the subscript b is intended to clarify that the shape

matrix Sb includes biases. The goal of calibration is to

identify the true shape matrix Sb from a set of measurements

Z generated in a principled way. The sensitivity axes in S

reveal how sensor elements are aligned to each other in

the unit. If all motions F could be known by any means,

then calibration process would become trivial by taking the

pseudo-inverse of the known motion matrix.

Sb = F
†
bZ (6)

The approach taken in this paper is, however, to obtain

Sb without explicit knowledge about motions applied during

calibration.

C. Factorization for Redundant Configuration (n ≥ 4)

Factorization is a reverse process that decouples a given

measurement matrix back into two parts: those which are

associated with applied motions and intrinsic sensor element

configuration.

Let p denote the number of model parameters for a sensor

element. It is the same as the row size of Sb (p = 4 for affine

linear model). Assume there exists at least p sensor elements

in the unit and at least p motions are applied (n ≥ p, m ≥ p).

From (5), the rank of the measurement matrix Z should be

p from the minimum rank in the (m × p) motion matrix

and the (p × n) shape matrix. It is called the proper rank

constraint [13]. The first step is to enforce this constraint

on Z, which is usually violated by measurement noise. It is

achievable by Singular Value Decomposition (SVD) which

produces the following unique decomposition

Z = UΣV⊤ (7)

where U is an (m×m) orthonormal matrix, Σ is an (m×n)
diagonal matrix, and V is an (n × n) orthonormal matrix.

From SVD a rank-p matrix Ẑ closest to Z in the sense of

Frobenius norm is

Ẑ = Up Σp V⊤
p = Û Σ̂ V̂⊤ (8)

where Û is composed of the first p columns of U, Σ̂ is the

first (p × p) diagonal block matrix of Σ, and V̂ is the first

p columns of V.

It is possible to obtain a canonical form of motion and

shape matrices, F̂b and Ŝb, that are not true matrices yet. This

is because any (p×p) invertible matrix A and its inverse can

be inserted between these two matrices and can also produce

the same measurement matrix.

Ẑ = (Û
√

Σ̂) (
√

Σ̂V̂⊤) = F̂b Ŝb (9)

= (F̂bA) (A−1Ŝb) = Fb Sb (10)

The key step in our calibration method is, therefore, to

resolve ambiguity A from a set of motion constraints de-

liberately designed in the experiments. In other words, SVD

gives a projective reconstruction of F̂b and Ŝb which are

ambiguous up to the transformation A and then the known

geometric relation between true motion vectors in F b can

determine A. The next section will describe this step in detail

for accelerometer and gyroscope units. Finally, the projective

reconstruction is upgraded to a metric reconstruction once A

is found.

Fb = F̂bA (11)

Sb = A−1Ŝb (12)

D. Factorization for Triad Configuration (n = 3)

Most IMUs have three sensor elements, which are the

minimum number needed to sense 3D motions. Since the

Factorization method is applicable only if n ≥ p, the bias

{bj} needs to be known a priori in order to decrement the
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Fig. 2. An IMU is mounted inside a calibration apparatus called a universal
right angle iron. The iron has six surfaces that are square and parallel to
each other within 0.002" per 6". When the iron is placed on a flat surface
it is simple and easy to apply either orthogonal motions or motions in
completely opposite directions to the IMU.

number of sensor model parameters. The bias-compensated

measurement D is then used as input for the Factorization.

D =





f⊤1
f⊤2
...

fT
m




[
s1 s2 · · · sn

]
= FS (13)

where dij = zij − bj = f⊤i sj . Now the shape matrix S

contains sensitivity axes only. Every step in the Factorization

is identical except that p = 3 and the row and column sizes

of A decrease by one.

Regarding gyroscopes, it is trivial to estimate the biases

because they are equal to sensor measurements when no

motion is given (bj = zij when fi = 0). For accelerometers,

it is difficult to determine the biases since gravity is always

acting on the sensors. One possible solution appropriate for

our calibration method is to apply two motions of the same

magnitude but in completely opposite directions.

z1j = f⊤1 sj + bj

z2j = f⊤2 sj + bj

}
f1 = −f2 ⇒ bj =

z1j + z2j

2
(14)

The gravity forces applied to the unit are completely op-

posite when the iron shown in Figure 2 is flipped over.

