
Sparse Incremental Learning for Interactive Robot Control Policy Estimation

Daniel H Grollman and Odest Chadwicke Jenkins

Department of Computer Science, Brown University

{dang,cjenkins}@cs.brown.edu

Abstract—We are interested in transferring control policies
for arbitrary tasks from a human to a robot. Using interactive
demonstration via teleoperation as our transfer scenario, we
cast learning as statistical regression over sensor-actuator data
pairs. Our desire for interactive learning necessitates algo-
rithms that are incremental and realtime. We examine Locally
Weighted Projection Regression, a popular robotic learning
algorithm, and Sparse Online Gaussian Processes in this domain
on one synthetic and several robot-generated data sets. We
evaluate each algorithm in terms of function approximation,
learned task performance, and scalability to large data sets.

I. INTRODUCTION AND RELATED WORK

In this paper we address the problem of Policy transfer,

how a control policy (π) for some unknown task, latent in
the mind of a human, can be transitioned onto a robot. The

robot’s resulting policy, π̂, should match the user’s decision
making as closely as possible. Commonly, policy transfer

is effected via programming: An (expert) coder explicitly

writes a program that controls the robot to accomplish the

task. A different approach would be to use Learning from

Demonstration (LfD) [1,2]. Sometimes called programming

by demonstration, LfD can enable nontechnical users to teach

robots to perform arbitrary tasks. By using interaction and

feedback, users can implicitly train and evaluate the robot in

realtime without needing to write any code [3,4].

Reinforcement Learning (RL) can be applied to LfD and

has been used to teach mobile robots navigation and obstacle

avoidance among other tasks [5]. In RL, users provide

rewards when a task is successfully completed and a robot’s

policy is to choose actions that maximize expected reward.

One can, instead, update the policy directly, as in Policy

Gradient approaches [6]. Both of these techniques operate

under the assumption that rewards arrive as a task is being

completed. However, it is possible that a demonstrator can

give information as to what the robot should be doing

at every point during the task. Kinesthetically [7], or via

teleoperation [8], a robot can be physically guided through

the task, generating many pairs of matched sensor-actuator

data. Learning the task then becomes an issue of learning the

mapping from sensors to actuators, which may be performed

with supervised statistical regression.

Regression in interactive teaching by demonstration sce-

narios puts severe constraints on the learning algorithm,

demanding that it be able to update a learned policy as

new data arrive in realtime. Locally Weighted Projection

Regression (LWPR) [9] is a popular machine learning al-

gorithm that attempts to meet these requirements, seeking

to provide incremental, realtime inference and prediction for

high-dimensional input-output function approximation. Since

its introduction, it has been used in a variety of robot learning

tasks such as operational space control of a 7DOF arm [10]

and switching between multiple dynamical models [11].

LWPR was originally compared with Gaussian Process

Regression (GPR) [12], a statistical learning technique that

requires batch processing, O(N2) memory, and O(N3) time,
where N is the size of the dataset used for training. These
high costs made it unacceptable for long-term realtime robot

learning, even though GPR performs excellently on small

data sets and has been used successfully to teach simple

motor acts to a humanoid robot [13]. Many approaches in

Gaussian Process approximation [14] have addressed the

memory and runtime issues, and an incremental formulation,

termed Sparse Online Gaussian Processes (SOGP) [15],

allows data to be processed as it arrives. SOGP is thus poised

to compete with LWPR, for they both provide incremental,

sparse function approximation. A remaining fundamental dif-

ference between the two is that LWPR fits its approximation

locally, while GPR and its approximations work globally.

Local fitting is advantageous in that one set of parameters

need not be used over the entire input space of the problem.

Different regions can have different parameters, allowing a

collection of simpler models, or experts, to approximate a

complex mapping [16]. A major issue with this approach

is that of model selection, determining the number and

locations of the experts required to accurately capture the

target function. Infinite mixture models avoid making a hard

decision and instead allow the number of experts to grow in a

nonparametric manner. Infinite Mixture of Gaussian Process

Experts [17] may combine the regressive strength of GPR

with the local model formulation of LWPR.

