
 

  

Abstract—The ability of a service or personal robot to learn 
new tasks from human teaching is important if it is to be multi-
functioning and serve users a lifetime. Considering the vast 
variation of tasks, work environments, and nature of potential 
teachers or users who may not have knowledge in robotics, the 
problem of task teaching and learning can be difficult to 
achieve. Current methods of robot teaching and learning do not 
yet enable the robot to learn different types of tasks from the 
teaching by a general user. This paper presents a human-
inspired method of robot task learning from human instructive 
hand-to-hand teaching. The method is novel in including an 
introduction of the complete task to the robot before task 
demonstration, a voting algorithm for segmenting the 
demonstrated task trajectory, and a Bayesian approach to 
assign partitioned trajectory segments to subtasks. Also, the 
proposed trajectory blending scheme can generate actual task 
paths in real-time to adapt learned tasks to new task setups. 

I. INTRODUCTION 
HE ability of a service robot to continuously learn new 
tasks and environments from the teaching of a general 

user who may be unknowledgeable in robotics is necessary 
if the robot is to be multi-functioning and serve a lifetime. 
However, current methods of robot learning from human 
teaching do not enable the robot to learn different types of 
tasks from a general user. Methods of teaching tasks to a 
robot by a human include teaching by guidance (TbG), 
teaching by human demonstration (TbD), and human-style 
teaching (HST) [1]. A main limitation of all of these 
approaches is insufficient exploitation of the teacher’s 
expertise in the tasks. 

TbG methods involve having an operator (or teacher) 
directly move the robot arm or end-effector along a desired 
trajectory via a teach pendant, 6 degree-of freedom (DOF) 
mouse, joystick, force/moment sensors [2][3], hand gestures, 
and graphical-based, virtual reality [4]-[7] and kinesthetic 
[8] techniques. Although TbG methods are simple and 
effective, they are only suitable in well-structured work 
environments. Teaching by human demonstration (TbD), 
also called programming by demonstration (PbD), allows a 
teacher to demonstrate a task to a robot naturally and 
effectively [9]-[11]. TbD can also be performed through 
teleoperation by natural arm motion tracking [12][13] (called 
hand-to-hand teaching in this paper), using a vision-based 
interface [14][15] or tele-suit [12][13]. Recently, HST 
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methods have been proposed, such as tutelage-like teaching 
[16], demonstration with instructions and timely feedback 
[17], and teaching by step-by-step instruction with rich 
mutual interaction [16][18]. These promising methods 
integrate natural and intuitive human-robot interaction with 
TbD techniques. However, these methods still fall short of 
effective and practical schemes to sufficiently exploit the 
task expertise of the teacher. Ideally, the teacher’s expertise 
in task partitioning, understanding, and abstraction should be 
well exploited in natural and effective ways.  

The simplest way to learn a task from human teaching is 
to repeat the taught task trajectories or determine the task 
paths by interpolating through demonstrated waypoints. 
Hidden Markov Model, Gaussian Mixture Model, fuzzy 
logic, and neural network techniques have been also used to 
approximate and generalize taught task trajectories [7][8] 
[19]-[22]. These machine learning techniques generally treat 
each trajectory as a whole piece, and need multiple trials or 
demonstrations. It is also very difficult for the robot to 
interpret and reuse the learned knowledge [18]. 
Generalization of task trajectories to permit a robot to adapt 
to different task setups has been somewhat achieved by first 
partitioning the taught task trajectories into different 
segments (or episodes) using motion breakpoints [23], and 
then generalizing each resulting episode [12][13]. [9] and 
[18] have further generated the task structure from the 
episodes. However, their methods of building task structures 
are not adequate for general tasks in the service domain. 
Robot adaptation to task setups different from the 
demonstrated setup has been achieved; however, it has been 
limited. 