It is noteworthy that one extra sensor element in the unit

enables simultaneous estimation of all calibration parameters

including biases.

III. METRIC RECONSTRUCTION

In our calibration method, a set of following constraints

between true motions in the form of an inner-product is

elaborated to identify A for a metric reconstruction.

f⊤i fk = hik (15)

Note that explicit knowledge of the individual true motions,

fi and fk, is not necessary. Relative or partial information

about them is sufficient instead. It includes, for example,

the magnitude of the motion (hii = ‖fi‖
2) or a pair of

orthogonal motions (hik = 0). The universal right-angle

iron in Figure 2 makes it convenient to collect an abundance

of motions which are constrained by the iron’s parallel

or square surfaces. Theoretically no apparatus is needed

for accelerometer calibration in our method; however, it is

preferred to have more constraints of different natures. The

following describes how to determine A from a set of motion

constraints in (15).

A. Redundant configuration: n ≥ 4 and p = 4

Let A be a non-singular (4×4) matrix composed of three

blocks as

A =
[

A13 a4

]
=

[
C

u⊤ a4

]
(16)

where A13 a (4 × 3) matrix, a4 is a (4 × 1) vector, C is a

(3 × 3) square matrix, and u is a (3 × 1) vector.

Firstly, a4 is obtainable directly without using any con-

straint. From (11) and (16), we have

F̂b A = F̂b

[
A13 a4

]
=

[
F 1

]
(17)

The last column of Fb is fixed as a vector of one and a4 is

the only part that is associated with it in A. Therefore, a4

is computed in a least square manner by taking the pseudo-

inverse of F̂b.

a4 = F̂
†
b 1 = (F̂⊤

b F̂b)
−1F̂⊤

b 1 (18)

Secondly, Q = A13A
⊤
13 will be found as an intermediate

step from a set of motion constraints. The first three columns

of (11) are rewritten as

fi = A⊤
13 f̂b,i for i = 1 . . .m (19)

where fi is a (3×1) vector and f̂b,i is a (4×1) row vector of

F̂b. Substituting (15) with (19) produces one linear equation

(20) for an unknown (4 × 4) symmetric matrix Q.

f⊤i fk = f̂ ⊤
b,i A13A

⊤
13 f̂b,k

= f̂ ⊤
b,i Q f̂b,k = hik (20)

Let q be a (10×1) vector consisting of upper triangular ele-

ments of Q. A set of linear equations Lb can be constructed

by stacking ℓb for q per one motion constraint. 1

ℓb(f̂b,i, f̂b,k)q = hik (21)

Lb q = h (22)

At least 10 linearly independent constraints are needed to

solve q uniquely. For redundant constraints, a least square

solution for q is obtained from the pseudo inverse of L.

Finally, A13 is uncovered from Q. Note that Cholesky

decomposition is not applicable here because Q is gener-

ated from the non-square matrix A13. Instead, the relation

between C, u and block matrices in Q needs to be derived

first.

Q = A13A
⊤
13 =

[
CC⊤ Cu

(Cu)⊤ u⊤u

]
≡

[
Q0 q1

q⊤
1 q2

]
(23)

where Qo is a (3 × 3) symmetric matrix, q1 is a (3 × 1)
vector, and q2 is a scalar. The block matrices in Q are not

1ℓb(x,y) = [ x1y1, x2y2, x3y3, x4y4, x1y2 + x2y1, x2y3 +
x3y2, x3y4 + x4y3, x1y3 + x3y1, x2y4 + x4y2, x1y4 + x4y1 ]
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independent from each other but related by the following

equation from the relation (Cu)⊤(CC
⊤)−1(Cu)=u

⊤
u.

q⊤
1 Q−1

0 q1 = q2 (24)

By comparing the block matrices between the last equality

in (23), C is obtained from Cholesky decomposition on Q 0

up to a rotation matrix R, and then u is computed from C

and q1.

