
Learning Tactic-Based Motion Models with Fast Particle Smoothing

Yang Gu

School of Computer Science

Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Email: guyang@cs.cmu.edu

Manuela Veloso

School of Computer Science

Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Email: mmv@cs.cmu.edu

Abstract— Learning parameters of a motion model is an
important challenge for autonomous robots. We address the
particular instance of parameter learning when tracking mo-
tions with a switching state-space model. We present a general
algorithm for dealing simultaneously with both unknown fixed
model parameters and state variables. Using an Expectation-
Maximization approach, we apply a tactic-based multi-model
particle filter to estimate the state variables in the E-step,
and use particle smoothing to update the parameters in the
M-step. We test our algorithm both in simulation and in a
team robot soccer environment, as a substrate for applying
the learned models to object tracking in a team. One of the
soccer robots learns the actuation model of its teammate. The
experimental results show that the particle smoothing efficiency
is substantially increased and the tracking performance is
significantly improved using the learned teammate actuation
model.

I. INTRODUCTION

Many engineering applications are characterized by non-

linear or linear dynamic systems with a few possible models

[1]. For example, an industrial plant may have multiple dis-

crete models of behavior, each of which has approximately

linear dynamics. These problems are often referred to as

jump Markov or hybrid-state estimation problems [2].

This paper addresses estimating state and learning motion

models in such a hybrid-state system. We are interested in

tracking the ball in a robot soccer domain. This is a highly

dynamic and multi-agent environment. All the robots in the

field can actuate over the ball, e.g., grab and kick the ball,

making the motion model of the ball very complex [3]. The

good news is that we can acquire information about the ball

motion from multiple sources besides the sensor. First, the

robot’s tactics provides valuable information and a tactic-

based motion modeling and tracking algorithm is introduced

in such scenarios [4]. Second, when the robot is playing a

game as a member of a team, the team coordination knowl-

edge provides further information that can be incorporated

into the motion modeling and tracking process. We based

our work upon a plan-dependent tracking algorithm called

play-based tracking [5].

Any model consists of one or multiple parameters. Usually

the model parameters are set by a human expert, based

upon the experience with the environment and the robot.

In this paper, we present a novel method of automating

the procedure of acquiring this probabilistic motion model.

This approach deals simultaneously with both unknown fixed

model parameters and state variables. This not only relieves

the work burden from the human expert, but can be very

useful when the environment changes (e.g., moving from

inside to outside). This approach can be applied to learn the

motion model of the teammate or even the opponent, as a

substrate for opponent modeling. Furthermore, this method

provides a refined motion model based on the current one,

resulting in more accurate tracking performance.

The paper is organized as follows. We first talk about

related work to this paper. We give a brief description

of the hybrid system model and joint parameter and state

estimation. Next we show our algorithm of parameter-

learning-based forward particle filtering and backward parti-

cle smoothing. We describe the learning algorithm, leading

to our experimental results and conclusions.

II. RELATED WORK

There are several areas of previous work related to this

research. We discuss them along the two main axes of our

approach: (i) adaptively estimating; (ii) learning switching

linear models.

Adaptive estimation algorithms are considered to deal

with the uncertainty in a system. Among the multi-model

approaches, the Generalized Pseudo Bayesian (GPB) filter

carries out merging after the measurement update step [6].

The Interactive Multiple Model (IMM) filter yields similar

performance to GPB, but by merging after the hypothesis

branching step, a lower complexity and computational load is

achieved. The particle filter is a general, recursive, Bayesian

estimator; the approach is directly applicable to nonlinear

and non-Gaussian multiple-model case [7]. Our approach is

based on a multi-model particle filter; hypothesis branching

is approximated by resampling from the system switching

probability distribution function, and multi-model parameters

are learned through EM iterations.

Switching multi-model and specifically, switching linear

dynamic systems (SLDS) has been studied in many fields

like statistics and target tracking. Ghahramani [8] introduced

a Dynamic Bayesian Network (DBN) framework for learning

and approximate inference in one class of SLDS models. A

switching framework for particle filters applied to dynamics

learning is described in [9]. Our approach uses the particle

filter scheme, in which a framework for switching multi-

model learning is presented.