In this paper, we perform a comparison of SOGP and

LWPR in the domain of interactive robot learning from hu-

man demonstration. We first test both algorithms as function

approximators and task learners and then examine them with

respect to speed of training and ability to learn from noisy

human-generated data. Our experiments lead us to consider

combining aspects of both algorithms in our future work.

II. LEARNING METHODOLOGY

We seek to learn unknown tasks from interactive demon-

stration, and thus cast robot control policy estimation as a

form of supervised regression. That is, our robot performs a

mapping, π̂(s) → a, from perceived state to desired action

and the goal of learning is to make π̂ match π, the control
policy latent in the demonstrator, from observations of (s,a)

2008 IEEE International Conference on
Robotics and Automation
Pasadena, CA, USA, May 19-23, 2008

978-1-4244-1647-9/08/$25.00 ©2008 IEEE. 3315

Algorithm 1 LWPR

Training: Start with no receptive fields (K = 0)
for all (xi,yi) ∈ (X,Y) do
for all RFs, k = 1 : K do
Calculate activation via (1)

Update the RF model parameters, θk

end for

if no RF was activated by more than wgen then

create a new RF, ck = xi, Dk = D∗, K++
end if

end for

Prediction on query point x′

for all RFs, k = 1 to K do
calculate output yk and activation wk

end for

return ŷ via (2)

Confidence bounds (σ2) are given by (3)

gathered as the robot is teleoperated to perform the task.

As we are concerned with interactive teaching we look at

incremental approaches, where π̂ is updated after each pair
is observed. In addition, we are interested in techniques that

scale well to large, high-dimensional data sets. Lastly, we

seek a general algorithm, capable of learning many different

types of tasks, and thus look at nonparametric approaches.

In keeping with the statistical literature, we denote the

multivariate inputs (perceived states) X = {xi}
N
i=1
, and the

outputs (desired actions) Y = {yi}
N

i=1
.

A. LWPR

Locally Weighted Projection Regression (LWPR) is an

incremental algorithm that performs piecewise linear func-

tion approximation using the concept of receptive fields. The

input space is divided into a set of K (possibly overlapping)
fields, defined by center point (ck) and a Gaussian area

of influence parameterized by Dk. Each Receptive Field

(RF) fits a set of univariate regressions (θk) to the data

within it. These regressors are chosen efficiently using Partial

Least Squares Regression (PLS), thus dealing with redundant

and extraneous dimensions. Receptive fields are created as

needed based on a tunable threshold value, wgen.

During training, all RFs calculate their activation, or

weight, measuring how close the new input is to ck.

wk(x′) = exp(−
1

2
(x′ − ck)⊤Dk(x′ − ck)) (1)

Each RF then performs (weighted) incremental PLS to

update θk, possibly increasing the number of regressors, and

leave-one-out cross-validation to adjust Dk, which is set

initially to a default value, D∗. All update equations are

local to the model and only require sufficient statistics.

For prediction, each RF produces an estimate of the output

all estimates are combined according to activation weights.

Algorithm 2 SOGP

Training: Start with empty parameters and basis set

for all (xi,yi) ∈ (X,Y) do
calculate novelty (γ) according to (5)
if xi is sufficiently novel (γ > ǫtol) then
perform full update, increasing size of BV by 1

else

perform a sparse update, BV set remains same size

end if

if size(BV) > P then
find point with lowest score (ǫi) and remove it

end if

Remove any points whose novelty is now below ǫtol
end for

Prediction on query point x′

compute ki = k(x′,bi) by (4) for all bi ∈ BV
return ŷ, σ2 via (6) and (7)

That is, for a query point x′, the final prediction is

ŷ =

∑

K

k=1
wk ∗ yk

∑K

k=1
wk

(2)

where yk is the output from the kth RF. An alternative
formulation simply returns ŷ = yk, k = argmax(wk). This
formulation prevents RFs from blending with each other,

which may or may not be desired.

LWPR also provides confidence bounds on the predicted

outputs. The standard deviation is given by:

σ2 =
1

(
∑

k
wk)2

K
∑

k=1

wk[(ŷ − ŷk)2 + f(x′, θk)] (3)

The first term in the sum compares each RF’s output with the

global output and the second term measures the projection

error of the query point onto the local projetion directions.

