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Abstract— In the present paper kinematic redundancy is
proposed in order to improve the achievable pose accuracy of
a parallel robot’s traveling platform. An additional prismatic
actuator is applied to a 3RRR planar parallel manipulator. It
allows a selective reconfiguration of the kinematic structure
according to several optimization criteria. Based on an index
that we denote the gain of the Jacobian matrix the position of
the redundant actuator is changed in a discrete manner. The
resulting optimized switching patterns lead to a great increase of
the traveling platform’s pose accuracy. Between two switching
operations the prismatic actuator’s position is supposed to
be locked. Hence, sources of error, e.g. the joint clearance,
can be minimized. Several analysis examples demonstrate the
effectiveness of the proposed concept in combination with the
developed optimization procedure.

I. INTRODUCTION

Amongst others, one advantage of parallel manipulators in
comparison to classical serial manipulators is a higher pose
accuracy. The achievable accuracy of parallel manipulators
was studied in [1], [2]. In [3] it is mentioned that the
achievable accuracy is greatly affected by the manipulator’s
geometrical parameters, and is therefore highly dependent on
the manipulator’s actual configuration.

To further increase a parallel manipulator’s accuracy, re-
dundancy can be applied, such that the number of actua-
tors exceeds the number of degrees of freedom (DOFs) of
the traveling platform [4]. Two redundancy approaches are
established for parallel manipulators, actuation redundancy
and kinematic redundancy [5], [6]. Actuation redundancy
can be realized whether by adding a kinematic chain to
the mechanism or by actuating a passive joint. It leads to
internal preload that can be controlled in order to prevent
backlash [7]. As a result, the achievable accuracy increases.
The drawback of this approach is that such a manipulator
cannot be controlled by using a conventional position con-
trol scheme [8]. Furthermore, an additional kinematic chain
mostly reduces the total workspace [9]. Therefore, in the
present paper we focus exclusively on kinematic redundancy,
realized by adding at least one actuated joint to one kinematic
chain [6], [10].

In [9] we proposed a redundant scheme for the classical
3RRR mechanism. One of the base joints is additionally ac-
tuated using a prismatic actuator. The introduced mechanism
is denoted by 3(P)RRR. Due to the kinematic redundancy,
the inverse displacement problem has an infinite number
of solutions [11]. Therefore, the additional redundant DOF
can be used to improve several performance indices, e.g
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the accuracy. This can be done at the task planning stage
or while operating the manipulator. Our key idea is to
change the position of the redundant actuator in a discrete
manner while operating the system, in particular just before
shifts in direction of the traveling platform. This allows the
reconfiguration of the manipulator to influence its accuracy
for a given trajectory segment. We call the resulting set
of discrete actuator positions the switching pattern. After
each switching operation, e.g. after each reconfiguration, the
additional prismatic actuator is supposed to remain locked.
Therefore, the joint clearance as well as the control error
corresponding to the redundant actuator can be minimized.
The optimization of the switching patterns is achieved ac-
cording to a performance index that we call the gain of
the Jacobian matrix. In comparison to classical performance
indices which are related to the accuracy, like the condition
number of the Jacobian matrix, the proposed optimization
criterion leads to more appropriate solutions concerning the
optimized switching patterns.

This paper is organized as follows. In section II the
geometric and the inverse kinematic models of the proposed
manipulator are given as well as fundamental definitions
related to the Jacobian analysis. Section III gives a short
theoretical overview on the determination of a traveling
platform’s accuracy. Furthermore, the optimization strategy
developed for the redundant actuator’s position is introduced.
In section IV several analysis examples are presented in order
to validate the proposed redundant scheme with optimized
switching patterns. Section V closes the paper with the
conclusions.