2008 IEEE International Conference on
Robotics and Automation
Pasadena, CA, USA, May 19-23, 2008

978-1-4244-1647-9/08/$25.00 ©2008 IEEE. 3340

III. PROBLEM STATEMENT

A discrete-time hybrid system is given by:

xt = ft−1(xt−1, st, ωt) (1)

zt = ht(xt, st,vt) (2)

where f and h are the parameterized state transition and

measurement functions; xt, zt are the state and measurement

vectors at time t; ωt,vt are the process and measurement

noise vectors of known statistics. The model index parameter

s can take any one of M values, where M is the number of

models in the system. If the model variable is governed by

a discrete-state Markov chain with transitional probabilities

πij = P{st = j|st−1 = i}, (i, j ∈ S),

where S = {1, 2, · · · ,M}, the transitional probability matrix

Π = πij is an M×M matrix, we can represent such a system

using a jump Markov model.

A. Tactic-Based Motion Model

A robot control architecture, called Skills-Tactics-Plays,

was proposed in [10] to achieve the goals of responsive,

adversarial team control. We construct the robot cognition

using a similar architecture. Plays, tactics, and skills form a

hierarchy for team control. Plays control the team behavior

through tactics, while tactics encapsulate individual robot

behavior and instantiate actions through sequences of skills.

Skills implement the focused control policy for actually

generating useful actions.

In our soccer robot environment, we define five mod-

els, namely Free-Ball(F), Robot-Hold-Ball(H1), Robot-

Kick-Ball(K1), Teammate-Hold-Ball(H2), Teammate-Kick-

Ball(K2) to model the ball motion. They are similar models

as those introduced in [5]. F is a motion model that

describes the ball’s movement without external actuation. H1

and K1 are the two motion models that describe the robot’s

own actuation effects on the ball. H2 and K2 are the two

motion models that describe the teammate’s actuation effects

on the ball. All the five models are linear gaussian models.

The direction for how to infer which model to use and

how to transition from one model to another (πi,j) are

tactic-based. Therefore it is an extension of the ordinary

jump Markov model. For detailed explanations about tactic-

based motion tracking, please refer to [5]. Here is a short

example to illustrate the relation between the tactic and

the ball motion models. Suppose in our robot team we

have one goalie and one attacker. The goalie’s task is to

intercept the incoming ball, hold the ball until passing the

ball to its teammate. While the attacker is more tactically

offensive. The attacker does not hold the ball as long as the

goalie, and it kicks more frequently. The five circles in Fig.

1 corresponds to the five ball motion models we describe

above. Each number above the arrow lists the transition

probability between one model and the other. We use the

following examples to show the different effects on transition

models in terms of different tactics.

As is shown in Fig. 1:

• P (H1|F) = 0.1, P (H2|F) = 0.3. The attacker is more

willing to leave its own region to intercept a moving

ball, but it is better for a goalie to stay at its own position

to block the ball.

• P (K1|H1) = 0.03, P (K2|H2) = 0.2. The goalie holds

the ball as long as it can. The attacher does not hold

the ball that long.

F

H2

K2

0.3

1
.0

0.6

0.6 0.2
H1

0.95

K1

0.02

0.1

0
.8

0.20.0
3

0.
2

Fig. 1. An example of the tactic-based transition model based on a tactically
defensive robot and its tactically offensive teammate.

We use a DBN to represent the whole system for ball

tracking as shown in Fig. 2. st is the specific ball motion

model at time t (st = {F,H1,K1,H2,K2}). Its transitional

model πi,j is fixed for each given tactic. xt is a 4D state

vector at time t including the ball’s 2D position and velocity

. zt is a 2D measurement vector at time t.
The tactic-based transition model is fixed during our track-

ing and parameter-learning process. One of the contribution

of this paper is to use the tactic-based transition model as

the prior knowledge to learn the model-specific parameters

in such a hybrid system. Because the EM learning algorithm

we use depends on the smoothed densities of the state

variables, we have to do both a forward filtering and a

backward smoothing. We will discuss the two steps in the

next subsections.

B. Particle Filtering for DBNs

In order to do state estimation and learn the model param-

eters, we need to be able to perform inference in a DBN.