In addition to being local and incremental, LWPR is

sparse, in that it does not need to remember all of the training

data. Instead, once an input-output pair has been incorporated

into a model (θk are updated), the data can be discarded. This

feature makes it well suited for long-term robot learning,

where memory constraints may be a factor.

An overview of the LWPR algorithm can be seen in Alg.

1, for full details we refer the reader to [9].

B. SOGP

Gaussion Process Regression (GPR) is a global nonpara-

metric function approximation technique that derives a poste-

rior distribution over functions in a data-driven manner. From

a Gaussian Process (GP) Prior (GP = p(fx)) distribution
over functions, we determine the posterior p(fx|X,Y). As in
LWPR, a Gaussian kernel with width σ2

k
is used to compare

points, although the formulation differs slightly:

k(x,x′) = exp

(

||x− x′||2e

2dσ2

k

)

(4)

3316

where d is the dimensionality of the input space. Unlike
LWPR, one kernel width is used over the entire input space,

hence the global nature of GPR. In addition, there is a global

noise parameter σ2

0
that represents how noisy the function is

in general. In LWPR, this is estimated from the data.

Incorporating a new datapoint is done by changing the

output coefficients (α) and posterior kernel (C) functions
of the distribution. Algorithmically, this is accomplished

by updating a Gram matrix (all pairs kernel distance), and

storing the data for future comparison. Thus, GPR requires

O(N2) storage and is unsuitable for our needs. Sparse

approximations to GPR store only a subset of the data and

their associated kernel distances. Points stored are chosen to

minimize the Kullback-Leiber (KL) divergence between the

exact posterior distribution and the the approximation.

In Sparse Online Gaussian Processes (SOGP), the P
points, or basis vector set (BV = {bi}), can be chosen
incrementally by projecting each new point onto the space

spanned by the points in the BV

γ = k∗ − k⊤Qk (5)

where k∗ is the kernel distance between a point and itself,

k = [k(x′,b1) . . . k(x′,bP)]⊤ is the kernel distance between
the new point and all points currently in the basis set, and Q

is the inverted gram matrix of the basis set. γ then represents
the magnitude of the residual vector after projection.

If the new point is sufficiently novel, it is added to the BV
and the GP update proceeds as normal. If not, information

from the new point is still incorporated into the posterior by

updating α and C, although Q does not change. Sufficiency

is defined to prevent numerical instabilities as a cutoff value

ǫtol. Points are removed from the BV by calculating their
leave-one-out error, or ‘score’, ǫi = αi/(Cii + Qii). The

point with the lowest score, that introduces the least error by

being removed, is selected for removal.

Prediction of output (ŷ) for a query point x′ is given by:

ŷ = k⊤α (6)

where k is as defined above. Confidence bounds are likewise:

σ2 = σ2

0
+ k∗ + k⊤Ck (7)

Note that C starts as the negative inverse of the gram matrix

plus system noise, which is why the second sign is positive.

The size of the basis set, P , and thus the maximum
capacity of the GP, can be set to limit the SOGP to O(P 2)

memory and O(P 2) per data point training time (O(NP 2)

overall). Prediction is likewise limited to O(P 2). P can thus
be chosen to ensure realtime operation.

An overview of the SOGP algorithm can be seen in Alg.

2, and we refer the reader to [15] for extensive details.

C. Comparison

LWPR and SOGP perform comparably well on small data

sets. In the case where N < P , SOGP is equivalent to a
robust form GPR, protected against numerical instabilities.

Key differences are that LWPR, by virtue of its local PLS

models, can detect the intrinsic dimensionality of each region

(a) Random Noisy Data (b) Ground Truth

(c) LWPR, MSE = 0.0200 (d) SOGP, MSE = 0.0150

Fig. 1. SOGP and LWPR with default parameters compared on the cross
function. We limit SOGP’s capacity to the number of RFs used by LWPR
(27). Both algorithms have low MSE, which can be further decreased by
parameter tuning. If SOGP capacity is infinite, MSESOGP = 0.0053.

and adapt the local expert to match. SOGP, on the other

hand, has one set of global parameters that are used over the

entire input space. However, SOGP provides tighter control

of the storage used by setting P . LWPR allows control over
RF generation with wgen and similar variables enable RFs

to be pruned, but it is more difficult to set a hard limit

on total storage. Instead, it tends to grow as O(N). Both
techniques provide statistically sound notions of ‘confidence’

as a measure of how good the predictive output is.

