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Abstract— This paper presents the kinematic calibration of
a novel 7-degree-of-freedom (DOF) cable-driven robotic arm
(CDRA), aimed at improving its absolute positioning accuracy.
This CDRA consists of three ‘self-calibrated’ cable-driven
parallel mechanism (CDPM) modules. In order to account
for any kinematic errors that might arise when assembling
the individual CDPMs, a calibration model is formulated
based on the local product-of-exponential formula and the
measurement residues in the tool-tip frame poses. An iterative
least-squares algorithm is employed to identify the errors in the
fixed transformation frames of the sequentially assembled ‘self-
calibrated’ CDPM modules. Both computer simulations and
experimental studies were carried out to verify the robustness
and effectiveness of the proposed calibration algorithm. From
the experimental studies, errors in the fixed kinematic trans-
formation frames were precisely recovered after a minimum of
15 pose measurements.

I. INTRODUCTION

The advancement of robotics technology in recent years
has led to robots being increasingly introduced into daily
human activities. These robots co-exist alongside humans
and even cooperate with humans in daily tasks to enhance
the quality of life. There has been a long research focus in
humanoid robots to develop lightweight dexterous robotic
arms that are functionally similar to the human arm [1]. The
focus has mainly been on the development of robotic arms,
as these arms will come in direct contact with the human
body. Hence, in order for these robots to successfully work,
cooperate and interact with humans, they must be designed
to have intrinsically safe features.

Based on the various applications such as service robots
[1], [2], human-machine interface devices [3], and robotic
rehabilitation devices [4], [5], numerous robotic arms re-
sembling the human arm have been designed. The most
common humanoid arm design is a 7-DOF serial articulated
manipulator with its joint actuators mounted onto the arm
itself. While most of these robotic arms possess several fun-
damental features of the human arm, the mechanism design
and driving scheme of these arms are still different from the
human arm. As a result, such robotics arms are intrinsically
dangerous due to their heavy mechanical structure and large
moment of inertia.
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In order to address the above-mentioned shortcomings, a
novel ‘biologically-inspired’ design for a humanoid robotic
arm was proposed in [6] based on observations made on
the human arm anatomical structure. The result is a 7-
DOF cable-driven robotic arm (CDRA) that consists of
three sequentially connected cable-driven parallel mechanism
(CDPM) modules, i.e., a 3-DOF CDPM shoulder module, a
1-DOF CDPM elbow module, and a 3-DOF CDPM wrist
module. A robotic arm research prototype was subsequently
developed (see Fig. 1), which is lightweight (≈ 1 kilogram)
for intrinsically-safe manipulation, and possesses the essen-
tial features of a human arm such as high redundancy, a large
reachable workspace, and high dexterity.
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Fig. 1. Research prototype of the biologically-inspired 7-DOF cable-driven
robotic arm (CDRA)

For path planning and motion control tasks, the accu-
racy of the geometric model parameters greatly influence
the positioning accuracy of the end-effector [7]. Geometric
model parameters deviate from their nominal values due
to manufacturing tolerance, compliance, wear of connect-
ing mechanisms and link misalignments. In addition, this
robotic arm consists of several modular cable-driven parallel
mechanisms that are sequentially assembled to form the
overall 7-DOF cable-driven robotic arm. Cables by nature
are flexible and they introduce compliancy which further
reduces the positional accuracy. This will result in larger
assembly errors as compared to rigid-linked robotic arms
with fixed configurations. Hence, calibration must be carried
out to minimize these sources of inaccuracy.

For the 7-DOF cable-driven robotic arm, the complete
calibration procedure is divided into two progressive stages
(see Fig. 2). The first stage is the self-calibration of the
various CDPM modules, and the second stage is the cali-
bration of the 7-DOF CDRA assembly. Self-calibration is
carried out to calibrate the kinematic model of each CDPM
module by using the redundant cable length information.
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Calibration, on the other hand, is carried out to identify
the fixed kinematic transformations between the inertial base
frame, the assembled CDPM modules, and the tool-tip frame,
by using external pose measurement devices. It is aimed at
improving the absolute positioning accuracy of the robotic
arm.
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Fig. 2. Flowchart of the calibration procedure from the individual CDPM
modules to the complete 7-DOF CDRA

The success of the calibration stage is greatly dependent
on the accuracy of the kinematic models of the individual
CDPM modules obtained from the self-calibration stage.
Self-calibration of the individual CDPM modules has been
addressed in [8] and this paper will focus on the calibration
of the assembled 7-DOF CDRA to minimize errors intro-
duced during assembly. This is based on previous experi-
mental studies in which the individual CDPM modules have
undergone self-calibration, and their individual kinematic
models can be computed with sufficient accuracy.