There have been several approximate inference techniques

proposed for DBNs, but they are designed primarily for

discrete domains [11]. Sequential Monte Carlo methods are

currently the only approach that allow us to perform filtering

in general purpose hybrid DBN models. The particle filter

is a Monte Carlo scheme for tracking and smoothing in

dynamic systems [2]. It maintains the belief state at time

t as a set of weighted particles p
(1)
t , · · · , p

(N)
t , where each

p
(i)
t is a full instantiation of the tracked variables, N is the

number of particles.

Rao-Blackwellization is a technique to reduce the number

of particles in the particle filter. The idea is to partition

the state vector so that one component of the partition is

a conditionally linear Gaussian state-space model; for this

component one can work out the solution analytically and

3341

x t -1

x t

zt -1

zt

s t -1

s t

Vision

Measure-

m ent

 StateBall M o tio n

 M o d el

x t +1 zt +1s t +1

Fig. 2. A dynamic Bayesian network for ball tracking with a soccer robot.
Filled circles represent deterministic variables which are observable.

use the Kalman filter. The particle filter is then used only

for the nonlinear non-Gaussian portion of the state-space. In

this way the majority of the computational effort is devoted

to the hard part of the problem rather than the easy part.

We denote the state of the system at time t as (st, xt).
st is the nonlinear non-Gaussian portion of the state-space,

while xt is the linear Gaussian portion of the state-space.

We factorize the posterior as follows:

p(st,xt|z1:t−1)

= p(st|z1:t−1) · p(xt|st, z1:t−1)

We represent the posterior by sets of weighted particles:

p
(i)
t = (s

(i)
t ,x

(i)
t). Using the idea of Rao-Blackwellization,

we condition the ball estimate x
(i)
t on a particle’s ball motion

model s
(i)
t . This conditioning turns the ball estimate into a

linear Gaussian system that can be estimated efficiently using

a Kalman filter.

xt = A(st)xt−1 + ωt, ωt ∼ (0, Q(st)) (3)

zt = C(st)xt + vt, vt ∼ (0, R) (4)

where A(st), C(st) are the system matrices associated with

the linear state space model, Q(st), R are noise covariance

matrices. The forward filtering step proceeds by first drawing

samples from p(st|s
(i)
t−1) to get a ball motion model s

(i)
t .

Next conditioned on the ball motion model, we do an exact

Kalman filtering on each particle and get ball estimate x
(i)
t .

The weight w
(i)
t of each particle is reevaluated. Particles are

resampled if necessary at the end of each time step.

FORWARD-FILTERING

({x
(i)
t−1, s

(i)
t−1, w

(i)
t−1}

N
i=1, zt)

1 for i ← 1 to N

2 do draw s
(i)
t ∼ p(st|s

(i)
t−1)

3 x
(i)
t ← KALMAN-UPDATE (x

(i)
t−1, zt, s

(i)
t)

4 w
(i)
t ← p(zt|x

(i)
t , s

(i)
t)

5 normalize weight

6 resample

7 return {x
(i)
t , s

(i)
t , w

(i)
t }N

i=1

C. Particle Smoothing

In our problem, samples are drawn from the joint smooth-

ing density p(s1:T ,x1:T |z1:T). This technique is much more

efficeint in terms of computation time compared with the

two-filter formula or forward-filtering-backward-smoothing

[12]. The density can be factorized as follows:

p(s1:T ,x1:T |z1:T)

= p(sT ,xT |z1:T) ·
T−1
∏

t=1

p(st,xt|st+1:T ,xt+1:T , z1:T)

where the product can be expanded as:

p(st,xt|st+1:T ,xt+1:T , z1:T)

=

∫

p(s1:t,xt|st+1:T ,xt+1:T , z1:T)ds1:t−1

=

∫

p(s1:t|st+1:T ,xt+1:T , z1:T)p(xt|s1:T ,xt+1:T , z1:T)ds1:t−1

where

p(s1:t|st+1:T ,xt+1:T , z1:T)

= p(s1:t|st+1,xt+1, z1:t)

∝ p(st+1,xt+1|s1:t, z1:t)p(s1:t|z1:t)

∝ p(xt+1|s1:t+1, z1:t)p(st+1|st)p(s1:t|z1:t)

Using the particle approximation from the forward fitering,

p(s1:t|z1:t) ≈
N

∑

i=1

w
(i)
t δ(s1:t − s

(i)
1:t) (5)

we know how to draw smoothed samples {s̃t, x̃t; t =
1 · · ·T}

w
(i)
t|t+1 ∝ w

(i)
t p(s̃t+1|st)N (x̃t+1; ξ

(i)
t+1|t, P

(i)
t+1|t) (6)

where

s̃t ∼
N

∑

i=1

w
(i)
t|t+1δ(st − s̃

(i)
t) (7)

x̃t ∼ N (xt; ξ̃t|T , P̃t|T) (8)

where N (xt; ξ̃t|T , P̃t|T) is a Gaussian density with argument

xt, mean ξ̃t|T and covariance P̃t|T .

