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Abstract— We propose a new approximate algorithm, LA-
JIV (Lookahead J-MDP Information Value), to solve Oracular
Partially Observable Markov Decision Problems (OPOMDPs), a
special type of POMDP that rather than standard observations
includes an “oracle” that can be consulted for full state
information at a fixed cost. We previously introduced JIV
(J-MDP Information Value) to solve OPOMDPs, an heuristic
algorithm that utilizes the solution of the underlying MDP and
weighs the value of consulting the oracle against the value of
taking a state-modifying action. While efficient, JIV will rarely
find the optimal solution. In this paper, we extend JIV to include
lookahead, thereby permitting arbitrarily small deviation from
the optimal policy’s long-term expected reward at the cost
of added computation time. The depth of the lookahead is a
parameter that governs this tradeoff; by iteratively increasing
this depth, we provide an anytime algorithm that yields an ever-
improving solution. LA-JIV leverages the OPOMDP frame-
work’s unique characteristics to outperform general-purpose
approximate POMDP solvers; in fact, we prove that LA-JIV
is a poly-time approximation scheme (PTAS) with respect to
the size of the state and observation spaces, thereby showing
rigorously that OPOMDPs are “easier” than POMDPs. Finally,
we substantiate our theoretical results via an empirical analysis
of a benchmark OPOMDP instance.

I. INTRODUCTION

Partially Observable Markov Decision Problems

(POMDPs) comprise a useful theoretical tool for robots

making decisions in a time-varying stochastic process

with hidden state. POMDPs can represent a wide array of

real-world problems, providing elegant solution techniques

with strong guarantees on optimality. Unfortunately, solving

POMDPs optimally is a computationally intractable task

in general [1] [2]. In contrast, Markov Decision Processes

(MDPs) can be solved in poly-time [3]; but the trade-off

is representational power. MDPs assume the robot always

knows the system’s state, which is much less common in

real-world problems.

We have previously introduced the Oracular POMDP

framework [4], a framework “between” POMDPs and MDPs

that captures the benefits of both and in some situations

works better than either; see Figure I. The oracle is a special

type of observation that gives perfect state information, but

consulting the oracle uses up an action and incurs a penalty

to reward. Additionally, the OPOMDP assumes that no other

observations exist besides the oracle, allowing the actions to

be partitioned into those that acquire information and those

that have some effect on the world.

Besides being interesting from a scientific perspective,

OPOMDPs demonstrate real-world significance. It is a nat-

ural sensing modality to ask a knowledgeable source when

no other information is available. Examples of such scenarios

include: covert operations, in which using an active sensor

might give away the robot’s position; medical diagnosis, in

which doctors use expensive or invasive procedure to reveal

the presence or severity of a disease; expert systems, in which

the robot consults a virtually omniscient source; and human-

computer dialog systems, in which the machine must ask the

human for information about his or her intentions.
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Fig. 1. Oracular POMDPs are “between” MDPs and POMDPs in terms
of generality, observability, and tractability.

Prior examples of frameworks between POMDPs and

MDPs include: unobservable MDPs [2], which are POMDPs

that produce no observations; even-odd POMDPs [5], which

acquire perfect state information at every other timestep; and

“MDPs with observation costs”, which have no observations

and an oracle action [6]. The lattermost is quite similar to

our framework, but differs in two important ways: it requires

that consulting the oracle is optimal after some finite period

of time; and it defines a policy only for belief states with

perfect information. The first requirement precludes unob-

servable MDPs, as well as our “Wizard’s Curse” example

problem (specified later, in Section V); while the second

requirement precludes any POMDP in which the robot begins

with uncertainty (e.g., the “kidnapped robot” problem). Our

framework encompasses all these cases.

Furthermore, some authors have modified an MDP’s state

space [7] and/or reward function [8] to handle uncertainty;

however, this practice is insufficient in general [4]. In an

unrelated vein, there is work that refers to an “oracle”

that gives perfect state information, but only during a prior

model-learning phase rather than at execution time [9].