One of the early works to address the fixed kinematic
transformation calibration of robotic systems was by Zhuang
[9]. In this work, a linear solution based on the quaternion
algebra was proposed. This approach allowed simultaneous
computation of the fixed kinematic transformation, which is
fast and non-iterative. However, this approach suffered from
formulation singularity problem which meant that several
arrangements of the fixed kinematic transformation frames
had to be avoided. This calibration issue was also addressed
by Yang [10]. In this work, the calibration problem was cast
into an iterative parameter identification process using the
product-of-exponential (POE) formula. The basic idea was
to treat the errors in the fixed kinematic transformations
as a twist, i.e., an element of se(3). Because a twist has

a 6-dimensional vector representation, the formulation is
simplified and it does not suffer any formulation singularity
problem. While the approach in [10] addressed the calibra-
tion of a self-calibrated modular parallel robot, this approach
is extended in this paper to address the calibration of a 7-
DOF self-calibrated modular cable-driven robotic arm.

The next few sections will present the assembled 7-DOF
CDRA calibration methodology, including the kinematic
modeling of the CDRA, the calibration model and the
calibration algorithm. This will be followed by computer
simulation examples and experimental studies to validate the
accuracy and robustness of the proposed calibration model.

II. KINEMATIC MODEL DESCRIPTION

The kinematic model of the whole 7-DOF cable-driven
robotic arm is described by a world coordinate frame {KO},
and the respective base and moving platform coordinate
frames of the individual CDPM modules (see Fig. 3).
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Fig. 3. Kinematic model of the optimized 7-DOF CDRA

The forward kinematic transformation of the tool-tip co-
ordinate frame {KF} relative to the world coordinate frame
{KO} is given as:

TOF = TOBs .TBsS.TSBe .TBeE .TEBw .TBwW .TWF (1)

Where transformation matrices TOBs , TSBe , TEBw and TWF
are fixed forward kinematic transformations between the
various modules attached serially to form the 7-DOF CDRA
(i.e., from the moving platform frames of the individual
CDPMs to the base frames of the previous modules attached
in series). Transformation matrices TBsS, TBeE and TBwW are
the forward kinematic transformations of the shoulder, elbow
and wrist modules respectively. It is assumed that the self-
calibration process will enable precise computation of the
forward kinematic transformations of the individual CDPM
modules when their cable lengths are known.

III. CALIBRATION MODEL

The presence of geometric errors cause the nominal fixed
transformation frames to shift to the actual frames (denoted
by a superscript ‘a’). Hence, the objective of the calibration
model is to identify the errors between the nominal and
actual frames, termed the calibrated frame (denoted by a
superscript ‘c’). Extending the approach adopted in [10],
a calibration model is formulated using the POE formula
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to represent the calibrated frames. While the other repre-
sentations (i.e., D-H representation) result in complicated
calibration models due to the highly coupled error parameters
and suffer from formulation singularity, this is easily resolved
by using POE. This is because it overcomes the issue of
formulation singularity and a new local calibrated reference
frame can be arbitrarily assigned. The kinematic errors in a
fixed kinematic transformation can be treated as a twist, i.e.,
an element of se(3). In addition, a twist has a 6-dimensional
vector representation which simplifies the formulation (Refer
to Appendix for details on the geometric background of rigid
body kinematics).

According to the definition of matrix logarithm defined on
SE(3), there exists a t̂ ∈ se(3) for a given T ∈ SE(3) such
that et̂ = T . Hence, it is sufficient to let et̂i j = Ti j and Eq. (1)
is rewritten as:

TOF = et̂OBs .TBsS.et̂SBe .TBeE .et̂EBw .TBwW .et̂WF (2)