This paper presents a new human-inspired method of 
robot task learning from user teaching to provide a robot 
with the ability to adapt learned task information to new task 
setups. A step of overall task introduction (a brief 
description of the task structure), is carried out before 
demonstration of the task to exploit the teacher’s expertise in 
the task. This gives the robot an overall top-down 
comprehension of the task to be taught and helps the robot 
construct a task structure that would be easily understood by 
new users. In addition, the teacher provides vocal cues of 
subtask partitions at subtask transitions during hand-to-hand 
task demonstration by teleoperation. New approaches are 
proposed to segment the taught task and assign partitioned 
task trajectory segments to the introduced subtasks. A 
method is also presented to adapt learned task trajectories to 
new and different task setups. The teacher is assumed to 
have expertise in the tasks to be taught and is required to 
pre-analyze the tasks carefully at the task level. 
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This paper is organized as follows. The task introduction 
and instructive hand-to-hand robot-task teaching are 
presented in Section II. Methods of robot learning of taught 
tasks are proposed in Section III. In Section IV, experiments 
and results are presented and Section V concludes the paper.  

II. TASK INTRODUCTION AND INSTRUCTIVE HAND-TO-
HAND ROBOT-TASK TEACHING 

A. Overall Introduction of Task to be Taught 
The introduction of the task to be taught is a step that is 

inspired from human teaching, where for example, an 
outline of a lecture would first be given before the details are 
taught. Before demonstrating a real task, the teacher would 
deliver a general introduction of the task structure or plan 
that could include the task name, the overall task goal, the 
number of its subtasks, and information of the objects and 
actions involved, using a graphical user interface (GUI) or 
voice dialogue. The user would further give a concise 
description about each subtask, and sub-subtask, which 
includes similar types of information as for the overall task. 
The robot would establish a sketch of the hierarchical task 
structure. The information of the involved objects and 
actions would serve as important cues for task partitioning 
(discussed in later sections). An example of a hierarchical 
task structure for a pick-and-place task is depicted in Fig. 1. 
This task will be used to explain the proposed methods in the 
following sections. After the task introduction, the teacher 
will demonstrate the task to the robot. 

Pick-and-Place

Pick up object Place object

Approach 
object

Grasp 
object

Move object 
down to target

Place object 
onto target

Move up 
object

Task (root)

Subtask

Primitive
Subtask  

Fig. 1: Hierarchical representation of a pick-and-place task. The overall task 
(root node) consists of two subtasks (sub-nodes): “pick up object” and 
“place object”, which both consist of primitive subtasks. 

B. Instructive Hand-To-Hand Robot-Task Demonstration 
Here, the hand-to-hand teaching is achieved via 

teleoperation using natural arm motion tracking techniques. 
The main advantages of this approach over direct task 
demonstration by the teacher are that the goal oriented 
motion correspondences between the robot and teacher are 
solved by teleoperation and the demonstration is observed 
and understood from the robot’s own perspective [24]. The 
teacher is also permitted to teach the robot from remote sites, 
and this can be an advantageous for different applications 
such as telehealth and hazardous environments. 

During task demonstration, the teacher mainly focuses on 
the demonstration so that the task can be demonstrated 
naturally and fluently while the teacher gives some simple 
utterances, such as “first step”, “then”, and “next step”, at 
the approximate subtask transitions based on their 
knowledge of the task. These simple organizational markers 

serve as useful cues for partitioning the task. The teacher 
also calls attention of the robot to changes of key states 
related to the task. At the same time, the robot actively 
observes the task, listens to the teacher’s instructions, 
quickly responds to the teacher’s requests, learns task-
specific information such as alignments of objects, and 
records all pertinent data. After the demonstration, the robot 
has to learn the task, including the task trajectory and 
detailed task structure. The human teaching continues to be 
coupled with the robot learning process and task practice, 
until the robot has learned the taught task as expected. 

III. ROBOT LEARNING OF TAUGHT TASKS  

A. Vote-based Segmentation of Demonstrated Task 
Trajectory 

Segmentation of a task trajectory has commonly been 
achieved using motion breakpoints [23][25], such as evident 
features of tactile feedback [27], instants of grasping and 
releasing [26], and mean-squared velocity (MSV) of the 
overall speed profiles [12][13]. Segmentation based on 
information from multiple sources may be more successful. 
In this paper, we present a vote-based algorithm to segment 
the taught task trajectory, which can easily accommodate 
votes from any signals.  