II. REDUNDANT 3(P)RRR MANIPULATOR

In [9] we introduced the kinematically redundant 3(P)RRR
planar manipulator presented in Fig. 1. It is basically similar
to the non-redundant 3RRR manipulator studied amongst
others in [12]. Three kinematic chains AiMiBi (i = 1, 2, 3)
connect the moving platform B1B2B3 to the base A1A2A3.
The base-fixed revolute joints are active while the remaining
ones are passive. Each kinematic chain consists of two
links li,1 and li,2. The added prismatic actuator allows
any arbitrary base joint, e.g. A1, to move linearly. As a
result, reconfiguration of the mechanism can be performed
selectively while operating the manipulator. The orientation
of the redundant actuator with respect to the x-axis of the
inertial coordinate frame (CF)0 is denoted by α. Positions
referenced with respect to the platform fixed coordinate
frame (CF)E are marked with (′).
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Fig. 1. Kinematically redundant 3(P)RRR manipulator

In the following the configuration of the traveling platform
is given by

x = [xE, yE, φ]T = [xB1 , yB1 , φ]T , (1)

where xE and yE represent the position of (CF)E with respect
to (CF)0 and φ is its orientation. The mechanism is driven
by the four actuators. Therefore, the system’s configuration
is given by the according actuator coordinates

θ = [θ1, θ2, θ3, δ]
T
. (2)

A. Inverse kinematic
For each kinematic chain i the geometric constraints can

be written as

xBi
= xAi

+ li,1 cos(θi) + li,2 cos(θi + ψi), (3)
yBi

= yAi
+ li,1 sin(θi) + li,2 sin(θi + ψi), (4)

where the position of the traveling platform’s passive joints
with respect to (CF)0 is defined as[

xBi

yBi

]
=

[
xE

yE

]
+

[
cos(φ) − sin(φ)
sin(φ) cos(φ)

][
x′Bi

y′Bi

]
. (5)

In our redundant case the position of A1 depends on the
actuator position δ:[

xA1

yA1

]
=

[
xA1(δ = 0)
yA1(δ = 0)

]
+

[
δ cos(α)
δ sin(α)

]
. (6)

From (3) and (4) we can determine the passive joint angles
ψi:

ψi = ± arccos

(
x2

ABi
+ y2

ABi
− l2i,1 − l2i,2

2li,1li,2

)
, (7)

and finally the active joint angles θi:

θi = arctan
(

(li,1 + li,2 cos(ψi)) yABi
−

(li,1 + li,2 cos(ψi))xABi
+
· · ·

(li,2 sin(ψi))xABi

(li,2 sin(ψi)) yABi

)
,

(8)

where xABi = xBi − xAi and yABi = yBi − yAi .

B. Jacobian formulation
After summing the squares of (3) and (4) the manipulator’s

Jacobian matrix J can be obtained by a derivation with
respect to time [13]:

Aẋ = Bθ̇ ⇔ ẋ = A−1Bθ̇ = Jθ̇. (9)

For the here considered manipulator the direct and inverse
Jacobian matrices A and B result to

A =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 , B =

 b11 0 0 b14
0 b22 0 0
0 0 b33 0

 , (10)

with (for i = 1, 2, 3)

ai1 = xBi
− xAi

− li,1 cos θi,
ai2 = yBi

− yAi
− li,1 sin θi,

ai3 = − ai1
(
x′Bi

sin(φ) + y′Bi
cos(φ)

)
+ ai2

(
x′Bi

cos(φ)− y′Bi
sin(φ)

)
,

(11)

and

bii = li,1 (ai1 sin(θi)− ai2 cos(θi)) ,
b14 = − (a11 cos(α) + a12 sin(α)) .

(12)

III. ACCURACY IMPROVEMENT USING KINEMATIC
REDUNDANCY

In the following the theoretical background of the de-
termination of a traveling platform’s accuracy is outlined.
Furthermore, the developed optimization strategy concerning
the improvement of the pose accuracy is introduced.

A. The traveling platform’s pose error
Due to several factors, like manufacturing errors, joint

clearance, and active joint errors, the pose of a traveling
platform can be provided within a given accuracy only.
Referring to [14], the active joint errors, e.g. the limited
resolution of the encoders, are the major sources of error in
a calibrated and precisely manufactured parallel manipulator.
Therefore, we focus our analysis on the achievable accuracy
of a traveling platform in the presence of active joint errors
only.