In [4], we proposed an algorithm to solve OPOMDPs,
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called JIV (J-MDP Information Value), that extends Q-MDP

[10] to the OPOMDP framework. JIV achieves high reward

with provably small computation time; however, it is an

heuristic algorithm, meaning that it will typically fall short

of the optimal solution.

To address JIV’s shortcomings, in this work we present

Lookahead J-MDP Information Value (LA-JIV), an approx-

imate, anytime algorithm that converges to the optimal

value function and thus the optimal policy. LA-JIV is a

confluence of ideas from JIV [4], Heuristic Search Value

Iteration (HSVI) [11], and policy iteration for MDPs with

observation costs [6]. Like HSVI, it uses a forward search

via heuristic, employing both upper and lower bounds on the

value function; however, LA-JIV’s search method, backup

operator, initial bounds, and control policy are all novel.

As in JIV, these novelties rely primarily on the OPOMDP’s

partitionable action set (strictly information-gathering actions

and strictly domain-level actions) and the importance of

“pure beliefs” at the corners of the simplex.

The organization of this paper is as follows: first we

review OPOMDPs and how JIV solves them; followed by

introducing LA-JIV and an in-depth analysis of its properties;

then we show error bounds, convergence, and computational

complexity; and finally we present initial empirical results

on a benchmark OPOMDP domain.

II. ORACULAR POMDPS

We now take a moment to review the three frameworks

(MDPs, POMDPs, and OPOMDPs) and specify our nota-

tions.

A. MDPs and POMDPs

The Markov Decision Process, or MDP, is a framework for

modeling a robot trying to maximize its reward in a time-

varying, stochastic process. It asserts the Markov property,

that the robot’s next state depends only upon its previous

state and its action choice. In this paper, we consider the

case of discounted reward and infinite horizon. The MDP

is specified by a tuple (γ,S,A, T ,R), whose elements

correspond respectively to the scalar discount factor; the

finite set of states; the finite set of actions; the stochastic

transition function T : S × A 7→ Π(S); and the reward

function R : S ×A 7→ R.

The objective of the robot is to maximize long-term

expected reward E[
∑∞

0
γtrt]. The typical solution method

is to determine a stationary policy π : S 7→ A, completely

specifying the robot’s behavior. The optimal policy can

be found by solving the dynamic programming equation

J∗(s) ≡ maxaR(s, a) +
∑

s′ T (s, a, s′)J∗(s′). There are

many techniques to solve this equation, such as value itera-

tion and policy iteration.

The Partially Observable Markov Decision Process, or

POMDP, is a generalization of the MDP framework that

allows for incomplete state knowledge. It adds the concept of

observations, which are generated stochastically from states,

providing the robot with only limited state information. The

POMDP tuple is (γ,S,A, T ,R,Ω,O), containing the same

elements as the MDP tuple, plus: Ω, the finite set of possible

observations; and O : S × A 7→ Π(Ω), the observation

function. A robot’s belief state is a discrete probability

distribution that summarizes its observation history, action

trajectory, and initial knowledge; the belief state lies in the

probability simplex B ≡ Π(S). Given the robot’s action

choices, it can maintain a proper belief state via a Bayesian

update at each timestep. The belief state is a sufficient

statistic to act optimally, meaning the POMDP is Markovian

in belief state. Hence, the POMDP is equivalent to an MDP

in the continuous belief space simplex (called the belief

MDP), and so can be solved by dynamic programming [12].

Unfortunately, solving POMDPs optimally has been proven

PSPACE-hard [1]. The literature is rich with various optimal

and heuristic solution techniques (introduced individually as

well as surveyed [13]), but nonetheless, computation time

remains the primary limiting factor for using POMDPs in

realistically large domains.