Both LWPR and SOGP can be seen as addressing the

model selection problem. In LWPR, this is explicit as re-

ceptive fields and local models are created. The number and

location of the RFs, and their parameters, greatly influence

the resulting approximation. SOGP, on the other hand, does

not vary parameters across models, nor can it grow the

number of models greater than P . However, the basis set
implicitly defines a set of model centers.

To initially compare expressive capability, we ran both

SOGP and LWPR on the ‘cross’ dataset seen in Fig. 1. This

dataset was used to demonstrate LWPR’s functionality in

[9] and exhibits a mapping that is difficult to capture with

parametric models. 500 randomly distributed points are used

to train each algorithm and a regularly spaced grid is used

to test. Out-of-the-box LWPR, with the default parameters

of D∗ = 25, wgen = .2, produces 27 RFs and MSELWPR =
0.0200. Using 27 as the capacity of SOGP, and σ2

0
= .1,

σ2

k
= .1, we obtain MSESOGP = 0.0150. By increasing D∗

to 100, we can decrease MSE by an order of magnitude, to

MSELWPR = 0.0067 and MSESOGP = 0.0073, but at the cost
of more models, K = 72. It is important to note that we
only process one pass, or ’epoch’, over the training data in

keeping with our realtime robot learning formulation.

III. EXPERIMENTAL RESULTS

We examine both LWPR and SOGP as applied to an

interactive robot control-policy estimation problem which

requires an incremental, realtime learning algorithm. Our

3317

TABLE I

THE TASKS USED IN OUR EXPERIMENTS, THEIR INPUT/OUTPUT DIMENSIONALITIES AND DATA SET SIZES.

Task din dout Data Sets

HT: Head-Tail test task, Robot’s head mirrors its tail 8 10 494 629 525 825 981
TR: Trap, Robot captures ball under chin and signals success 3 4 236 185 517 536 373
BT: Ball-Track, Robot’s head moves to keep ball centered in view 20 2 526 757 718 723 1684
BA: Ball-Approach, Robot walks to ball and stops 21 6 805 747 829 967 938
AQ: Ball-Acquire, A composition of BA and TR 22 7 2037 1329 1458 929 762
GC: Goal-Charge, Robot locates and walks into the yellow goal 30 23 882 826 958 1309 944

(a) Locate Ball (b) Approach

(c) Transition (d) Trap

Fig. 2. Our robot and its ball, performing the AQ task described below.

interactive training paradigm, discussed in [18], is used to

attempt to teach a Sony Aibo robot dog (Fig. 2) a variety of

tasks related to robot soccer. Briefly, the robot is equipped

with rudimentary color-based vision capable of picking out

relevant objects (ball, goal, etc) and a walking behavior

suitable for locomotion. The system does not, however, have

knowledge of the desired tasks. The tasks examined here,

their input-output dimensionalities, and the sizes of the data

sets described below can be seen in Table I.

Of special interest is the AQ task, which involves locating

and approaching the ball and then transitioning into a trap

behavior. Initial attempts to learn this task failed due to the

ambiguous state that occurs at transition time. While in the

midst of transitioning (Fig. 2(c)), there is not enough data

available to the robot to determine which subtask it should

be performing. To solve this issue, we had to introduce a

new variable into the environment, one that represents the

robot’s internal state. That is, the robot generates an output

indicative of the current subtask being performed, and this

output is read back in at the next time step, enabling the

learning algorithm to make decisions based upon it.

In all of our experiments the inputs and outputs are

normalized to be in the range [-1,1]. We use fixed parameters

for both algorithms across all tests. For LWPR, we use

wgen = .2, an initial setting of D∗ = 100 and enable
blending. For SOGP, we set σ2

k
= .1, P = 500, σ2

0
= .1.

These values were chosen to give comparable performance

on the cross data and to enable learning on the HT test task.