By rewriting the velocity equation (9) in incremental form,
we obtain an approximation that maps the active joint errors
(the input error) ∆θ to the pose error (the output error) ∆x:

∆x = J(ξ,x, δ)∆θ, (13)

where ξ contains the geometric parameters of the robot.
The vector x is the traveling platform’s configuration and
δ is the position of the redundant actuator. Using (13) and
incorporating the fact that |ab| = |a||b| and |a+b| ≤ |a|+ |b|
∀ (a, b) ∈ R the maximal pose error vector ∆x can be
calculated by∆x

∆y
∆φ

 =

 |J11| |J12| |J13| |J14|
|J21| |J22| |J23| |J24|
|J31| |J32| |J33| |J34|



|∆θ1|
|∆θ2|
|∆θ3|
|∆δ|

 . (14)
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Here, Jij is the Jacobian’s element of row i and column
j. Since the Jacobian matrix J depends on the actuator
position δ, the additional DOF of the proposed kinematically
redundant manipulator can be used to affect the Jacobian’s
elements and therefore the robot’s accuracy directly. Fig. 2
shows the elements of ∆x with respect to the actuator
position δ for an exemplary redundant manipulator with an
arbitrarily chosen active joint error ∆θ. The dependency
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Fig. 2. Positioning error ∆x with respect to the actuator position δ and
for a constant pose x

of the achievable accuracy on the actuator position δ is
well noticeable. But, the components of the maximal pose
error ∆x, ∆y, and ∆φ have individual minima with respect
to different actuator positions. Therefore, an optimization
procedure is required in order to find the most appropriate
solution for δ.

B. Optimization of the actuator position δ

The optimization of the redundant actuator position δ can
be performed based on two strategies: A classical continuous
optimization and a selective discrete optimization. The latter
is the key idea of the present paper and is discussed in the
following.

Undoubtedly, a continuous optimization leads to an in-
stantly influenceable accuracy. In contrast to the mentioned
advantage, it results in a more challenging task concerning
the robot’s control and often in a higher energy demand. Our
approach is based on the optimization of the actuator position
δ in a discrete manner while operating the system. Therefore,
the trajectory to be executed is divided into segments. The
start and end points of the segments are certain poses, i.e.
shifts in direction. Appropriate constant values of the actuator
position δ corresponding to the different segments of the de-
sired trajectory are determined. The resulting set of discrete
actuator positions is called the optimized switching pattern.
While moving along the desired trajectory, the position of the
redundant actuator δ is changed according to the switching
pattern. This allows the reconfiguration of the manipulator
to influence its accuracy for a given path segment. While
performing a reconfiguration the traveling platform’s pose
is kept constant. After each switching operation, e.g. while
moving along a trajectory segment, the additional prismatic
actuator is supposed to remain locked. Therefore, the joint
clearance as well as the control error corresponding to the
redundant actuator are minimized.

The optimization can be realized with respect to several
criteria and performance indices. A well accepted criterion

is the condition number (in general the two-norm condition
number) of the Jacobian matrix κ(J) and its inverse η = κ−1

called dexterity. In [15] it is defined as:

κ = ‖J−1‖2‖J‖2, 1 ≤ κ ≤ ∞, (15)

where κ = 1 represents an isotropic configuration without an
amplification of the active joint error ∆θ and κ =∞ repre-
sents a singular configuration with an infinite amplification of
∆θ. However, the Jacobian matrix J is not homogeneous in
terms of physical units. Therefore, the value of the condition
number depends on the unit choice. Hence, a modification of
the Jacobian matrix is required in order to obtain significant
values for κ. Amongst others, the homogeneity can be
achieved by transforming the traveling platform’s velocity
ẋ into the linear velocity ẋ? = [ẋP1 ẏP1 ẋP2 ẏP2 ]T of two
arbitrary points P1 and P2 [16]. Therefore, a transformation
matrix R has to be found that satisfies the following equa-
tion:

ẋ? = Rẋ. (16)

But, instead of describing a manipulator with three DOFs by
four parameters ẋ?, a reduction of the terms describing the
velocities of the traveling platform to three can be performed
[15]. As a result, the dimension of the Jacobian matrix J
remains constant. For the proposed manipulator, the modified
transformation matrix R results to:

R =

 cosβ sinβ 0
− sinβ cosβ 0
− sinβ cosβ x′B3

cosφ− y′B3
sinφ

 . (17)