B. OPOMDPs

In the Oracular POMDP, there exists an oracle in lieu

of observations.1 The oracle provides the robot perfect state

information, but consulting the oracle incurs an immediate

penalty to reward as well as the opportunity cost of foregoing

a domain-level (a.k.a. state-altering) action for the current

timestep.

One can view OPOMDPs as a special case of POMDPs.

Consider a POMDP with one action that produces observa-

tions unique to each state, removing all ambiguity, while all

other actions produce an uninformative “null” observation;

such a POMDP is equivalent to an OPOMDP. Conversely,

an OPOMDP with oracle cost zero is equivalent to an MDP

whose actions correspond to a domain-level action followed

by an oracular consultation. We say, then, that OPOMDPs

are strictly “between” POMDPs and MDPs, with respect to

both generality and observability.

Formally, the OPOMDP tuple is (γ, λ,S,A, τ, ρ), where

λ is the oracle cost; τ : B×A 7→ B is the transition function,

as in the belief MDP; and ρ : B × A 7→ R is the expected

reward function, also as in the belief MDP. The remaining

components are defined as in the MDP. 2 The OPOMDP

tuple is instantiated from its underlying MDP: S ≡ SMDP,

A ≡ AMDP ∪ {o}, and

τ(b, a)|s′ ≡

{∑
s b(s)T

MDP(s, a, s′) a ∈ AMDP

I(s′ = soracle) a = o

ρ(b, a) ≡

{∑
s b(s)R

MDP(s, a) a ∈ AMDP

∑
s b(s)R

MDP(s,NO OP) a = o

Note that s′ indexes the vector-valued output of τ , I(·) is

the indicator function, and soracle is the true state told by the

oracle. We also use the following miscellaneous notations

throughout the paper:

1In future work, we will extend the framework to include both oracles
and imperfect observations.

2We assume that the NO OP domain-level action occurs simultaneously
with the oracle action; it is just a self-transition in the underlying MDP.
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• a pure belief is a belief with perfect state information

(bpure
s = 1 at s and 0 elsewhere);

• overbars and underbars indicate upper and lower

bounds, respectively (̄J, J), while double bars (̄J) indicate

the expression applies to both bounds;

• a “hat” indicates an estimate, while an asterisk indicates

the optimal value — e.g., Ĵ estimates J∗;

• we refer to the bound width at belief b by ψ(b) ≡ J̄(b)−
J(b); and

• Γ represents a vector set whose max specifies a value

function; i.e., J(b) = maxα∈Γ b · α.

III. THE LA-JIV APPROXIMATE ALGORITHM

First, we describe our previous heuristic algorithm, JIV,

and its benefits and drawbacks; then we introduce LA-JIV,

our approximate algorithm, that addresses the shortcomings

of JIV. Note that a POMDP solver is said to be approximate

if it produces sequence of value functions that converge to

within ǫ of the optimal value function, given enough time;

otherwise, it is said to be heuristic.

A. JIV (J-MDP Information Value)

J-MDP Information Value, or JIV, was our initial proposed

heuristic algorithm for solving OPOMDPs [4]. It retrofits the

Q-MDP heuristic for the OPOMDP, allowing it to overcome

Q-MDP’s main flaw and select information-gathering actions

(i.e., consult the oracle). Meanwhile, it remains computable

in poly-time. The resulting bound on the value function is

an upper bound, since it uses the optimistic Q-MDP value

function estimate.

Q̂ JIV(b, a) = ρ(b, a) +

{
γĴ Q-MDP(b) a 6= o

−λ+ γ b · JMDP a = o

Ĵ JIV(b) = max
a

Q̂ JIV(b, a)

Ĵ Q-MDP(b) = max
a6=o

(
ρ(b, a) + γ τ(b, a) · JMDP

)

JIV is efficient and empirically shows good performance

in accumulated reward; however, it is not without certain

drawbacks: 1) it is a greedy heuristic algorithm, meaning

that it does not converge to the optimal value function; 2) it

provides no (non-trivial) bounds on regret; and 3) it is not

guaranteed to perform better than Q-MDP on all OPOMDPs.