We used the C++ LWPR library available from [19] and

HT TR BT BA AQ GC
0

0.05

0.1

0.15

0.2

0.25

M
e
a
n
−

S
q
u
a
re

d
 E

rr
o
r

LWPR
SOGP

(a) Train MSE

HT TR BT BA AQ GC
0

20

40

60

80

100

C
o
n
fi
d
e
n
c
e

(b) Train Conf

HT TR BT BA AQ GC
0

0.05

0.1

0.15

0.2

0.25

M
e
a
n
−

S
q
u
a
re

d
 E

rr
o
r

LWPR
SOGP

(c) Test MSE

HT TR BT BA AQ GC
0

20

40

60

80

100

C
o
n
fi
d
e
n
c
e

(d) Test Conf

Fig. 3. MSE and confidence of each algorithm on the training data sets
and on leave-one-out testing. All results are averaged over 5 folds and 1
standard deviation error bars are shown.

wrote our own SOGP library based on [15].

A. Mean Squared error

With the exception of the GC task which was human

demonstrated and will be discussed in detail later, each task

is demonstrated by a hand-coded controller that provides a

functional mapping from inputs to outputs. We use coded

controllers to allow for repeatable, consistent data generation

without issues of human error and noise. Each behavior was

run, without learning, 5 times, generating matched input-

output pairs for analysis. For the experiments in this section,

the interactive training ability of our system was not used.

We trained and tested each algorithm on each data set.

Figure 3(a) shows the average mean squared error from

each algorithm being tested on the same data it was trained

on. In addition, the mean confidence level, scaled to the

range [0-100], is shown in Fig. 3(b). As can be seen, SOGP

consistently has lower MSE and standard deviation than

LWPR, although both have high confidence. This may be

a sign of SOGP overfitting the training data.

Generalizing to new data is key for robot learning. We

therefore train each algorithm on 4 of the data sets from each

task and test on the 5th. Figure 3(c) shows the resulting MSE

and 3(d) the confidences, averaged over all 5 folds. Again,

SOGP has lower MSE and standard deviation over all tasks.

It is possible that LWPR’s MSE could be bought down to the

level of SOGP, or even lower, by changing the parameters.

3318

0 500 1000 1500 2000 2500 3000 3500 4000
10

0

10
1

10
2

10
3

10
4

Number of points

H
e
rt

z

LWPR

SOGP

HT

TR

BT

BA

AQ

Fig. 4. The speed of the algorithms as a function of the amount of data
trained on. Dotted line represents 30Hz, or realtime performance.

However, as seen in the next section, these error rates are

sufficiently low for task learning in most cases.

B. Task performance

Mean squared error is a useful metric for evaluating

these algorithms as function approximators, but we are more

concerned with their abilities as task learners. That is, does

the learned function allow a robot to track a ball when

trained on BT data, trap the ball from TR data, etc. We

evaluate algorithm performance in this way by using the

learned function to drive a robot in real time. Each algorithm,

trained on all 5 datasets for each task drives the robot and

the task is evaluated by a human expert. The expert rates the

system in a task specific manner from 0 (complete failure,

i.e. robot doesn’t move in response to stimuli) to 10 (task

performed with no errors). Speed of performance is examined

separately. Both algorithms were able to achieve at least a

decent performance (5) on most tasks. A notable exception

is when LWPR was applied to the AQ and GC tasks. For

AQ, the learned policy did not transition from the approach

to trap behavior. For GC, the robot simply exhibited random

behavior, although some goal-directed movements were seen.

Full results are shown in Table II.

C. Speed

In addition to error in mapping and task performance, we

are concerned with the speed of learning. Realtime interac-

TABLE II

THE RESULTS OF USING THE LEARNED FUNCTION APPROXIMATION TO

DRIVE THE ROBOT TO PERFORM EACH TASK. SCORES ARE FROM 0

(TOTAL FAILURE) TO 10 (PERFECT TASK EXECUTION).