Suppose m different signals are selected to segment the 
demonstrated task trajectory, for instance, the robot gripper 
status, mean squared velocity (MSV) of the robot end-
effector, and the vocal task-partition cues given by the 
teacher during the task demonstration. Let Ti

k, i = 1,…,nk 
and k = 1,…,m, be the set of candidate segmentation time 
instants (e.g. instants that gripper status changed, or the 
MSV is at local minimum and less than its mean value) 
generated by analyzing the kth signal, where nk is the  total 
number of partition instants from the given signal. A vote for 
segmenting the task motion by the kth signal is given by 
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where X(t) represents the recorded pose (position and 
orientation) of the end-effector at the tth time sample; and ck 
is a parameter that determines if the task trajectory should be 
partitioned in the vicinity of Ti

k  based on analysis of the kth 
signal. A greater ck will influence the partition to be closer to 
Ti

k. The overall vote for segmenting the task motion is the 
weighted sum of the votes from all corresponding signals, 
and is defined by: 
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where wk is the weight of the vote by the kth signal, and is 
determined based on its relative segmentation reliability.  

The overall segmentation candidates, can be determined 
as Ti, i = 1,…,n, when  )( iTv are local maxima greater than 
a threshold set to mean v(t), where n is the total number of 
generated partition candidates.  

False segmentation may occur at some instants. Let Ei be 
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the ith episode, or trajectory segment, t ∈ [Ti-1, Ti]. A false 
episode might be eliminated based on its probability that it is 
a valid segment, which is defined as a function of the 
following factors: whether the spatial and temporal length of 
the episode are long enough; whether the episode has clear 
characteristics, for example, primarily moving left/right 
/backward/forward/up/down, mainly turning left/right/up/ 
down, or moving very fast.   

B. Assignment of Obtained Trajectory Episodes to 
Introduced Task Structure 

The assignment of an episode to a particular primitive 
subtask depends on the joint probability that one should 
belong to or contain the other. Based on Bayes’ rule, the 
joint probability can expressed as: 
        )()|(),( iijji EPESPSEP =    (3) 

where Sj is the jth primitive subtask, i = 1,…,nE; j = 1,…, nS, 
and nE and nS are the total numbers of episodes and primitive 
subtasks, respectively. P(Ei) is the probability that Ei is a 
valid segment while P(Sj | Ei) is the conditional probability 
that Ei should be assigned to Sj given Ei. P(Sj | Ei) is a 
function of the following factors (used with predefined 
scales): (a) how well the characteristics of Ei match the 
action of the primitive subtask Sj, for example, if Sj is a 
subtask: “move object down to target”, then the system can 
check whether the motion of Ei is mainly downward and the 
distance between the robot and target is considerably 
reduced; (b) whether salient events that occurred in this 
episode match the action of Sj; (c) whether the objects 
involved in this episode match the objects introduced in the 
primitive subtask Sj. iE  will be assigned to primitive subtask 
Sk with the following condition: 
        kjnjSEPSEP s

jiki ≠∀=> ,,...,1),,(),(  (4) 

Each primitive subtask should be assigned at least one 
episode. Otherwise, the learning system can either lower the 
threshold below mean v(t) to obtain more segmentation 
candidates and repeat the above procedures, or replay the 
demonstrated task, state the obtained segmentation and 
assignment results to the teacher, and ask for teacher 
feedback. 

C. Generalization of Demonstrated Task 
A task motion is task-type dependent. The pick-and-place 

task (Fig. 1) is used as an example here to illustrate the 
proposed task generalization method; however, the method 
can be expanded to other types of tasks.  

a) Determination of Docking Poses 
A docking pose is defined relative to the object or target, 

and should be close to its corresponding grasping or 
releasing pose. Transformation from docking to grasping 
pose only allows translations along the approach direction 
and perpendicular to the approach and lateral directions, in 
the end-effector frame, whereas only the translation along 
the normal to the target surface is permitted from the 
docking pose to the final releasing pose. The two docking 

poses are the completion poses of subtasks “approach 
object” and “move object down to target”, respectively. 