These shortcomings motivated the development of LA-JIV,

which indeed surmounts them all (at the cost of added

computation time). Note that LA-JIV subsumes JIV, in that it

uses JIV for its initial bounds as described in Section III-C.

B. LA-JIV (Lookahead J-MDP Information Value)

LA-JIV is a forward heuristic search that utilizes both

upper and lower bounds to focus the search and to prune the

search tree. In this respect, it is similar to general POMDP

solvers; but it achieves better performance by capitalizing on

several key insights that pertain specifically to OPOMDPs:

• we can achieve a good initial upper bound using JIV;

• we can achieve a fairly good policy, and thus a

fairly good initial lower bound, using extant hybrid

MDP/POMDP techniques;

• since the oracle always produces a pure belief, we use

the estimated value of those pure beliefs much more

often; and

• the branching factor for consulting the oracle is |S|,
while it is only |A| for examining domain-level actions

(typically, |S|ismuchlargerthan|A|).

In the following subsections, we describe how LA-JIV takes

advantage of each of these OPOMDP characteristics.

C. Initial Bounds

To get an upper bound over the entire belief space, we

simply use JIV, which gives us a convex upper bound defined

by the max of the hyperplanes Q̂ JIV. It is a valid upper

bound because it uses the optimistic Q-MDP value function

estimate.

Our lower bound springs from the even-odd POMDP [5], a

simple MDP/POMDP hybrid in which the robot receives full

state information at every even timestep, but that knowledge

is corrupted during the odd timestep. The key insight of

[5] was that any even-odd POMDP is equivalent to a fully

observable MDP with a discount factor γ2 and an action set

consisting of the cross product of A and O. They call this

MDP a 2MDP.

The relationship between OPOMDPs and even-odd

POMDPs is apparent: if we restrict an OPOMDP’s set

of policies to those that consult the oracle every other

timestep, we have an even-odd POMDP (and its corre-

sponding 2MDP). Note that this is not a reduction from

the OPOMDP to the 2MDP; we are restricting the search

space of solutions for the OPOMDP to those that solve the

(embedded) even-odd POMDP, and it so happens that the

even-odd POMDP is reducible to the 2MDP.

We require one slight modification to the 2MDP in [5],

that the 2MDP’s reward function must be reduced by the

oracle cost (once discounted), since in our case, the infor-

mation does not come freely: R2MDP(s, a) ≡ ρ(bpure
s , a) +

γ (ρ(τ(b, a), o)− λ). Otherwise, the elements in the 2MDP

tuple are the same as those in the MDP.

Solving the 2MDP gives us an estimate of the original

OPOMDP’s value function at the pure beliefs. To estimate

the value function over the rest of the belief space, we can

perform a single backup using the oracle action; thereafter,

the even-odd assumption is met and the value for executing

π2MDP is exact. We call this value function estimate Q-2MDP,

due to its similarity to Q-MDP. Formally:

J Q-2MDP(b) =

{
J2MDP(s) if ∃s ∋ b(s) = 1

ρ(b, o)− λ+ γ b · J2MDP

An important and complementary difference from the JIV

upper bound, this approximation is a lower bound on the

OPOMDP value function. It uses the exact solution to the

even-odd POMDP, which provides merely one of many

candidate policies for the OPOMDP. Since the OPOMDP

value function is a max over the value of these policies,

it is clear that Q-2MDP provides a lower bound. In most

general POMDP solvers, the lower bound is initialized with
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the much more conservative bounds of 1) assuming the robot

is in the worst state and stays there forever, or 2) choosing a

policy which takes the same action forever and evaluating its

value [11]. We can see intuitively that the lower the oracle

cost, the more closely the optimal policy (and therefore value

function) will resemble that of Q-2MDP.

Figure 2(a) depicts the initial bounds.

