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Abstract— In this paper, we lay the groundwork for extending
our previously developed ASyMTRe architecture to enable con-
structivist learning for multi-robot team tasks. The ASyMTRe
architecture automatically configures schemas within, and
across, robots to form the highest utility solution that achieves
a given multi-robot team task. We believe that the schema-
based approach used in ASyMTRe is a useful abstraction not
only for forming heterogeneous coalitions, but also for enabling
constructivist learning, in which chunks of schemas that solve
intermediate subproblems are learned and then made available
for future task solutions. However, the existing ASyMTRe
search algorithm for finding configurations of schemas that
completely solve given tasks (Centralized ASyMTRe – CA) is
not well-suited for identifying useful chunks of schemas that
could solve intermediate subtasks that may be useful in the
future. Thus, in this current work, we explore an Evolutionary
Learning (EL) technique for the offline learning of schema
chunks that could be saved and used later in an online search
(using the regular CA algorithm) for coalition configurations.
However, we do not want to sacrifice solution quality in
making use of the evolutionary search technique. Thus, we
compare the solutions discovered by the EL algorithm with
those that are found using CA, as well as with a third algorithm
that randomizes the CA algorithm, called RA. Four different
applications in simulation are used to evaluate the EL, CA, and
RA techniques. Our results show that the EL approach indeed
finds solutions of comparable quality to the CA technique, while
also providing the added benefit of learning highly fit partial
solutions, or schema chunks, that may be beneficial for future
tasks via constructivist learning. We conclude by arguing that
the combination of the online CA search for solving current
multi-robot tasks can be combined with the offline EL approach
that can identify intermediate solutions (or schema chunks)
that may be useful for future team tasks. This combination
should lead to an overall efficiency improvement for identifying
coalition formations, as well as for continual learning.

I. INTRODUCTION

In prior work, Tang and Parker [8], [11] developed the

ASyMTRe approach to automatically generate robot team

task solutions for coalitions1 performing multi-robot tasks.

The ASyMTRe approach is inspired by the theory of infor-

mation invariants [5] and schema theory [1], and finds team

task solutions by configuring the schema building blocks on

each robot such that the resulting configuration achieves the

specified task with the lowest cost possible. Because the chal-

lenge of locating a low-cost configuration of schemas across

1The coalition search problem is the problem of finding the appropriate
combination of single-task robots that collectively perform multi-robot tasks
using instantaneous assignment (taxonomized as ST-MR-IA, per [7]).

multiple robot team members is an NP-hard search problem

[12] (which is also true for other task allocation problems),

the ASyMTRe search algorithm that finds potential coalitions

is based loosely on the findings of Shehory [10], who showed

that for non-super-additive domains, better solutions consist

of smaller coalition sizes. These concepts are implemented

in ASyMTRe through heuristics that direct the search toward

smaller team solutions first. Parker and Tang showed, through

empirical evaluations, that the heuristic-based centralized

ASyMTRe search algorithm2 generates very good solutions

quite quickly for several types of applications. A major

benefit of this approach is that it enables robots to easily

share sensory, computational, and effector capabilities in

solving challenging multi-robot tasks.

In continuing work, our objective is to extend the

ASyMTRe architecture to enable constructivist learning in

the multi-robot team. Constructivist learning is a method

for learning new knowledge and skills based upon past

experience; this type of learning is recognized to be a

common method used by humans from infancy to adulthood

for lifelong learning [2]. Because much of human learning

seems to be based on schema building blocks, our intent is

to build upon our schema-based abstraction of ASyMTRe to

enable constructivist robot learning. We believe that collec-

tions of schemas, called “chunks”, analogous to the Sensory

Computational Systems (SCSs) of Donald’s information in-

variants theory [5], could be learned. Most of the chunks

present intermediate solutions to the search problem. (In

this paper, “schema chunk”, “SCS”, “intermediate solution”,

and “partial solution” are used as synonyms). Ultimately,

our objective is to enable robot teams to learn and build

up chunks constructively, in order to store knowledge from

previous search processes, and to improve the efficiency for

future searches.