The angle β gives the orientation of (CF)0 to a coordinate
frame located in B1 with its x-axis passing through B3. The
homogenized Jacobian matrix J ′ can be determined using
the following equation:

J ′ = RJ . (18)

Hence, an optimization of the actuator position δ can be
performed by a minimization of the condition number κ(J ′)
and by a maximization of the dexterity η(J ′), respectively:

min
δ

κ(J ′) =̂ max
δ

η(J ′). (19)

As demonstrated by Merlet [17] and shown later in sec-
tion IV the condition number does not necessarily exhibit a
complete consistent behavior with respect to the pose error
of a robot. Therefore, we propose an optimization of the
actuator position δ based on minimizing the sums of the
absolute values of the elements of the Jacobian’s rows. We
call this index the gain γ(J ′) of the homogenized Jacobian
matrix J ′. Since the influence of the prismatic actuator’s joint
error on the pose error is small only (see section IV) the last
column of the Jacobian matrix is not taken into account.
Therefore, the cost function to be minimized results to:

min
δ

γ(J ′) =

min
δ

∣∣∣∣∣
∣∣∣∣∣

3∑
i=1

|J ′1,i|
3∑
i=1

|J ′2,i|
3∑
i=1

|J ′3,i|

∣∣∣∣∣
∣∣∣∣∣
2

(20)
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IV. ACCURACY ANALYSIS

Several analysis examples are presented in order to val-
idate the proposed redundant scheme with the developed
optimized switching patterns. The advantage of our approach
is verified for different trajectories. Additionally, it is demon-
strated that the active joint error of the redundant prismatic
actuator influences marginally the traveling platform’s pose
accuracy.

In the following, we combine the two translational position
errors ∆x and ∆y of the traveling platform to obtain a
quantity for the maximal translational error:

∆xy =
√

∆x
2

+ ∆y
2

(21)

A. Simulation of single trajectories

Accuracy analysis along selected simulated trajectories
were performed. The geometric parameters ξ of the analyzed
kinematic structure are given in TABLE I. Keeping the
design space in mind the orientation of the redundant actuator
was set to α = 0◦. Exemplarily, simulation results of

TABLE I
DESIGN PARAMETERS ξ OF THE REGARDED NON-REDUNDANT 3RRR

AND THE REDUNDANT 3(P)RRR (−0.5 m ≤ δ ≤ 0.5 m) MANIPULATOR

i = 1 i = 2 i = 3

xAi
[m] 0.6 0 1.2

yAi
[m]

√
27/5 0 0

x′Bi
[m] 0 −0.1 0.1

y′Bi
[m] 0 −

√
3/10 −

√
3/10

li,1[m] 0.6 0.6 0.6

li,2[m] 0.6 0.6 0.6

the three triangular trajectories (I, II, III) shown in Fig. 3
are presented. They were chosen within the manipulator’s
workspace (dashed black line) such that the non-redundant
3RRR manipulator does not pass any singular poses when
φ = 0◦. The traveling platform was moved clockwise

QI,1

QI,3
QI,2

I II

III

Fig. 3. Intuitively chosen trajectories (I, II, III)

along the chosen trajectories with a constant orientation. The
trajectories were divided such that each side of a triangular

represents a segment. Hence, at every corner Qj,1, Qj,2, and
Qj,3 (j = I,II,III) the position of the redundant actuator δ
is switched according to the optimized switching pattern.
During each switching operation the traveling platform’s
pose is kept constant. The optimization was performed based
on the introduced cost functions (19) and (20). Even though
the prismatic joint is locked between two switching phases,
its joint error, e.g. the limited resolution of the encoder, has to
be taken into account in order to obtain a significant accuracy
analysis. Therefore, the active joint errors were chosen based
on data sheets of commercially available standard actuators
to ∆θ = [0.1◦ 0.1◦ 0.1◦ 10µm]T.