Task HT BT BA TR AQ GC

LWPR 8 4 6 10 3 3
SOGP 6 8 9 10 6 9

0 50 100 150 200
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

5

Ball Position (horizontal pixel)

H
e
a
d
 P

a
n
 D

if
fe

re
n
c
e

Human Demonstration

Coded Controller

Fig. 5. The user generated data compared with that from a hand-coded
controller. The user’s data is extremely noisy, but we are able to learn the
task from it.

tive instruction requires that new data must be incorporated

as fast as it arrives and outputs must be produced at the same

rate. On our system, this corresponds to ∼30Hz.

We generated 4000 new data points for each task. Fig.

4 shows speed (average data points processed per second)

versus N , the total number of data points processed. It can
be seen that speed depends on the dimensionality of the data

as well. Both algorithms appear to approach an asymptotic

limit, although LWPR’s path is more erratic, suggesting data

dependency. As new, sufficiently different data arrives we

expect LWPR to slow down further, as new RFs are created.

SOGP, on the other hand, ceases to slow down once its

capacity is reached. We believe that by decreasing P , the
speed of SOGP can be kept > 30Hz indefinitely.

D. Interactive Training

In addition to non-interactive data gathering, we used hu-

man demonstration to train the GC task interactively. Human

demonstrators teleoperated the robot to locate and walk into

the goal. During training, the user could stop teaching and

observe the robot’s behavior, and resume generating output

at will. Due to the lack of a full user study, this experiment

provides more anecdotal results.

Results with SOGP were very good in terms of task

performance and ease of training. In a small amount of time

(5-10 seconds), users were able to teach the robot to perform

the GC task. In contrast, coding a controller to perform

this task takes on the order of minutes for an expert in the

system. Of particular interest is that the interactive nature

of training allowed the user to recognize when the task had

been sufficiently learned, and stop demonstrating.

LWPR was unable to learn this task from initial demon-

strations, although this may be due to poor parameters.

However, as more data was generated by the user to further

teach the task, the increasing processing time per point

became a problem. The entire system slowed down and

3319

interaction became impractical. This experience agrees with

the results of our speed analysis.

We posited that the noisy and ambiguous nature of human

demonstration may have been causing additional problems.

We thus compare human and controller-generated data for

the same task (BT). As seen in Fig. 5, human generated

data is very noisy, and does not, at first glance, appear to

represent the correct function. However, SOGP successfully

learned the BT task from this human demonstration as well.

IV. CONCLUSION AND FUTURE WORK

Policy transfer, as an area of research, will be increas-

ingly important in the future of Human-Robot Interaction as

nontechnical users begin to modify consumer robots to fit

their needs. Such adaptable robots will require algorithms

that meet the standards discussed here, namely realtime per-

formance, incremental updates, and performance in resource

constrained systems. We contribute in this work a framework

for comparing algorithms for this paradigm, as well as a com-

parison of two popular approaches. After examining LWPR

and SOGP in the domain of robot control policy estimation

for unknown tasks from human demonstration, we conclude

that for the tasks examined here, both algorithms provide

good function approximation and are adequate to learn most

of them. However, the memory and timing guarantees of

SOGP make it more suitable for realtime interaction.

Two related issues that we plan to research in the future

are those of model selection and internal state.

A. Model Selection

Both LWPR and SOGP perform a type of model selection

to achieve sparseness in memory and thus speed up process-

ing to realtime speeds. LWPR’s receptive fields are the more

versatile of the two, as they can change shape and parameters

to fit data locally. SOGP’s basis vectors instead all share

the same parameters. Despite this drawback, SOGP performs

better on our tasks in terms of both function approximation

and task performance. This may be due to the fact that

LWPR’s RFs are immobile once created, while SOGP’s basis

set can change entirely.

In addition, both algorithms are nonparametric, in the

sense that the number of models is not set a priori. Each also

affords controls governing the creation/deletion of models.

Modifications to LWPR that enable it to mimic SOGP’s hard

limit on memory usage may enable it to maintain realtime

performance in the face of large amounts of data.

B. Internal State

First attempts to learn the AQ task with both algorithms

failed. Believing that ambiguous outputs generated during

transitioning were at fault, we exposed the internal state

of the controller to the learning algorithm and achieved

the results presented here. This approach is not generally

applicable, especially to noisy human-generated data.

Ambiguous outputs can be dealt with by models that

overlap in input space and produce distinct outputs, one of

which is selected as the global answer. This is exactly the

non-blending option of LWPR. We would like to merge this

ability with the noisy learning capabilities of SOGP.