However, the current solution search strategy of

ASyMTRe does not construct chunks that would be

amenable to this constructivist learning process. Thus, the

goal of our current research is to determine if an alternative

search strategy can have the benefit of facilitating construc-

tivist learning in multi-robot teams, and if so, how its solution

quality compares to other possible search techniques. The

2Tang and Parker also implemented a distributed version of ASyMTRe
[8], [13]. For simplicity, we focus on the centralized version in this paper.
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Fig. 1. SB-CoRLA Architectural Overview.

long term goal of our research is to develop a Schema-

Based, Constructivist Robot Learning Architecture, which

we call “SB-CoRLA”, that can combine online solution

searching and offline learning, in order to find a better

solution more efficiently. The general idea is that the existing

online ASyMTRe search technique, which we call CA (for

Centralized ASyMTRe), will still be the main algorithm for

finding online coalition solutions. However, a new offline

learning process will be used to explore the schema base and

identify chunks that can be used in later online search pro-

cesses to speed up the search for solutions. Figure 1 shows

the high level architecture of SB-CoRLA, which consists of

three major processes: online searching, offline learning, and

online learning. The general SCS repository is the knowledge

base of the system that stores the original schemas and the

more complex, learned SCSs (schema chunks). The specific

SCS repository is a subset of the general SCS repository and

is created based on each specific robot team’s configurations

and available capabilities of the current robots. When the

robots are not busy performing tasks, the offline learning

searches for highly-fit partial solutions (or chunks) based on

the existing SCS repository. These partial solutions are then

saved in the repository for future use. When the robot team

has an immediate task to perform, the online search generates

task solutions for the robot team based on the goal definition

and the existing SCS repository. The robot team then carries

out the task solution with the lowest cost. Online learning

is the process of goal-directed feedback-based learning that

modifies existing schemas to generate new schemas. This

aspect of the approach is the subject of future research.

A search technique that we believe would be appropriate

for offline learning of schema chunks is an evolutionary

search technique. An evolutionary search technique could

make use of a genetic algorithm to search the solution

space by repeatedly combining highly-fit intermediate so-

lutions to generate lower-cost complete solutions. We have

developed such an evolutionary search technique called “EL”

(Evolutionary Learning). EL is of particular interest to our

constructivist learning objective, since we believe that the

highly-fit intermediate solutions found in the evolutionary

search can be beneficial as higher-level building blocks for

constructivist learning.

However, we do not want to sacrifice solution quality

in making use of the EL search technique. Thus, we must

determine how the solution quality of the EL technique com-

pares to alternative search techniques, including the original

ASyMTRe search algorithm (CA), to ensure that we do not

sacrifice solution quality. Therefore, the objective of this

current paper is to determine the viability of the EL technique

for finding reasonable partial solutions, as compared to the

alternative search possibilities. To explore alternative search

techniques, we compare the centralized version of the previ-

ously implemented ASyMTRe search algorithm (CA) with a

Randomized ASyMTRe search algorithm (RA). RA makes

use of the same fundamental search algorithm of ASyMTRe,

but rather than making a greedy heuristic search of the

potential multi-robot team task solutions, it randomly selects

possible solutions. Because the partial solutions generated by

EL will ultimately be used as higher-level building blocks by

online search algorithms, we compare the cost of the partial

solutions with the cost of the solutions generated by CA

and RA. The cost of a solution is the sum of the costs of

the active schemas used in the solution. If a robot is not

assigned a task in a partial solution, no schema is activated

for that robot, hence the cost for an unassigned robot is zero.

Only if the solution cost of EL is comparable to (or lower

than) CA or RA for the coalition formation problem does it

make sense to us to use this technique as a foundation for

constructivist learning in multi-robot coalitions.

The remainder of this paper is organized as follows.

Section II presents the three search algorithms: the cen-

tralized ASyMTRe search algorithm (CA), the Randomized

ASyMTRe search algorithm (RA), and the Evolutionary

Learning search algorithm (EL). Section III describes the

simulated applications and the settings used to study the

alternative algorithms, followed by a discussion of the results

in Section IV. Section V describes related work. Section VI

concludes with some summary remarks.