The backward smoothing step uses the filtering result of

the forward step, it maintains the original particle locations

and reweights the particles to obtain an approximation to the

smoothed density.

BACKWARD-SMOOTHING

1 choose s̃T = s
(j)
T with probability w

(j)
T

2 set {ξ̃T |T , P̃T |T } = {ξ
(j)
T |T , P

(j)
T |T }

3 draw x̃T ∼ N (xt; ξ̃T |T , P̃T |T)
4 for t ← T − 1 to 1

5 do calculate w
(i)
t|t+1 for i = 1 · · ·N

6 sample the indicator j = i with probability w
(i)
t|t+1

7 set s̃t = s
(j)
t

8 do Kalman smoothing and get {ξ̃t|T , P̃t|T }

9 draw x̃t ∼ N (ξ̃t|T , P̃t|T)

3342

IV. THE LEARNING ALGORITHM

The EM algorithm is suitable for learning the parameters

of the above system since it is convenient to compute the

likelihood with the “complete” data. That is, we fill in

the hidden data st at each discrete time t, maximizing the

log-likelihood and iterating. EM algorithm begins with an

initial guess (θ0) of the unknown parameters θ. EM then

iteratively does the expectation and the maximization step

until the parameters converge. In the E-step, the conditional

expectation of the complete data log-likelihood is computed

given the current estimation of θn (n denotes the n-th

iteration of EM):

Q(θ|θn) = Eθ[log p(s1:T ,x1:T , z1:T)|z1:T , θn], (9)

Due to the nature of hybrid-state system’s mixture structure,

an exponentially increasing number of filters are needed to

estimate the state, which makes the calculation of above

expectation in close form impractical. To solve the problem,

a Monte Carlo EM algorithm is proposed [13]. The idea is

to use an approximation:

Q(θ|θn) ≈
1

N

N
∑

i=1

log p(s
(i)
1:T ,x

(i)
1:T , z1:T |θ) (10)

where {s
(i)
1:T ,x

(i)
1:T }, i = 1, · · · , N is a sample from

P (s1:T ,x1:T |z1:T , θn). In the M-step we maximize Q with

respect to the parameters θ: θn+1 = argmaxθQ(θ|θn).The

ball estimate x
(i)
t is a linear Gaussian system condi-

tioned on s
(i)
t . The parameters of this system are θ =

{R,A(m), C(m), Q(m), µ(m), σ(m)}, m = 1, · · · ,M .

µ(m) and σ(m) are the initial mean and the covariance of

the ball state in the state-space model m respectively. Each of

these parameters is re-estimated by taking the corresponding

partial derivative of the expected log likelihood, setting

to zeros and solving. See Appendix for details about the

parameter update [13].

EM

1 Initialize the model parameters θ0

2 Initialize {x
(i)
0 , s

(i)
0 , w

(i)
0 }N

i=1

3 for n ← 1 to nmax

4 do for t ← 1 to T
5 do FORWARD-FILTERING

6 for i ← 1 to N

7 do w
(i)
T |T ← w

(i)
T

8 for t ← T − 1 to 1

9 do BACKWARD-SMOOTHING

10 θn = UPDATE-PARAMETER(θn−1)
11 if log likelihood has converged

12 then return θn

13 return θn

The algorithm begins with an initial guess of θ. For given

parameters, the algorithm proceeds with a filtering step and

a smoothing step. With the outputs from the above two steps,

updated parameters are obtained from an estimation step. The

algorithm terminates when the log-likelihood has converged

or the number of iterations exceeds the maximum limit we

set.

V. APPLICATION

In this section, we test our algorithm both in simulation

and in a team robot soccer environment. The simulated test

verifies the efficiency of our proposed algorithm. We then

give a brief description of our robot, followed by real robot

test and results.