D. Looking Ahead

Several prior works have employed the technique of for-

ward exploration (or lookahead) from a known initial belief

(HSVI [11], PBVI [14], RTDP [15]) to avoid unreachable

portions of the belief space, quite common in real-world

POMDPs. Moreover, with approximate algorithms, an ex-

ploration of finite depth is sufficient to ensure the error is

less than a given threshhold; as a result, the set of beliefs to

consider is reduced from the |S|-dimensional simplex to a

finite set.

Of course, lookahead comes at a price: the tree of possible

beliefs grows exponentially with branching factor |A||O|,
and to solve the POMDP, we might potentially have to

visit each node in the tree. The runtime would then be

O(exp(|A||O|)).
Luckily, with OPOMDPs, the price of lookahead is some-

what lessened. As discussed in [4], an OPOMDP’s action

set is factorizable into information-gathering actions and

domain-level actions. As a result, we can factorize the expo-

nential dependencies of lookahead so that the algorithm’s

runtime scales as O(exp(|A|) + exp(|S|)). Additionally,

we know beforehand several very important beliefs: the

“pure” beliefs at the corners of the simplex, corresponding

to certainty of being in a given state. Due to the oracle

action, these are always reachable in a single timestep from

any other belief. Caching these beliefs allows us to further

reduce the complexity to O(|S| exp(|A|)). A final benefit of

concentrating on pure beliefs is that these beliefs are totally

sparse (only a single entry), and typically will transition to

very sparse beliefs as well. Computationally, it is much faster

to compute updates and transitions on sparse beliefs.

Hansen’s policy iteration for MDPs with observation costs

(hereafter referred to as “pure belief policy iteration,” or

PBPI) takes advantage of pure beliefs as well, but to an

extreme: it maintains the value function only at those beliefs.

As a result, values for impure beliefs encountered in the

search do not reflect the work done to update them at

earlier iterations. In contrast, LA-JIV maintains vector-based

bounds, which are updated during the search, to fully utilize

prior work. Maintaining upper and lower bounds also allows

more pruning. Finally, the heart of LA-JIV is value iteration,

while PBPI is an instance of policy iteration.

In LA-JIV, we look ahead from each of the pure beliefs,

performing |S| forward searches. Our search method is

iterative deepening A* (or IDA*). Typically, IDA* iteratively

loosens limits on the heuristic value f(n); however, LA-JIV

limits the search depth instead, since it is the determining

factor in computation, memory, and discounting. Hence, for

a given depth limit T , we perform an A* forward search for

each pure belief (to maximum depth T ). After completing

the search for each pure belief, we increment T . We stop

when the bound width for all pure beliefs is less than ǫ (for

an anytime version of LA-JIV, let ǫ be zero). See Algorithm 1

and Figure 2.

Fig. 3. The LA-JIV search tree structure, where the diamond indicates the
oracle action. LA-JIV, in contrast to HSVI, does not expand the tree further
after consulting the oracle, because it would be a copy of the whole tree.

Algorithm 1 LA-JIV(ǫ)

1: {Initialize vector-based and point-based bounds}
2: Γ← (Γ JIV,Γ Q-2MDP)
3: ∀s, J̄

pure

s ← (Ĵ JIV(bpure
s ), J Q-2MDP(bpure

s ))

4: while maxs ψ(J̄
pure

s ) > ǫ do

5: {IDA*}
6: T ← 1
7: for all s ∈ S do

8: J̄
pure

s ← A*(s, T )
9: end for

10: T ← T + 1
11: end while

The node data structure we maintain in the search is a tuple

(b, R, t, a) consisting of: b, the belief point; R, the expected

accumulated reward from descending the tree E[
∑

t rt]; the

depth t; and the action choice a that led to this node

(undefined, for the root). A node corresponds to a choice

of t actions from the root.