Since the individual modules have undergone self-
calibration, their transformation matrices (i.e., TBsS, TBeE and
TBwW ) are assumed to be computed with sufficient accuracy.
Hence, any errors that may arise will be from the fixed
forward kinematic transformations (i.e., et̂OBs , et̂SBe , et̂EBw and
et̂WF ) between the various CDPM modules attached serially
to form the 7-DOF CDRA. Hence their kinematic errors are
denoted by δ t̂OBs , δ t̂SBe , δ t̂EBw and δ t̂WF respectively. Since
t̂i j belongs to se(3), δ t̂i j will also belong to se(3). Hence,
δet̂i j = δ t̂i j.et̂i j . Linearizing Eq. (2) results in:

δTOF = δ t̂OBS .e
t̂OBs .TBsS.et̂SBe .TBeE .et̂EBw .TBwW .et̂WF

+ et̂OBs .TBsS.δ t̂SBe .e
t̂SBe .TBeE .et̂EBw .TBwW .et̂WF

+ et̂OBs .TBsS.et̂SBe .TBeE .δ t̂EBw .et̂EBw .TBwW .et̂WF

+et̂OBs .TBsS.et̂SBe .TBeE .et̂EBw .TBwW .δ t̂WF .et̂WF (3)

Right-multiplying both sides of Eq. (3) with T−1
OF results in:

δTOF .T−1
OF = δ t̂OBs +TOS.δ t̂SBe .T

−1
OS

+ TOE .δ t̂EBw .T−1
OE +TOW .δ t̂WF .T−1

OW (4)

Where:

TOS = et̂OBs .TBsS

TOE = et̂OBs .TBsS.et̂SBe .TBeE

TOW = et̂OBs .TBsS.et̂SBe .TBeE .et̂EBw .TBwW

The definition of the matrix logarithm and the adjoint rep-
resentation of SE(3) results in the following representations
[11]:

δTi j.T−1
i j = log[Ta

i j.T
−1
i j ] (5)

Ti j.δ t̂ jk.T−1
i j = AdTi j .δ t jk (6)

Where Ta
i j is the actual (measured) transformation pose.

Hence, Eq. (4) is rewritten as:

log[Ta
OF .T−1

OF ]V = δ tOBs +AdTOS .δ tSBe

+ AdTOE .δ tEBw +AdTOW .δ tWF (7)

Where log[Ta
OF .T−1

OF ]V ∈ ℜ6×1 is the vector representa-
tion of log[Ta

OF .T−1
OF ] ∈ se(3). Similarly, δ t jk is the 6-

dimensional vector representation of δ t̂ jk ∈ se(3). Geometri-
cally, log[Ta

OF .T−1
OF ]V represents the gross kinematic error of

the tool-tip frame {KF} expressed in the world frame {KO}.
From Eq. (7), it is equal to the sum of kinematic errors in
TOBs , TSBe , TEBw and TWF , also expressed in the world frame
{KO}. In each of the 6-dimensional error vectors, the first
three parameters represent the position errors (δx,δy,δ z),
while the remaining three represent the orientation errors
(δθx,δθy,δθz). Eq. (7) is simplified into a linear calibration
model as follows:

Y = D ·X (8)

Where Y = log[Ta
OF .T−1

OF ]V ∈ ℜ6×1, D =
[I6×6 AdTOS AdTOE AdTOW ] ∈ ℜ6×24 and X =
{δ tOBs

T ,δ tSBe
T ,δ tEBw

T ,δ tWF
T}T ∈ ℜ24×1. Ta

OF is obtained
by taking measurements using a coordinate measuring
machine and a calibration block located at both frames
{KO} and {KF}. D is the calibration jacobian matrix that
reflects the 24 kinematics error parameters (i.e., X) that exist
in the whole system from Y . T−1

OF and D are determined
from the nominal kinematic model.

IV. CALIBRATION ALGORITHM

Based on the calibration model presented in Eq. (8), an
iterative least-square algorithm is employed to determine the
calibrated frames for the fixed forward kinematic transforma-
tion matrices TOBs , TSBe , TEBw and TWF . In order to obtain
reliable results, it is required to take measurements at several
poses. For m sets of measurement poses, the kth pose with
its set of tool-tip frame pose measurements will result in Yk
and its corresponding Dk. After m sets of measurement data,
Yk and Dk are stacked to form the following equation:

Ỹ = D̃ ·X (9)

Where Ỹ = {Y1
T , . . . ,Ym

T}T ∈ ℜ6m×1 and D̃ =
{D1

T , . . . ,Dm
T}T ∈ ℜ6m×24. Since the model in Eq. (9)

contains 6m linear equations with 24 variables, the least-
squares algorithm is used (Note: Eq. (9) must have at least
four measurement poses). The least-squares solution of X is
given as:

X = (D̃T D̃)−1 · D̃T · Ỹ (10)

Where (D̃T D̃)−1D̃T is the pseudo-inverse of D̃. The solution
of Eq. (10) is further improved through iterative substitution
as shown in Fig. 4. A refinement in the least-squares algo-
rithm is achieved by iterative looping. Once the kinematic
error parameter vector, X is identified, TOBs , TSBe , TEBw and
TWF are updated after every loop k by substituting X into
the following equations:

(TOBs)k+1 = et̂OBs .(TOBs)k (11)

(TSBe)k+1 = et̂SBe .(TSBe)k (12)

(TEBw)k+1 = et̂EBw .(TEBw)k (13)

(TWF)k+1 = et̂WF .(TWF)k (14)
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This procedure is repeated until the norm of the error
vector ‖X‖ approaches a certain tolerance limit, ε , which
is close to zero. Then the final TOBs , TSBe , TEBw and TWF
represent the calibrated kinematic transformations, denoted
by Tc

OBs
, Tc

SBe
, Tc

EBw
and Tc

WF respectively.

Nominal Forward
Kinematic

Transformation
Description

TOBs, TBsS, TSBe, TBeE,
TEBw, TBwW, TWF
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i.e. T ij
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using least-squares

estimation.

~ ~

 < ε   

δ ij

|| ||

Fig. 4. Flowchart of the iterative calibration algorithm for the 7-DOF
CDRA

After the iterative procedure, the kinematic error vector X
does not represent the actual kinematic errors. Nevertheless,
in order to compare the calibrated frame poses with their
nominal frame poses, the actual kinematic errors is deter-
mined with the use of the matrix logarithm as follows:

δ tOBs = log[Tc
OBs

.T−1
OBs

]V (15)

δ tSBe = log[Tc
SBe

.T−1
SBe

]V (16)

δ tEBw = log[Tc
EBw .T−1

EBw
]V (17)

δ tWF = log[Tc
WF .T−1

WF ]V (18)

After the calibration procedure, the forward kinematic
equation becomes:

Tc
OF = Tc

OBs
.TBsS.Tc

SBe
.TBeE .Tc

EBw .TBwW .Tc
WF (19)

In order to evaluate the calibration result, two deviation
metrics between the actual (measured) ‘a’ and calibrated ‘c’
tool-tip frames are mathematically defined as [10]:

δ p =

√
1
m

m

∑
k=1

(Pak −Pck)T .(Pak −Pck) (20)

δR =

√
1
m

m

∑
k=1

(
log(R−1

ak Rck)V
)T (

log(R−1
ak Rck)V

)
(21)

Where δ p and δR denote the average quantified position
and orientation deviation metrics respectively, between the
calibrated and actual poses of the tool-tip frame.

V. COMPUTER SIMULATION

In this section, computer simulation studies were carried
out on the 7-DOF CDRA with the optimized individual
CDPM modules. This is to demonstrate the accuracy and
robustness of the calibration algorithm. The simulation will
investigate the effect of kinematic errors under noise-free
measurements. The units of the kinematic parameters are
in radians and millimeters. For the simulation studies, the
following procedure is employed:

1) Generate two sets of m random shoulder, elbow and
wrist module poses, i.e., TBsS, TBeE and TBwW respec-
tively (within the limits of the mechanical joints motion
range and satisfying tension-closure condition). One
set will be used for calibration while the other will be
used for verification.

2) Assign kinematic errors in the nominal poses of TOBs ,
TSBe , TEBw and TWF by introducing δ t ′OBs

, δ t ′SBe
, δ t ′EBw

and δ t ′WF respectively.

3) Using the generated set of random poses in Step 1,
calculate the two m sets of ‘simulated’ actual tool-tip
frame poses based on:

Ta
OF = Ta

OBs
.TBsS.Ta

SBe
.TBeE .Ta

EBw .TBwW .Ta
WF

Where:

Ta
OBs

= et̂ ′OBs .TOBs

Ta
SBe

= et̂ ′SBe .TSBe

Ta
EBw

= et̂ ′EBw .TEBw

Ta
WF = et̂ ′WF .TWF

4) Identify the preset kinematic errors using the calibra-
tion algorithm and the first set of m ‘simulated’ actual
tool-tip frame pose measurements.