A. 2-D Simulated Object Tracking

The simulation considers a 2D object tracking scenario.

The state vector contains the object position and its velocity

(4D). The object position is the only observation we can

obtain. The system is a switching linear Gaussian state

space model populated with synthetic data. We keep the

model sufficiently simple to compare the rao-blackwellised

particle smoother with a particle smoother implemented with

a naive method. We report both the cpu time and the position

RMS for the naive and the fast method. The results in

Fig. 3 verify that our method is substantially more efficient

than the naive implementation of a particle smoother. The

efficiency is resulted from the partition of state-space with

rao-blackwellization.

Fig. 3. Left figure: fast particle smoothing results on synthetic data, shown
on a log-log scale. Right figure: RMS of position estimate, shown on a semi-
log-x scale.

10
1

10
2

10
3

10
4

10
−1

10
0

10
1

10
2

10
3

10
4

particles

c
p
u
 t
im

e
 (

s
)

fast

naive

10
0

10
1

10
2

10
3

0

50

100

150

200

paticles

R
M

S

fast

naive

B. Segway RMP Soccer Robot

Segway RMP, or Robot Mobility Platform, provides an

extensible control platform for robotics research. In our

previous work, we have developed a Segway RMP robot base

capable of playing Segway soccer [14]. The main sensor on

our robots are two cameras. One is a pan-tilt camera mounted

on the top of a customized unit. The other is a wide-angle

camera. The infrared sensor acts as a secondary sensor to

detect the ball when the ball is in the catchable area of the

robot. Its measurement is a binary value indicating whether

or not the ball is in that area. Our robot is also equipped

with a catcher to trap the ball and a kicker to kick the ball.

C. Learning Teammate Actuation Model

In the parameter learning test, two Segway RMP soccer

robots are included. One of the robots acts as the observer

(A), who is executing the tactic CatchBall. The other robot

acts as its teammate (B) who is executing the tactic PassBall.

In this test, we assume there is no uncertainty on the

3343

tactic level. We are only interested in learning the model

parameters for each motion model conditioned on the given

tactic. Each experiment trial starts from the state that robot B

holds the ball and searches A. When B finds A, it passes the

ball to A. A then aims at the ball and catches the ball when

the ball is within its catchable area. The trial ends once the

ball is being catched or runs out of the field without being

received.

At the beginning of each trial, A is at position (0,0) and

B is at position (2.5, 0). We run 30 trials on a pair of

robots. Vision sensor and infrared sensor logs are generated

for off-line learning usage. Obviously there is only position

information that can be obtained from both sensors. The

velocity (ẋ, ẏ) is unobservable through the measurements.

Robot A reads the logs and runs our learning algorithm in

each trial.

We set the convergence condition to be:

∆log-likelihood < 0.1.

The result demonstrates the ability of the proposed method

to learn the actuation model of the other robot. In each

learning trial, we monitor the log-likelihood of ball speed es-

timation. If the change is greater than a predefined threshold,

we mark the time as the beginning of teammate actuation.

We then run the fixed-interval particle smoothing on the

log starting at the mark point and update the parameters

using our proposed method. This time, we are interested in

learning the parameters µ1, σ1, which are the initial mean and

covariance of the state vector x respectively. The teammate

actuation can be represented by the velocity component of

µv, σv . Fig. 4 shows the graphical depiction of the change

in the actuation model. The x and y axis are σv’s x and y
component respectively.

−5 0 5

−4

−2

0

2

4

σ
v

σ
v

initial model

final model

Fig. 4. Learning teammate actuation models .

To determine the performance of the learned motion

model, we also perform an experiment to apply the learned

process/measurement noise model and the teammate actu-

ation model to the existing tracking system. We then run

similar trials and use two different trackers simultaneously.

One is the previous tracker, the other is the new tracker

that includes the learned model parameters and the teammate

actuation model as well.