Our version of A* is shown as Algorithm 2. It maintains

a priority queue, popping the node with maximal priority

at each iteration and expanding that node. Adopting the

common search notation, the priority f of a node n is

given by f(n) = g(n) + h(n), where g(n) is the expected

accumulated reward n.R and h(n) is an estimate of the

discounted expected future reward. In our case, we are

concerned with maximizing value rather than minimizing

cost, so an admissible heuristic is one that overestimates the

future reward. As such, we choose the (discounted) upper

bound value of current node: h(n) = γn.tJ̄(n.b). We can

prune whenever the depth is too large or the priority (an

upper bound on the value for the pure belief at the root)

of a node is less than the lower bound of the value of

that pure belief. Furthermore, we stop when we pop a node

corresponding to the oracle action, since this indicates that

we need a better bound on the value of the oracle action,
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Fig. 2. Left: initial bounds for a simple two-state, three-action OPOMDP. Right: a backup, both vector-based and point-based, for both upper and lower
bounds, on the search rooted at the pure belief for state s1.

achieved by another iteration of the algorithm to greater

depth.

Algorithm 2 A*(s, T )

1: OPEN← {bpure
s , 0, 0,NULL}

2: while OPEN 6= {} AND ψ(J̄
pure

s ) > ǫ do

3: node← arg maxn∈OPEN f(n)
4: OPEN← OPEN\{node}
5: BACKUP()
6: if f(node) ≤ Jpure

s OR node.a = o then

7: break

8: else

9: OPEN← OPEN ∪ EXPAND(node, s, T )
10: end if

11: end while

12: return

Algorithm 3 EXPAND(node, s, T )

1: children← {}
2: for all a ∈ A\{o} do

3: R← node.R+ γnode.tρ(node.b, a)
4: child← {τ(node.b, a), R, node.t+ 1, a}
5: if f(child) > Jpure

s AND child.t ≤ T then

6: children← children ∪ child

7: end if

8: end for

HSVI also uses the value function upper bound as its

search heuristic, but it searches the AND/OR tree, in which

observations correspond to the branches of an AND node.

PBPI uses a lower bound on the value function for a search

heuristic, which is an inadmissible heuristic and thus limits

its ability to prune.

E. Backing Up

LA-JIV maintains both vector-based bounds, and, at pure

belief points, point-based bounds. Since it performs searches

rooted at the pure beliefs, it can update the values of those

pure beliefs from the search tree. Then, it can use the updated

values of the pure beliefs to update the vector-based bounds

for the rest of the belief space.

1) Point-based Upper Bounds: Since the search heuristic

is admissible, the current node has a greater upper bound

than any nodes that will later be encountered in the search.

As such, we can update the upper-bounding value of the

pure belief at the root whenever we pop a node from the

queue. We initialize these bounds by evaluating the initial

vector-based upper bounds at the pure beliefs.

2) Vector-based Upper Bounds: Throughout the algo-

rithm, we maintain only |A| vectors for the upper bound.

These are initialized as the vectors from JIV, each rep-

resenting a single action and thereafter assuming perfect

information. The value of perfect information is estimated

by JMDP. Then, when we update the upper bounding value

of a pure belief, we can recalculate the JIV bounds by

replacing JMDP with the updated estimates of the value of

perfect information. Hence, we maintain a fairly tight upper

bound while avoiding the overhead of HSVI’s convex hull

calculation for its upper bound.

3) Point-based Lower Bounds: These bounds, existing

only at pure beliefs, are initialized by solving the 2MDP;

recall that they are slightly larger than the value of the

vector-based lower bounds at the pure belief points, since

here it is not necessary to consult the oracle before using

the 2MDP policy. During the search, at a particular node,

we know that we can achieve at least the value given by

the accumulated reward plus the discounted lower bound on

future reward (because the node’s descent path, followed by

the lower bound policy, is one of many potential policies,

over which the value function is a max). If this value is

greater than the lower bounding value of the pure belief at

the root of the search tree, then we can update that value.