C = chol(Q0) (25)

u = C−1q1 (26)

The rotation ambiguity on C in the metric reconstruction is

natural since it reflects on the fact that no coordinate system

is ever defined for sensitivity axes.

B. Triad configuration: n = p = 3

The biases b are assumed estimated separately as de-

scribed in the previous section and subtracted from the

measurements to use D instead of Z. The reconstruction

from motion constraints is more straightforward because Q

is generated from a (3 × 3) square matrix A.

f⊤i fk = f̂⊤i AA⊤ f̂k = f̂⊤i Q f̂k = hik (27)

A set of linear equations L is obtained and solved for a

(6 × 1) vector q composed of upper triangular elements of

Q. 2 At least six constraints are needed for a unique q.

ℓ(f̂i, f̂k)q = hik −→ Lq = h (28)

Finally, A is determined up to a rotation matrix R by

Cholesky decomposition, A = chol(Q).

C. Special cases

One interesting case is that {hik} are all identical. This

occurs, for example, when the magnitude of gravity force is

the only constraint for accelerometer calibration (‖f i‖ = 1g).

Because L loses one rank in this case, q from (22) is not

unique any more but undetermined by α.

q = qp + αqn (29)

where qp is a vector in the column space of L and qn is a

vector in its null space. The unknown scale α can be found by

inserting (29) back into the block constraint of Q (24) which

has not been used so far. It yields a four-order polynomial

for α and only one of the polynomial roots is a valid real

solution. For triad configuration, this is not the case since L

remains full-rank.

Another practical case is h = 0 when only orthogonal

constraints are used for calibration. The q is in the one-

dimensional null space of L with an arbitrary scale β.

q = β qn (30)

It indicates that no constraint associated with the magnitude

of a motion is involved so the gains {‖sj‖} of sensor

elements cannot be extracted. One reference motion involved

with the magnitude can determine an unknown global scale

β. See Figure 3 (i)-(j).

2ℓ(x, y) = [ x1y1, x2y2, x3y3, x1y2 +x2y1, x2y3 +x3y2, x1y3 +
x3y1]

(a)                       (b)                        (c)                       (d)                        (e)        

(f)                       (g)                        (h)                        (i)                        (j)        

Fig. 3. Top row: Accelerometer unit inside the iron experiences gravity in
many different directions. The gravity directions applied to accelerometers
in (a), (b), and (c) are orthogonal to each other. Bottom row: The iron
is rotated on top of a flat base by surface contact. The motions (angular
velocities) applied in (f), (g), and (h) are orthogonal to each other. One
precise amount of rotation is additionally required to decide the global scale
β. For example, 90◦ rotation between (i) and (j) is achievable by aligning
the iron with a straight ruler.

IV. CALIBRATION PROCEDURES

The motion constraint (15) appropriate for our factoriza-

tion method can be obtained easily with the assistance of

precise measuring instrument such as a universal right-angle

iron in Figure 2. A low-cost and easy-to-use calibration pro-

cedure appropriate for low-cost sensors can be implemented

by this type of off-the-shelf product instead of special-

purpose expensive calibration equipment. The iron has six

surfaces that are square and parallel to each other within

0.002" per 6". It can provide a more precise angular relation

than the resolution of conventional MEMS-based sensors so

that motions based on this device are sufficient to serve as

ground-truth. An IMU is mounted inside the iron and its

orientation with respect to the iron can be changed if more

constraints are needed. When the iron is placed on a flat hard

surface it is convenient to apply either orthogonal motions

or motions in completely opposite directions to the IMU. A

wealth of calibration data can be collected within a minute

by turning the iron on every surface as shown in Figure 3.

A. Accelerometer Unit

Gravity is an ideal reference motion to calibrate an ac-

celerometer unit. It is the only motion used in our calibration

procedure. Let the motion f be normalized by gravity.

Motion constraint types available from the right-angle iron

are magnitude (hii = 1), orthogonality (hik = 0), and opposite

(hik = -1). Therefore, more than the minimum constraints,

which are 10 for n ≥ 4 and 6 for n = 3, are quickly obtained

by flipping the iron on every surface. One possible standard

procedure is summarized as depicted in Figure 3.

1) Install the IMU inside the iron.