In Fig. 4 the optimized switching patterns of the actuator
position δ as well as the resulting manipulator’s pose errors
∆xy and ∆φ are presented. The traveling platform was
moved along trajectory I with a constant orientation of
φ = 0◦ denoted as I(0◦). A significant improvement of the

(a) Optimized switching patterns

s
δ
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-0.1

(b) Translational error
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6

(c) Orientation error

s

∆
φ

[°
]

QI,1 QI,2 QI,3 QI,1

0.5

1

1.5

Fig. 4. Simulation results while moving along trajectory I(0◦) (dotted
black: Non-redundant manipulator; dashed black: Optimized redundant
manipulator using η(J ′); solid gray: Optimized redundant manipulator
using γ(J ′)

accuracy due to the kinematic redundancy is well notice-
able. The maximal pose error occurring close to QI,2 was
minimized by a reconfiguration of the manipulator according
to the optimized switching pattern. Fig. 4 shows that both
optimization criteria lead to similar switching patterns and
to similar achievable accuracies. But, later simulation results
(see section IV-B) will clarify the advantage of the developed
optimization based on the gain γ(J ′).

In order to quantify the accuracy improvement we deter-
mine the maximal translational ∆xymax and rotational error
∆φmax of the traveling platform over a complete trajectory.
The values represent the achievable accuracy of the asso-
ciated manipulator. An overview of the maximal errors of
the three triangular trajectories shown in Fig. 3 are given
in TABLE II. Additionally, the percentage improvements of
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the kinematically redundant manipulator in comparison to
its non-redundant counterpart are given. Taking a look at

TABLE II
MAXIMAL TRANSLATIONAL ∆xymax AND ROTATIONAL ERROR ∆φmax

OF THE TRAVELING PLATFORM WHILE MOVING ALONG TRAJECTORY I,
II, AND III

j(φ) Value 3RRR 3(P)RRR
using η(J ′) using γ(J ′)

I(−45◦) ∆xymax [mm] 764.77 10.30 (99.7%) 6.57 (99.8%)
∆φmax [◦] 2954.45 1.07 (99.9%) 1.26 (99.8%)

I(0◦) ∆xymax [mm] 6.60 3.61 (45.4%) 3.76 (43.0%)
∆φmax [◦] 1.76 0.61 (65.4%) 0.64 (63.7%)

I(45◦) ∆xymax [mm] 6.34 3.60 (43.3%) 3.85 (39.4%)
∆φmax [◦] 7.02 5.46 (22.3%) 5.34 (24.0%)

II(−45◦) ∆xymax [mm] 54.01 2.42 (95.5%) 2.26 (95.8%)
∆φmax [◦] 11.10 0.50 (95.5%) 0.47 (95.8%)

II(0◦) ∆xymax [mm] 4.98 2.14 (57.0%) 2.02 (59.4%)
∆φmax [◦] 2.23 0.81 (63.8%) 0.75 (66.3%)

II(45◦) ∆xymax [mm] 6.01 4.52 (24.7%) 3.87 (35.6%)
∆φmax [◦] 2.62 1.77 (32.5%) 1.71 (34.9%)

III(−45◦) ∆xymax [mm] 2.34 3.49 (−49.0%) 1.92 (17.8%)
∆φmax [◦] 0.61 0.65 (−7.1%) 0.60 (0.7%)

III(0◦) ∆xymax [mm] 2.35 2.38 (−1.3%) 2.03 (13.4%)
∆φmax [◦] 1.06 1.09 (−2.1%) 1.02 (4.2%)

III(45◦) ∆xymax [mm] 16.27 28.22 (−73.4%) 15.68 (3.7%)
∆φmax [◦] 5.06 8.41 (−66.1%) 5.17 (−2.2%)

the results of trajectory I and II, both optimization criteria
(η(J ′) and γ(J ′)) lead to an improvement of the achievable
accuracy. Attention should be paid to I(−45◦). Here, the
non-redundant manipulator passes through a singularity. As a
result, its pose error increases highly. In case of the proposed
kinematically redundant manipulator and an optimization of
its configuration the singularity, i.e. the large pose error, was
avoided.

Focussing on the results obtained while moving along
trajectory III, the advantage of the proposed optimization
based on the Jacobian’s gain γ(J ′) is noticeable. Using η(J ′)
caused a decrease of the achievable accuracy in all cases.
This is a practical proof (further confirmed in section IV-B)
of what we claimed in section III and noticed in [17]: The
condition number does not necessarily exhibit a complete
consistent behavior with respect to the pose error of a robot.