5) Verify the calibrated poses Tc
OBs

, Tc
SBe

, Tc
EBw

and
Tc

WF (based on Eq. (19)) using the second set of m
‘simulated’ actual tool-tip frame pose measurements.

The theoretical lower bound for the number of measured
poses is four but for accuracy and robustness, it is set to five.
From the viewpoint of computer simulation, the kinematic
errors {δx′,δy′,δ z′} (i.e., position) and {δθ ′

x,δθ ′
y,δθ ′

z} (i.e.,
orientation) are randomly generated with uniformly dis-
tributed deviations of ±dυ and ±dω . From the simulation
results, injected errors with uniformly distributed deviations
of dυ = 1 mm and dω = 0.05 rad are recoverable within
three to four iterations. This demonstrates the accuracy of
the calibration model for the 7-DOF cable-driven robotic
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arm. From Table I, the preset kinematic errors are well-
recovered although the preset errors are significantly large.
Results shown in Fig. 5 further reinforce the effectiveness of
the calibration model, where both deviation metrics δ p and
δR (given in Eqs. (20) and (21)) are driven to approximately
zero values within three iterations.

TABLE I
PRESET AND IDENTIFIED KINEMATIC ERRORS IN THE ‘SIMULATED’

CALIBRATION OF THE 7-DOF CDRA

δ t ′i j Preset Kinematic Errors Identified Kinematic Errors

{−6.5597,3.8277, {−6.5597,3.8277,
δ t ′OBs

8.9030,0.1207, 8.9030,0.1207,

0.1538,−0.0910}T 0.1538,−0.0910}T

{2.0158,6.4144, {1.5354,6.1907,
δ t ′SBe

6.0300,−0.1290, 6.0510,−0.1290,

0.0207,−0.0010}T 0.0223,−0.0011}T

{4.8284,4.6296, {4.8264,4.8539,
δ t ′EBw

3.9088,0.1285, 3.8983,0.1285,

−0.1471,0.0130}T −0.1487,0.0131}T

{6.1681,3.6960, {6.1681,3.6960,
δ t ′WF 5.2650,0.1712, 5.2650,0.1712,

−0.0511,−0.0579}T −0.0511,−0.0579}T
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Fig. 5. Calibration convergence plot for the 7-DOF CDRA using the
‘simulated’ set of pose measurements (dυ = 1 mm and dω = 0.05 rad)

VI. EXPERIMENTAL RESULTS
In this section, experimental studies were carried out on

the 7-DOF CDRA research prototype. This is to investi-
gate the robustness of the calibration algorithm in practical
applications with the existence of measurement noise. The
experimental procedure is similar to the computer simulation
procedure except that the tool-tip frame pose measurements
are obtained using a coordinate measuring machine (from
FARO with an accuracy of 80 µm) and a calibration block
located at the tool-tip of the CDRA (see Fig. 6).

7-DOF CDRA
Prototype

Calibration Block

Coordinate
Measuring
Machine

Fig. 6. Calibration experimental setup for the 7-DOF CDRA with the
FARO coordinate measuring machine and calibration block

From this experimental study, deviation metrics δ p and
δR became relatively stable after greater than 15 tool-tip
measurement poses (see Fig. 7). A full recovery of the errors
in the fixed forward kinematic transformations is impossible,
limited by the accuracy of the measurement device and the
cable actuation unit. However, partial error recovery can
be achieved and the proposed calibration model is able to
accurately and robustly identify the errors in the nominal
fixed forward kinematic transformations.4 5 10 15 20
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Fig. 7. Calibration deviation metrics convergence plot for the 7-DOF
CDRA using the ‘experimental’ set of tool-tip measurement poses

VII. CONCLUSION

For the 7-DOF self-calibrated modular cable-driven ro-
botic arm, an effective calibration model is formulated based
on the local POE formula and the measurement residue errors
in the tool-tip frame pose measurements. This is to account
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for any kinematic errors that might arise when serially
assembling the individual self-calibrated CDPM modules to
form the overall 7-DOF CDRA. A least-squares algorithm
is employed to solve the calibration results iteratively due
to the linear nature of the calibration model. Computer
simulation studies were carried out to verify the algorithm.
Simulation studies demonstrate that the preset kinematic
errors in the complete arm assembly of up to ±1 mm
(for position) and ±0.05 rad (for orientation), are fully
recovered under noise-free measurement conditions. Under
experimental conditions, the noise in measurements prevent
full recovery of errors but nonetheless, these errors are
precisely recovered with a minimum of 15 measurement
poses. Hence this calibration model is able to accurately and
robustly calibrate the 7-DOF CDRA.