2) Put the iron on its six surfaces by various turns.

3) Place the iron in other orientations if more data are

needed.
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For triad configuration, opposite motions are used separately

for bias estimation in (14). In redundant cases, theoretically

knowledge of true motions is completely relaxed except for

the magnitude. Though no apparatus is even needed, it is

recommended to use as many different constraint types as

possible for the lower variance of parameter estimation.

B. Gyroscope Unit

The right-angle iron containing the gyroscope unit is

rotated by hand on a surface contact with a clean flat bed.

Sinusoidal motion is preferred for continuous smooth mea-

surement data. This rotating motion is repeated with more

than three orthogonal surfaces. From these experiments, the

magnitude of angular velocity is unknown and orthogonality

is the only available constraint type (hik = 0). The global

scale β remains undetermined as discussed in (30). One more

experiment is therefore added to have the gyroscope unit

rotate for a known rotation amount as shown in 3 (i)-(j). The

following is the entire steps for gyroscope calibration.

1) Install the IMU inside the iron.

2) Rotate the iron with three orthogonal surfaces.

3) Repeat previous steps with different IMU orientation.

4) Rotate the iron ∆θ for time T .

5) Set the R in (25) so that the last motion fm is aligned

with [1 0 0]⊤

Because three linearly independent constraints are available

per one fixed IMU mounting, the same experiment needs to

be repeated with different IMU orientations with respect to

the iron until enough constraints are collected.

∫ t=T

t=0

fb(t) dt = β−1

∫ t=T

t=0

[
S⊤

b

]†
z(t) dt =





∆θ

0
0
∗



 (31)

The rotation ambiguity R in the metric reconstruction is set

in a way that the axis of ∆θ rotation is aligned to one of

coordinate axes. The global scale β can then be computed

from the integration of measurements (31).

C. Nonlinear optimization

Once the true shape matrix is obtained, it is possible to

refine it through a global minimization step. The least square

nonlinear optimization provides a maximum likelihood esti-

mator that guarantees the best estimation when measurement

noise is Gaussian. The cost function is the squared sum

of errors in the motion constraints. The applied motion is

computed when the measurement vector z i and the sensor

shape matrix Sb are given, fi =
[
S⊤

]†
(zi − b).

C =
∑

(f⊤i fk − hik)2

=
∑ (

(zi − b)⊤
[
S⊤(SS⊤)−2S

]
(zk − b) − hik

)2

Because the nonlinear method is sensitive to an initial

condition, the solution from the linear method described in

all previous sections can serve as a good initializer for it.

The Levenberg-Marquardt or Gauss-Newton algorithm is a

standard technique for implementation.
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Fig. 4. Left: The sensor configuration composed of two dual-axis
accelerometers, total of n = 4, used in the simulation. Right: Experimental
data from the accelerometer triad (n = 3) collected after placing the iron
on six surfaces by turns.
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Fig. 5. Top: Experimental data from the gyroscope triad via sinusoidal
rotation to the iron on its three orthogonal surfaces respectively. Bottom:
Experimental data used for the last step of gyroscope calibration procedure
to decide α. In the bottom right figure, the area enclosed by the curve should
be the same as a precisely given rotation amount.

V. SIMULATION AND EXPERIMENTAL RESULTS

In simulation two dual-axis accelerometers like ADXL-

203, total of n = 4, are assumed in the unit as illustrated in

Figure 4. The first dual-axis unit is oriented 45◦ off from the

second one. Data are simulated under the same conditions as

our real hardware targeted for UAV application [14] where

10-bit A/D converters sample the accelerometers at 50Hz.

The data is digitized between 0 to 2047 which corresponds

to −2.5g ∼ 2.5g. The data is generated with nominal sensor

parameters from its product specifications and is corrupted

by Gaussian noises of two different variances. The variance

σ = 0.7 is an actual variance of accelerometers present in

our laboratory-made IMU in Figure 6. The unit is placed

at 20 different orientations and 10 measurements for each

orientation are collected. A total of 200 gravity magnitude

constraints are used in this simulation.