b) Generalization of Task Trajectory in Different 
Frames 

After having determined the docking pose for grasping 
and placing (or releasing), trajectories of subtasks “grasp 
object” and “place object onto target” have to be interpolated 
and re-sampled while trajectories of  “approach object” and 
“move down to target” must also be altered to make related 
transitions smooth as in the demonstration. Then the new 
task trajectories will be further smoothed and re-sampled 
based on the motion information given in the demonstration 
and robot speed and acceleration constraints. This results in 
the generalized task trajectory in the world frame (FW), 
object frame (FO), and target frame (FT) respectively as: 
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where Xi is the ith robot end-effector location of the 
generalized task trajectory expressed in FW. OXi and TXi are 
the Xi in FO and FT respectively. h  is the total number of 
sampled trajectory points. Similar methods were developed 
in [13], but multiple task demonstrations were required 
because two radial basis function networks were used to 
generalize taught trajectories in the world and object frames, 
respectively. Only one demonstration is used in this paper. 

c) Generalization of Task Structure 
Generalization of the task structure includes determination 

of the pre-condition, until-condition (subtask goal) and 
associated actions or operations for each subtask, and 
execution orders of these subtasks (e.g. required start and 
end states of the robot hand and objects of interest, 
alignment between objects and targets, spatial relationships 
between the robot and objects, and involved robot hand 
actions (close and open)). The relationships between the 
subtasks (dependencies of related pre-conditions and until-
conditions) affect their execution order. For sequential 
subtasks, their execution order cannot be altered, while for 
parallel subtasks their order is flexible. Some subtasks may 
be optional, for example, when there is no key state change. 
The robot may ask the teacher to confirm or clarify the 
relationships between the subtasks. 

D. Practice and Execution of Learned Tasks 
a) Adaptation of Learned Task Trajectories to Actual 

Task Setups 
Lieberman [13] proposed a promising solution to adapt a 

learned path to changing environments, using a blending 
mechanism. However, their method did not consider 
rotations or different possible robot starting poses. The 
principle of blending is that the closer the robot is to the 
object/target, the more closely the taught trajectory 
generalized in the object/target frame has to be followed. 
The actual task path in this paper is generated as follows:  
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where Y(t) is the current location of the robot, and h0 is the 
time sample index at which the object is grasped. The 
object/target frame is updated based on real task setup. After 
the object is grasped, Y(t) is substituted by OXi because it is 
desirable to follow a similar departure path (relative to the 
object location before being grasped) as that in the 
demonstration. λ1(i) and λ2(i) are blending functions, and 
depend on the nature of the subtask that contains the path 
point Xi. For example, λ1(i)=1 at the end of the subtask 
“approach object” because the robot must be at the docking 
pose at the end of the subtask. λ2(i) = 1 at i = 0 and rapidly 
decreases to 0 while λ2(h0) = 1, and quickly drops to 0 
afterward. The influence of Y(t) immediately after the start 
of the task and of ΓO immediately after the object is grasped 
is thus limited to a short period. A distance-based six-order 
polynomial function, adapted from [28], is used to calculate 
λ1(i) and λ2(i).  

b) Practice of Learned Task and Refinement of Task 
Knowledge Based on Timely Feedback 

The robot may practice the learned task at two different 
speeds, the first time, at a slower speed. Before performing 
each subtask, the robot tells the teacher the subtask name, 
precondition, until-condition, involved actions and objects, 
and expected key state changes. When practicing the 
subtask, the robot also points out its perceived key state 
changes. Then, the robot practices the task at normal speed 
for different task setups, and does not disclose its internal 
states intentionally. The teacher gives timely feedback or 
comments using utterances such as “move faster/slower” for 
speeds, “move more left/right/up/down/ forward/backward” 
for translation offsets, “turn more left/right/up/down/ 
forward/backward” for orientation offsets, “open/close 
hand”, “start/pause/stop”, or even voice feedback on the task 
structure. The robot can then refine its task knowledge 
according to the feedback received by changing, for 
example, its speed or step increment. The practice-feedback-
refine cycle has to be repeated until both the robot and 
teacher agree that either the process of task teaching and 
learning has been accomplished or they must go back to 
some previous teaching or learning stages, modify related 
knowledge, and practice the task again. 