4) Vector-based Lower Bounds: These are initialized to

the single vector given by Q-2MDP. Unfortunately, this case

is not analogous to the upper bound; when we update the

point-based lower bound, we cannot update the vector-based

lower bound as a result. Hence, we add vectors to the lower
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bounding vector set via standard vector backups [11].

Algorithm 4 BACKUP(node)

1: J̄
pure

s ← min{f(node), J̄
pure

s }
2: Jpure

s ← max{node.R+ γnode.tJ(node.b), Jpure
s }

3: Γ̄← R(a, ·) + γ
∑

s′ T (·, a, s′)J̄
pure

s′

4: VECTORBACKUP(node.b)

A “backup” for LA-JIV consists of performing each of the

updates described above; see Figure 2(b) and Algorithm 4

(VECTORBACKUP here is no different from in the literature

[11]). Since the vector-based lower bound is the only one that

grows in size, it is the only one we need to periodically prune.

For efficiency, we only prune when one vector pointwise

dominates another; and we only test for pruning when the

number of vectors has grown by 50%.

F. Action Selection

Once we have terminated the algorithm and have

good value function bounds, we must use them some-

how to choose an action (i.e., generate a policy). Us-

ing a single step of lookahead, we choose the action

that minimizes the upper bound on regret: π(b) ≡
arg mina

((
maxa′ 6=a Q̄(b, a′)

)
− Q(b, a)

)
. Note that this

method of policy selection defines a policy at an arbitrary

belief point, not just at a pure belief (as in PBPI). Further-

more, this method differs from HSVI and PBVI, which use

only the lower bound to induce a policy and which might

choose an action with higher regret.

IV. THEORETICAL RESULTS

We now summarize several key theoretical results about

OPOMDPs and LA-JIV.

• A search to depth T will result in O(|S||A|T ) expan-

sions (we can ignore the iterative deepening because the

cumulative expansions at lesser depths are dominated by

the expansions for depth T ).

• Each node expansion adds at most one vector to the

lower bound; hence, the maximum number of vectors

|Γ| in the lower bound is also O(|S||A|T ).
• The computational cost of an expansion is

O(|S||A||Γ|), since each child must have its lower-

bound value computed by taking the dot product of the

belief (size |S|) with each vector (and this lower bound

computation dominates the cost of a node expansion).

• Hence, the computational cost of LA-JIV to depth T is

O(|S|3|A|2T+1). Note that this term is exponential in

|A|, but not in |S| (nor |O|, the number of observations

for the equivalent POMDP).

The following results regarding HSVI (see [11]) also hold

true for LA-JIV, but at all pure beliefs rather than just a

single starting belief:

• A search to depth T will bound the error of the pure

belief values by the initial bound width discounted T
times, or ǫ < γT maxb(J

Q-2MDP(b)− J JIV(b)).

• Conversely, the maximum depth required for a given

precision ǫ on the value of the pure beliefs is T ≤⌈
logγ(ǫ/maxb(J

Q-2MDP(b)− J JIV(b)))
⌉
.

• As T increases, the value function bounds will con-

verge to the optimal value function, thus producing the

optimal policy.

Since the maximum depth required for a given ǫ does

not depend on the size of S (nor |O|, the number of

observations for the equivalent POMDP), we can conclude

that the computational complexity of LA-JIV, in the worst

case, is polynomial in the size of the state space |S|, but

exponential in the number of actions |A|. Since this is

true for any ǫ, we have shown that LA-JIV is a poly-time

approximation scheme (or PTAS) with respect to |S|; that is,

for any required accuracy ǫ, LA-JIV(ǫ) is an algorithm, poly-

time in |S|, that approximates the optimal value function to

within ǫ error. In essence, this result substatiates our intuition

that OPOMDPs are “easier” than POMDPs, whose search

tree grows exponentially in |O| as well (and recall that the

equivalent POMDP for an OPOMDP has |O| = |S|+ 1).