Table-I shows estimation errors in biases b, gains ‖si‖,

and angles between sensitivity axes. Because the Factoriza-

tion method assumes noise-free measurement, it works more

efficiently for less noisy data. The nonlinear optimization

step starts with initial sensor parameters obtained from the

Factorization method and it makes the RMS error of the
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TABLE I

ESTIMATION ERROR OF SHAPE MATRIX Sb FOR FOUR

ACCELEROMETERS (n = 4) IN FIGURE 4 (SIMULATION)

Ground Factorization (linear) Nonlinear
truth (σ = 1.5) (σ = 0.7) (σ = 0.7)

Bias b1 = 2.5 0.00139 0.00063 0.00019
(volt) b2 = 2.5 0.00122 0.00079 0.00035

b3 = 2.5 0.00113 0.00104 0.00000
b4 = 2.5 0.00177 0.00095 -0.00014

Gain ‖s1‖ = 1.0 0.00236 0.00173 0.00021
(volt/g) ‖s2‖ = 1.0 0.00150 0.00123 0.00029

‖s3‖ = 1.0 0.00187 0.00141 0.00012
‖s4‖ = 1.0 0.00325 0.00198 -0.00034

Angle ∠s1s2 = 90.0 -0.16495 -0.05283 -0.02079
(deg) ∠s1s3 = 90.0 -0.35232 -0.22175 -0.02585

∠s1s4 = 45.0 -0.08894 -0.04328 0.00030
∠s2s3 = 90.0 -0.18666 -0.16611 -0.02502
∠s2s4 = 90.0 -0.37098 -0.27205 0.02135
∠s3s4 = 45.0 -0.07601 -0.00955 -0.02103

Cerr 0.00175 0.00042 1.141×10−7

TABLE II

THE RECOVERED SHAPE MATRIX S FOR THREE GYROSCOPES IN

OUR LABORATORY-MADE IMU (EXPERIMENT)

Nominal Factorization Nonlinear

Bias b1 = 2.5 2.3061 2.3063
(volt) b2 = 2.5 2.5525 2.5517

b3 = 2.5 2.3734 2.3731

Gain ‖s1‖ = 0.7162 0.7109 0.7287
(volt/rad/s) ‖s2‖ = 0.7162 0.7303 0.7403

‖s3‖ = 0.7162 0.7391 0.7230

Angle ∠s1s2 = 90.0 91.920 90.807
(deg) ∠s2s3 = 90.0 89.362 89.900

∠s1s3 = 90.0 92.167 89.239

Cerr 0.0163 0.0026 1.167×10−7

motion constraints drop dramatically.

Figure 5 shows real measurement data from the gyroscope

experiment on our laboratory-made IMU. Since it has triad

configuration, the biases are estimated in a static condition.

Six sets of sinusoidal measurement data are collected from

two different IMU orientations using three orthogonal iron

surfaces. One precise 90◦ turn is also given by aligning

the iron with a straight ruler. Because any two sampled

measurements associated with orthogonal iron surfaces are

constrained, we now have enormous orthogonal constraints.

The estimated parameters of three gyroscopes are listed in

Table II. The final solution is refined much by the nonlinear

optimization. It is because the best estimate for the biases,

computed separately in the Factorization method, is searched

together with the other parameters.

VI. CONCLUSION

We have developed an easy-to-use calibration method for

MEMS inertial sensors based on the Factorization method. It

relaxes explicit knowledge of reference motions and recovers

the intrinsic shape of a sensor unit from a set of motion

constraints. Abundant constrained motions can be easily

collected from low-cost apparatus such as a universal right-

angle iron. The complexity of the calibration method remains

Fig. 6. Our laboratory-made IMU consists of two dual-axis accelerometers
(ADXL-203) and three single-axis gyroscopes (ADXRS-150). It needs to
be calibrated with respect to a camera for UAV vision application [14].

the same no matter how many sensor elements are in the

unit. A redundant configuration is more appropriate for

our method because all sensor parameters can be estimated

simultaneously. Real implementation is also easy and simple

provided basic linear algebra libraries. Once the internal

shapes of sensor elements are found, the external relation

(Rext, text) with other coordinates such as camera or vehicle

body frame can be estimated separately.
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