IV. EXPERIMENTS AND RESULTS 

A. Experimental Setup 
The robot used in the experiments was a 6-DOF Thermo 

CRS A465 manipulator (Fig. 2). A vision-based human-
robot teleoperation system [14] was employed to hand-to-
hand teach the robot the task along with speech recognition 
and text-to-speech engines (MS Speech SDK 5.1). 

The task to be taught was a pick-and-place task, where a 
block was picked up and then placed on a target so that the 
corners and edges of the object would align with those of the 

target, respectively, as shown in Fig. 2. Currently, the robot 
does not have the ability to estimate the locations of the 
object and target. This information was provided to the robot 
manually before the robot began the practice and execution 
of the taught task. The robot recorded the demonstrated 
trajectory, robot gripper status, and teacher’s vocal task-
segmentation cues with a sampling period of 0.5 s.  

 

 
Fig. 2. Six-axis robot manipulator and task demonstration setup. 

B. Experimental Results 
The task structure, shown in Fig. 1, was introduced to the 

robot via voice dialogue under robot control. For example, 
after being told that the task had two subtasks, the robot 
asked for information about each subtask and each sub-
subtask to gradually build the task structure tree.   

MSV of the taught end-effector trajectory, gripper status, 
and vocal task-partition cues were used to segment the 
taught task trajectory. The overall vote v(t), (Fig. 3), was 
computed using (1) and (2) with respective parameters cMSV 
=1/(50V2), cGripper = 1/(2V2 ), cVoice = 1/(800V2), wMSV = 0.19, 
wGripper = 0.52, and wVoice = 0.29, where V = 3.68 mm/s is the 
average magnitude of the velocity of the taught trajectory. 
Votes by the selected local minima of the MSV, teacher’s 
vocal partition cues, and gripper status changes are shown in 
the figure. The survived and eliminated task trajectory 
segmentation points (SPs) are also illustrated in Fig. 3.  

 

 
Fig. 3. Votes for segmenting the demonstrated task trajectory, showing 
overall vote, and votes by: MSV, voice cues, and gripper state changes. 
Resulting segmentation points (SPs) are indicated by the asterisk *, 
removed SPs by ○, and Gripper Close/Open action by  . 

The generalized task trajectory in the world frame, ΓW, 
and its taught counterpart are shown in Fig. 4. The resulting 
episode-subtask assignments are also depicted. Subtask 
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“approach object” consists of two internal episodes 
delimited by marker . The computed blending weights λ1(i) 
and λ2(i) are shown in Fig. 5. Before finishing the primitive 
subtasks “approach object” and “move object down to 
target”, λ1(i)=1 had to be true because the robot must reach 
the relevant docking poses. λ2(i) decreased rapidly to zero 
before λ1(i) increased to 0.5.  

Generalization of the task structure was performed 
without difficulty. The primitive subtask “move up object” 
could be skipped as no associated key state changes (e.g. 
gripper or object status) occurred in this subtask. 

The learned task was first practiced with half of the 
demonstrated velocity and the task setup (locations of the 
object, target, and robot starting point) similar to that in the 
demonstration. The practice performance did not require any 
negative feedback to be issued by the teacher. The robot then 
practiced the task at the full speed of the demonstration, 
using four different task setups. The robot succeeded in all 
setups. The tested task setups and final alignment errors 
between the object and target are given in Table 1. The final 
alignment results were rather excellent, as was expected due 
to the blending scheme. 
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Fig. 4. Taught trajectories and their generalized counterparts in the world frame. Episodes 1,2,3,4 and 5, which are delimitated  by asterisk * markers,  are 
assigned to primitive subtasks: “approach object”, “grasp object”, “move up object”, “move object down to target” and “place object on target”, respectively. 
“Approach object” consists of two internal episodes delimited by marker “ ” in the figure.  