An additional test was performed to demonstrate the
marginal influence of the prismatic actuator’s joint error on
the traveling platform’s pose error. Therefore, for different
∆δ the traveling platform was moved along I(0◦). The
actuator position δ was changed according to the optimized
switching pattern shown in Fig. 4 (based on the Jacobian’s
gain). The results are presented in Fig. 5. The plots clearly
demonstrate the marginal influence of ∆δ on the traveling
platform’s pose error ∆x.

B. Complex testing scenario

In order to further confirm the results obtained in sec-
tion IV-A we developed a complex testing scenario. Several
different trajectories were considered. For different orienta-
tions −90◦ ≤ φ ≤ 90◦ the traveling platform was moved

(a) Translational error
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Fig. 5. Influence of the prismatic joint error ∆δ on the traveling platform’s
pose error while moving along trajectory I(0◦) (solid gray: ∆δ = 0; dashed
black: ∆δ = 10µm; solid black: ∆δ = 100µm; dotted black: ∆δ =
500µm

along generated trajectories exemplarily shown for φ = 0◦

in Fig. 6. The triangular and rectangular trajectories were

(a) Triangular trajectories (b) Rectangular trajectories

Fig. 6. Exemplary trajectories of the complex testing scenario

located all over the workspace. Again, each trajectory was
divided such that each side of a triangular and rectangular
represents a segment. The overall joint error was set to
∆θ = [0.1◦ 0.1◦ 0.1◦ 10µm]T and the maximal pose error
∆x was determined using (14). It is important to notice
that the optimization was achieved using nominal values of
ξ, whereas the simulation was carried out under mistuned
values, in order to meet the realistic case. The results of
the testing scenario regarding the geometric parameter ξ are
summarized in TABLE III and are given graphically in Fig. 7.
The means µ as well as the standard deviations σ of the

TABLE III
SIMULATION RESULTS OF THE TESTING SCENARIO (OVERALL VALUES

TAKING ALL ANALYZED ORIENTATIONS INTO ACCOUNT)

Value 3RRR 3(P)RRR
using η(J ′) using γ(J ′)

µ(∆xy) [mm] 8.13 9.56 (−17.7%) 2.73 (66.3%)
µ(∆φ) [◦] 2.53 3.13 (−24.0%) 0.94 (62.9%)

σ(∆xy) [mm] 74.75 236.91 (−217.0%) 3.6 (95.20%)
σ(∆φ) [◦] 23.82 71.03 (−198.1%) 1.32 (94.5%)
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traveling platform’s maximal errors ∆xy and ∆φ are shown.

(a) Means µ(·) of ∆xy and ∆φ
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(e) Standard deviations σ(·) of ∆xy and ∆φ
(f) Overall standard
deviations

Fig. 7. Simulation results of the testing scenario of the robot defined with ξ
(black: Non-redundant manipulator; gray: Optimized redundant manipulator
using η(J ′); white: Optimized redundant manipulator using γ(J ′))

Often, inappropriate switching patterns were obtained when
the actuator position δ was optimized based on the dexterity
η(J ′). Especially, the results of φ = 30◦ and φ = 60◦

demonstrate the inconsistency of the condition number with
respect to the accuracy. In contrast, the developed optimiza-
tion based on the gain γ(J ′) leads to an improvement of the
accuracy as well as of the precision in all cases. Optimizing
the actuator position δ using the proposed Jacobian’s gain
γ(J ′) led to consistent improvements of the manipulator’s
accuracy greater than 90%.

V. CONCLUSIONS

In this paper, a kinematically redundant 3(P)RRR mecha-
nism was presented. After a description of some fundamen-
tals of the proposed manipulator, the effect of the additional
DOF on the traveling platform’s accuracy was clarified. An

optimization of the redundant actuator’s position in a discrete
manner was developed. It is based on a minimization of a
criterion that we denoted the gain γ(J ′) of the homogenized
Jacobian matrix J ′. We showed that the proposed index leads
to more appropriate switching patterns than the Jacobian’s
condition number. Several analysis examples demonstrate a
great improvement in terms of accuracy and precision of
the proposed redundant manipulator in combination with the
developed optimization procedure.

Future work will deal with the experimental validation of
the obtained simulation results.
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