After 30 trials, we check the IR sensor log on robot

B and locate the time that the ball is grabbed and the

time that the ball is kicked. Though it is difficult for us

to get the ground truth data to compare the performance

of the two trackers, we can use the IR sensor log on the

other robot as a reference. We examine the state estimation

(particularly the velocity estimation) of both trackers on

robot A. We find that the tracker with the learned model

performs significantly better than the tracker with the initial

model. As is shown in Fig. 5, this is a plot of velocity

estimation (component vy) versus time step. Because the

robot kicks the ball in the direction that is perpendicular

to axis x, so we only consider vy here. The infrared sensor

measurement is represented using dashdot. We can see that

at approximately t = 60, robot B grabs ball (IR sensor

outputs 1). At approximately t = 130, robot B kicks the

ball to A (IR sensor outputs 0). In terms of vy estimation,

the old tracker is not “sensitive” to external actuation. Since

we know the initial speed of the ball is approximately 3m/s,

the old tracker consistently underestimates vy. However the

tracker with the learned model gives a close estimation of

velocity over each actuation moment identified by the IR

sensor log. Thus we claim that the tracker with the learned

model performs significantly better than the tracker with the

initial model.

0 50 100 150 200 250
−4

−2

0

2

4

6

time step (0.033s/step)

v
y
 p

re
d

ic
ti
o

n
 (

m
/s

)

initial model

final model

IR

Fig. 5. Comparing tracker performance using the initial model and the
learned model.

VI. CONCLUSIONS

In this paper, we present a general algorithm for dealing

simultaneously with both unknown fixed model parameters

and state variables. Using an Expectation-Maximization ap-

proach, we apply a tactic-based multi-model particle filter to

estimate the state variables in the E-step, and use particle

smoothing to update the parameters in the M-step. We test

our algorithm both in simulation and in a team robot soccer

environment, as a foundation for applying the learned models

to object tracking in a team. One of the soccer robots learns

the actuation model of its teammate. The experimental results

show the tracking performance is significantly improved

using the learned teammate actuation model.

3344

VII. ACKNOWLEDGEMENTS

This research was sponsored in part by the United States

Department of the Interior under Grant No. NBCH-1040007

and the Boeing Corporation. The views and conclusions

contained in this document are those of the authors only, and

should not be interpreted as representing the official policies,

either expressed or implied, of any sponsoring institution.

VIII. APPENDIX

In this section, we derive detailed parameter update formulas of
our learning algorithm.

The E step of EM requires computing the expected log likelihood
Q = E[log p(X1:T , z1:T)|z1:t, θ], where X1:T = {s1:T ,x1:T }.

p(X1:T , z1:T)

= p(X1)

T
∏

t=2

p(Xt|Xt−1)

T
∏

t=1

p(zt|Xt)p(zt|Xt)

= exp{−
1

2
[zt − C(st)xt]

′

R
−1[zt − C(st)xt]} ·

(2π)−p/2|R|−1/2

where p is the dimension of R.

p(Xt|Xt−1) = p(st|st−1)p(xt|xt−1, st)

= p(st|st−1) · exp{−
1

2
[xt − A(st)xt−1]

′

Q
−1(st)

[xt − A(st)xt−1]} · (2π)−k/2|Q(st)|
−1/2

where k is the dimension of Q. Assuming a Gaussian initial state
density,

p(X1) = p(s1,x1) = p(s1)p(x1|s1)

= p(s1) exp{−
1

2
[x1 − x0]

′

P̂0(st)
−1[x1 − x0]} ·

(2π)−k/2|P̂0(st)|
−1/2

Therefore, the joint log probability is a sum of quadratic terms,

log p(X1:T , z1:T)

= −

T
∑

t=1

(
1

2
[zt − C(st)xt]

′

R
−1[zt − C(st)xt]) −

T

2
log |R|

−

T
∑

t=2

(
1

2
[xt − A(st)xt−1]

′

Q(st)
−1[xt − A(st)xt−1])

−
T − 1

2
log |Q(st)| + log p(st|st−1)

−
1

2
[x1 − x0]

′

P̂0(st)
−1[x1 − x0]

−
1

2
log |P̂0(st)| −

T (p + k)

2
log 2π + log p(s1)

This joint log probability depends on three other expectations:

ξ̂t(m) = E[xt|z1:T , st = m] =

∑N

i=1,s
(i)
t

=m
x

(i)
t

N

P̂t(m) = E[xtx
′

t|z1:T , st = m]

=

∑N

i=1,s
(i)
t

=m
(x

(i)
t − ξ̂t(m))(x

(i)
t − ξ̂t(m))′

N

P̂t,t−1(m) = E[xtx
′

t−1|z1:T , st = m]