TABLE 1. DIFFERENT PRACTICED TASK SETUPS AND CORRESPONDING 
RESULTS. The alignment errors consist of the distance (∆d) between the two 
corners, and orientation errors (∆γ) between the edges. The setup in the 
demonstration was (x, y, z, α, β, γ): object at (560.3, 196.8, 396.7, 0, 0, 0), 
target at (588.8, -201.7, 403.0, 0, 0, 34.7), and robot starting point (406.4, 0, 
635.0, 0, 0, 0) 

Task  Setups 
(x, y, z, α, β, γ) (mm, mm, mm, deg, deg, deg) 

Object Loc Target Loc Robot start Loc 

Alignment errors
(∆d, ∆γ) (mm, deg)

533.0,270.0,300 
0.0, 0.0, 0.0 

427.6,-230.3,300 
0.0, 0.0, -15.0 

406.4, 0.0, 635.0 
0.0, 0.0, 0.0 0.0,  0.1 

553.0,190.0,300 
0.0, 0.0, 0.0 

520.0,-248.6,300 
0.0, 0.0, 40.0 

406.4, 0.0, 635.0 
0.0, 0.0, 0.0 0.5,  0.0 

547.6,275.5,300 
0.0, 0.0, -35.0 

554.5,-187.4,300  
0.0, 0.0, 55.0 

406.4, 0.0, 635.0 
0.0, 0.0, 0.0 1.0,  0.0 

533.0,270.0,300 
0.0, 0.0, 0.0 

523.0,-239.9,300 
0.0, 0.0, 5.0 

510.0,-241.0,300 
0.0, 0.0, 5.0 1.0,  0,0 

 

C. Discussion of Experimental Results 
The experimental results show that the proposed human-

inspired robot task learning from the human instructive 
hand-to-hand teaching approach is practical and promising. 
The overall task introduction not only aids the robot to 
appreciate the task to be learned in a top-down way and 

build a task structure that other users can later understand 
easily. It also provides important cues to partition the task.  

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

Samples (∆t = 0.5s)

B
le

nd
in

g 
w

ei
gh

ts

 

λ
1
( i )

λ
2
( i )

final SPs
gripper C/O

 
Fig. 5. Blending weights of the trajectories generalized in the object/target 
frame, λ1(i); and of the current robot end-effector location or departure 
trajectory after the object was grasped, λ2(i). 
 

The hand-to-hand task demonstration was effective and 
intuitive to the teacher, although, significant concentration 
was required to complete the teleoperation task. The 
proposed voting algorithm for segmenting the demonstrated 
task motion can utilize different types of signals.  For each 
signal, only its relative reliability for segmentation (its 
voting weight) and its sensitivity to possible partition points 

(a) (b) (c) 

(d) (e) (f) 

3338



 

(its c in (1)) have to be determined. The proposed vote-based 
task trajectory segmentation and Bayesian rules-based 
episode-subtask assignment were used successfully. 

The robot task practice showed the capacity of the robot 
to adapt the learned task to different task setups. The robot 
successfully applied its learned task to different locations of 
the object, target and robot starting points, even though the 
new locations were significantly different from those of the 
demonstration. The fourth setup in Table 1 had a robot 
starting position 0.43 m from that during task demonstration. 

V.  CONCLUSIONS  
A human-inspired method of robot task learning from 

human instructive hand-to-hand teaching was proposed to let 
a user teach tasks to a service robot intuitively and 
effectively. By listening to the overall task introduction, 
vocal subtask-segmentation cues, and timely feedback 
during task practice, and by watching a task demonstration, 
it is possible for the robot to learn a task (including the task 
structure and trajectory) from human teaching, and organize 
the learned task knowledge in ways that facilitate interaction 
with general users. The main contributions include a step of 
overall task introduction before the task demonstration, a 
voting algorithm to partition the task trajectory, and a 
Bayesian rule-based method to assign task trajectory 
episodes to primitive subtasks. Future work includes 
increasing the sensing ability of the robot so that it can 
perceive its working environment, incorporating blending 
schemes while considering mechanical constraints of the 
robot, and teaching the robot more complex tasks by 
different subjects. 
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