An Infinite Mixture of Gaussian Processes model has

been presented that deals well with both ambiguous outputs

and varying parameters across the input space [17]. This

technique, modified to be incremental and sparse, may be

what we require to combine the function approximation

and memory guarantees of SOGP with the local model

formulation of LWPR.

ACKNOWLEDGEMENTS

This work was supported in part by NSF Award IIS-

0534858 and a Brown Salomon Award. Special thanks to

Brown #, Frank Wood, and helpful ICRA reviewers.

REFERENCES

[1] M. Nicolescu and M. J. Matarić, “Natural methods for robot task
learning: Instructive demonstration, generalization and practice,” in
International Joint Conference on Autonomous Agents and Multi-
Agent Systems, Melbourne, AUSTRALIA, 2003, pp. 241–248.

[2] C. G. Atkeson and S. Schaal, “Robot learning from demonstration,”
in International Conference on Machine Learning, D. H. Fisher, Ed.,
Nashville, TN, 1997, pp. 12–20.

[3] T. Inamura, M. Inaba, and H. Inoue, “Acquisition of probabilistic
behavior decision model based on the interactive teaching method,”
in Intl. Conf. on Advanced Robotics, 1999, pp. 523–528.

[4] A. L. Thomaz and C. Breazeal, “Transparency and socially guided
machine learning,” in Intl. Conf. on Development and Learning, 2006.

[5] W. D. Smart and L. P. Kaelbling, “Effective reinforcement learning
for mobile robots,” in IEEE International Conference on Robotics and
Automation, vol. 4, Washington, D.C., 2002, pp. 3404–3410.

[6] R. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient
methods for reinforcement learning with function approximation,” in
Advances in Neural Information Processing Systems, 2000.

[7] S. Calinon and A. Billard, “Incremental learning of gestures by
imitation in a humanoid robot,” in Conference on Human-Robot
Interaction, Arlington, Virginia, 2007, pp. 255–262.

[8] S. Chernova and M. Veloso, “Confidence-based policy learning from
demonstration using gaussian mixture models,” in International Con-
ference on Autonomous Agents and Multiagent Systems, May 2007.

[9] S. Vijayakumar, A. D’Souza, and S. Schaal, “Incremental online
learning in high dimensions,” Neural Computation, vol. 17, no. 12,
pp. 2602–2634, 2005.

[10] J. Peters and S. Schaal, “Reinforcement learning for operational
space control,” in IEEE International Conference on Robotics and
Automation, 2007, pp. 2111–2116.

[11] G. Petkos and S. Vijayakumar, “Context estimation and learning
control through latent variable extracion: From discrete to continuous
contexts,” in IEEE International Conference on Robotics and Automa-
tion, 2007, pp. 2117–2123.

[12] D. J. C. Mackay, Neural Networks and Machine Learning. Springer-
Verlag, 1998, ch. Introduction to Gaussian Processes, pp. 84–92.

[13] A. P. Shon, J. J. Storz, and R. P. Rao, “Towards a real-time bayesian
imitation system for a humanoid robot,” in IEEE Intl. Conference on
Robotics and Automation, 2007, pp. 2847–2852.

[14] J. Quiñonero-Candela and C. E. Rasmussen, “A unifying view of
sparse approximate gaussian process regression,” Journal of Machine
Learning Research, vol. 6, pp. 1939–1959, 2005.

[15] L. Csató, “Gaussian processes - iterative sparse approximations,” Ph.D.
dissertation, Aston University, March 2002.

[16] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton, “Adaptive
mixtures of local experts,” Neural Computation, vol. 3, pp. 79–87,
1991.

[17] E. Meeds and S. Osindero, “An alternative infinite mixture of gaussian
process experts,” in Neural Information Processing Systems, 2006, pp.
883–890.

[18] D. H. Grollman and O. C. Jenkins, “Learning robot soccer skills from
demonstration,” in IEEE International Conference on Development
and Learning, London, UK, July 2007.

[19] [Online]. Available: http://homepages.inf.ed.ac.uk/svijayak/software/LWPR/

3320