=

∑N

i=1,s
(i)
t

=m,s
(i)
t−1

=m
(x

(i)
t − ξ̂t(m))(x

(i)
t−1 − ξ̂t−1(m))′

N

The main parameters of this system are A(m), C(m), R, Q(m).
Each of them is re-estimated by taking the corresponding partial
derivative of the expected log likelihood, setting to zeros and
solving. The result are as follows:

• Output matrix:

∂Q

∂C(m)
= −

T
∑

t=1,st=m

R
−1

ztξ̂t(m)′

+

T
∑

t=1,st=m

R
−1

C(m)P̂t(m) = 0

C
new(m) =

(

T
∑

t=1,st=m

ztξ̂t(m)′
)(

T
∑

t=1,st=m

P̂t(m)
)

−1

• Output noise covariance:

R
new =

1

T

(

T
∑

t=1

ztz
′

t −

M
∑

m=1

C(m)

T
∑

t=1,st=m

ξ̂t(m)z′

t

)

• State dynamics matrix:

A
new(m) =

T
∑

t=2

P̂t,t−1(m) ·
(

T
∑

t=2

P̂t−1(m)
)

−1

• State noise covariance:

Q
new(m) =

1

T − 1

(

T
∑

t=2

P̂t(m) − A(m)

T
∑

t=2

P̂t−1,t(m)
)

REFERENCES

[1] Z. Ghahramani and G. E. Hinton, “Variational learning for switching
state-space models,” Neural Computation, vol. 12, no. 4, pp. 831–864,
2000.

[2] A. Doucet, N. D. Freitas, and N. Gordon, Eds., Sequential Monte

Carlo Methods in Practice. New York: Springer-Verlag, 2001.
[3] C. Kwok and D. Fox, “Map-based multiple model tracking of a moving

object,” Proceedings of eight RoboCup International Symposium, July
2004.

[4] Y. Gu, “Tactic-based motion modeling and multi-sensor tracking.” in
Proceedings of the Tenth National Conference on Artificial Intelligence

(AAAI-05), 2005, pp. 1274–1279.
[5] Y. Gu and M. Veloso, “Multi-model motion tracking under multiple

team member actuators,” in AAMAS ’06: Proceedings of the fifth

international joint conference on Autonomous agents and multiagent

systems. New York, NY, USA: ACM Press, 2006, pp. 449–456.
[6] Y. Bar-Shalom, X.-R. Li, and T. Kirubarajan, Estimation with Appli-

cations to Tracking and Navigation. John Wiley & Sons, Inc, 2001.
[7] S. McGinnity and G.W.Irwin, “Multiple model bootstrap filter for

maneuving target tracking,” IEEE Trans. Aerospace and Electronic

Systems, vol. 36, no. 3, pp. 1006–1012, 2000.
[8] Z. Ghahramani and G. E. Hinton, “Switching state-space models,” 6

King’s College Road, Toronto M5S 3H5, Canada, Tech. Rep., 1998.
[9] A. Blake, B. North, and M. Isard, “Learning multi-class dynamics,”

1998.
[10] B. Browning, J. Bruce, M. Bowling, and M. Veloso, “Stp: Skills,

tactics and plays for multi-robot control in adversarial environments,”
IEEE Journal of Control and Systems Engineering, vol. 219, pp. 33–
52, 2005.

[11] Z. Ghahramani and M. I. Jordan, “Factorial hidden Markov models,”
in Proc. Conf. Advances in Neural Information Processing Systems,

NIPS, D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, Eds., vol. 8.
MIT Press, 1995, pp. 472–478.

[12] A. G. Gray and A. W. Moore, “‘n-body’ problems in statistical
learning.” in NIPS, 2000, pp. 521–527.

[13] C. A. Popescu and Y. S. Wong, “Nested monte carlo em algorithm for
switching state-space models,” IEEE Transactions on Knowledge and

Data Engineering, vol. 17, no. 12, pp. 1653–1663, 2005.
[14] B. Browning, J. Searock, P. E. Rybski, and M. Veloso, “Turning

segways into soccer robots,” Industrial Robot, vol. 32, no. 2, pp. 149–
156, 2005.

3345