V. EMPIRICAL RESULTS

In [4], it was necessary to define a new benchmark domain

due to the lack of POMDPs in the literature that meet

the Oracular POMDP requirements. In previous work, we

introduced the Wizard’s Curse domain, a grid-world problem

with an oracle, a goal, and several obstacles [4]; however,

we omit the precise specification for brevity.

We ran our tests on an Athlon XP 3800+ with 1 GB

RAM. We expect our runtimes to be an extremely lowball

estimate of LA-JIV’s potential performance, since we did

not spend time tuning parameters and since the algorithm

was implemented in MATLAB. To compare, HSVI’s second

implementation outperformed its first implementation by up

to 100 times [11].

Using scaled versions of this domain, we measured the

solve-times using LA-JIV, JIV, HSVI, and PBPI (with added

iterative deepening and ǫ termination criterion, to ensure

convergence and termination on this problem) and HSVI

(version 2). We chose HSVI since it is one of the most

scalable general POMDP solvers and has a freely available

implementation; we chose PBPI because it is specialized

to solve many problems that fit the OPOMDP framework

(however, we re-implemented it using MATLAB, as there

was no extant available implementation).

Our results regarding computational efficiency are sum-

marized in Table I. We tested the Wizard’s Curse problem,

as above, and a scaled-up version of the same problem,

five times larger in each dimension; with each, we used

oracle cost λ = .25, discount factor γ = .75, and precision

ǫ = .001. The scaled-up version comprised 900 states, taking

54 minutes for LA-JIV to solve and 120 minutes for HSVI2

(in six hours, PBPI did not complete). Also note that HSVI

guarantees the ǫ bound from a known starting belief, whereas

LA-JIV guarantees it from any pure belief. For the same

guarantee from HSVI, it would have to be run |S| times in

succession (though it could re-use earlier bounds).
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TABLE I

COMPARISON OF EMPIRICAL SOLVE-TIMES

36 states 900 states

LA-JIV 2.4 3219

JIV .03 6.5

PBPI 74.5 > 21000

HSVI 23 7200

In Figure 4, we examine the development of the value

function approximation as we increase the maximum search

depth T , for both LA-JIV and PBPI. For simplicity, we

examine only the approximation at b0. We can see that LA-

JIV converges quickly to within ǫ = .001, requiring only four

iterations. PBPI, in comparison, required seven iterations.

Although each iteration is more expensive in LA-JIV, since

we maintain vector-based bounds, Table I shows that the

added overhead pays off, overall.
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Fig. 4. Comparison of LA-JIV’s upper and lower bounds to PBPI’s value
function estimate, around b0, as we increase the maximum search depth T

on the 36-state Wizard’s Curse problem

We ran the output policy of each algorithm in simulation,

but the average accumulated rewards (over 100 trials) for

each were within measurement error of one another. This

result is not surprising, since LA-JIV is initialized with JIV,

which we showed in [4] was within measurement error of

HSVI’s policy.

Finally, in Figure 5, we examine the effect of oracle cost

on the efficiency of LA-JIV. As predicted, lower oracle costs

correspond to lower runtime, since the pure beliefs are visited

more often and thus our caching is more effective.

VI. CONCLUSION AND FUTURE WORKS

LA-JIV is an efficient, approximate OPOMDP solver that

takes advantage of the OPOMDP’s factorized action set and

the strong connection to the underlying MDP. It uses these

characteristics to: achieve better initial bounds; search a tree

of reduced complexity; and prune the search tree quickly by

maintaining special bounds on the value of pure beliefs. It

addresses JIV’s main drawback, in that it converges to the

optimal solution in the limit. We’ve also shown that LA-JIV
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Fig. 5. Solve-time as a function of oracle cost.

is a poly-time approximation scheme for OPOMDPs. Finally,

we’ve presented preliminary results verifying the efficacy

of LA-JIV on the Wizard’s Curse benchmark OPOMDP. In

future work, we plan to implement LA-JIV in a human/robot

team scenario as well as investigate POMDPs with both

oracular and imperfect information sources.
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