APPENDIX: GEOMETRIC BACKGROUND

In kinematic analysis of rigid body motions, the Special Euclidean
Group, or SE(3), is commonly used to describe the configuration of a
rigid body with regards to certain coordinate frames. If {KA} is a fixed
inertial coordinate frame and {KB} is a body-attached coordinate frame,
the configuration of {KB} with respect to {KA} is expressed either as an
ordered pair or a 4×4 homogeneous matrix:

Tab = (pab,Rab) =
[

Rab pab
0 1

]
(22)

Where Rab ∈ SO(3) is the rigid body rotation of {KB} with respect to
{KA} and pab ∈ ℜ3×1 is the initial location of the origin of {KB} with
respect to {KA}. Note that SO(3) or Special Orthogonal Group, refers to
the 3×3 rotation matrices group. The group operation on SE(3) allows
the configuration of a frame {KC} to be described with respect to {KA}
via an intermediate frame {KB} as Tac = Tab.Tbc = (pab,Rab).(pbc,Rbc) =
(pab +Rab.pbc,Rab.Rbc).

Since SE(3) is a Lie Group, the Lie Algebra of SE(3), denoted by se(3),
consists of matrices in the form:

$̂ =
[

ω̂ υ

0 0

]
(23)

Where ω̂ is a 3×3 real skew-symmetric matrix which forms the Lie algebra
of SO(3), denoted by so(3), and υ ∈ ℜ3×1. An element of ω̂ ∈ so(3) is
regarded as a vector ω ∈ ℜ3×1, while an element of se(3) is represented
as a 6×1 vector $ = (υ ,ω) ∈ ℜ6×1, termed as a twist. Interpreted using
the theory of screws, a twist describes a general rigid body motion,
simultaneously rotating and translating about a screw axis. ω is the unit
directional vector of the screw axis and υ is the position of the screw axis
relative to the origin.

An element of a Lie group can also be identified with a linear mapping
between its Lie algebra via its adjoint representation, denoted by the symbol
Ad. Suppose Tab is a matrix Lie group with Lie algebra t. For every X ∈Tab,
the adjoint mapping AdX : t → t is defined by AdX (V ) = XV X−1 for V ∈ t.
If X = (pab,Rab) is an element of SE(3), then its adjoint map acting on an
element V = (υab,ωab) of se(3) is described as either:

AdX (V ) = (pab ×Rabωab +Rabυab,Rabωab) (24)

Or its 6×6 matrix representation:

AdX (V ) =
[

Rab p̂abRab
0 Rab

][
υab
ωab

]
(25)

An important relation between a Lie group, SE(3), and its Lie algebra,
se(3) is the exponential mapping, defined on each Lie algebra. By letting
ŝ ∈ se(3) (s = (υ ,ω)) and ‖ω‖2 = ω2

x +ω2
y +ω2

z , the exponential mapping
is described as:

eŝ =
[

eω̂ Aυ

0 1

]
∈ SE(3) (26)

Where eω̂ = I + sin‖ω‖
‖ω‖ ω̂ + 1−cos‖ω‖

‖ω‖2 ω̂2 and A = I + 1−cos‖ω‖
‖ω‖2 ω̂ +

‖ω‖−sin‖ω‖
‖ω‖2 ω̂2.

The matrix logarithm also establishes a relation between a Lie group and
its Lie algebra, while the Lie group is in the neighborhood of the identity.
By letting Rab ∈ SO(3) such that trace(Rab) 6= 1, 1 + 2cosφ =trace(Rab),
and ‖φ‖< π , the matrix logarithm is described as:

log
[

Rab pab
0 1

]
=

[
ω̂ A∗pab
0 0

]
∈ se(3) (27)

Where ω̂ = logRab = φ

2sinφ
(Rab − RT

ab) and A∗ = I − 1
2 ω̂ +

2sin‖ω‖−‖ω‖(1+cos‖ω‖)
2‖ω‖2 sin‖ω‖ ω̂2. If φ is very small, the ω̂ ≈ (Rab−RT

ab)
2 .

(Refer to [12] for more details on Lie group rigid body kinematics.)
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