II. THE ALGORITHMS

The CA, RA, and EL algorithms use the schema-based ab-

straction implemented in ASyMTRe [8], in which the search

space consists of basic schemas [1], each of which requires

and produces certain input(s) and output(s) called informa-

tion types. The schemas represent basic robot capabilities and

are categorized into perceptual schemas, motor schemas, and

communication schemas. The inputs and outputs of schemas

can be interconnected if their information types match. For

instance, if schema Sa produces the global positions of a

robot, and schema Sb needs the global positions of the robot

to compute motor control commands such as speed and

turning direction, then Sa can be connected to Sb via the

information type “global position”, to enable Sb to produce

the information types “speed” and “turning direction”. The

input to perceptual schemas must come from sensors or

other perceptual schemas. Communications schemas can pass

information between perceptual and/or motor schemas across

2838



multiple robots, thus enabling robots to share information

between them. The input to motor schemas comes from

perceptual or communications schemas. The output from the

motor schemas controls the robot’s motors. The ASyMTRe

process of automatically connecting the schemas through

matching information types defines the information flow

through the multi-robot system, thus generating the behavior

control for the robot coalition.

The solutions for all three search algorithms consist of

combinations and interconnections of active schemas on each

robot in the robot team that allow the team to accomplish

the task. This section describes the approaches used by each

of the three search algorithms to find these solutions.

A. Centralized ASyMTRe Search Algorithm (CA)

The Centralized ASyMTRe algorithm (CA) is a two-step,

anytime algorithm for searching for the proper connections

of schemas to accomplish the goal task. The first step is

to find all potential schema connections that can provide

the required information types for a goal in an individual

robot3. The second step is to instantiate a specific solution

on each robot, by sequentially searching through permutation

sequences of individual robots until a simultaneous solution

for all robot team members is found. For n robots on

the team, there are n! permutation sequences that must be

analyzed, hence the problem is NP-hard. The CA algorithm

attempts to find reasonable cost solutions quickly by using a

heuristic to guide its search that finds solutions for the less

capable robots (i.e., robots that must be part of the solution,

but which have fewer schema resources to work with) first, in

order to avoid resource shortages. In this paper, we simplify

the original CA cost function and define the solution cost as

the cumulative sum of the individual schema costs4.

The CA algorithm is designed to be an anytime algorithm,

so that as soon as a valid solution is discovered, it is made

available to the robot team. Thus, the CA approach is a

greedy search approach that theoretically searches, in an

anytime fashion, all n! permutations of robots, selecting the

best solution found. Although Tang and Parker showed two

applications for which the CA algorithm computes the first

solution very quickly (i.e., in a matter of seconds) and within

a small multiple of the optimal solution (where it could be

computed), it is unclear whether the solutions found are good

approximations to the optimal solutions in general.

B. Randomized ASyMTRe Search Algorithm (RA)

The Randomized ASyMTRe algorithm (RA) uses the

same two-step, anytime search algorithm used by CA. The

RA approach first generates potential solutions for each of

the robots and then performs a sequential search through

each permutation arrangement of robots to assign solutions

to individual robots. However, in contrast with the CA

3These possible connections are called “potential solutions” for the robot
in the ASyMTRe approach.

4Solution quality in the original ASyMTRe algorithm combined various
factors in addition to cost, such as probability of schema success, in
determining the utility of a solution.

approach, the RA approach does not perform a greedy search

when assigning solutions to robots. Instead, RA selects viable

solutions randomly from among all possible solutions for

each robot.

C. Evolutionary Learning Search Algorithm (EL)

The Evolutionary Learning (EL) approach makes use of a

genetic algorithm that maintains a population of p individu-

als, each of which represents a configuration of schemas that

may be a possible solution to the robot team coalition task or

subtask. Algorithm 1 shows the details of the EL algorithm.

Table I shows the various parameters that must be defined

for EL, and their default values5.

In the EL approach, an initial population is created

that consists of individuals having random connections of

schemas, with the following restrictions: first, schemas can

only be connected if they have matching information types;

and second, connections across different robots (which we

call inter-robot connections) can only occur between com-

munications schemas. As the initial population is built, the

number of interconnections between schemas on different

robots and between schemas on the same robot (which we

call intra-robot connections) are governed by two connection

rates specified by the user: the inter-robot connection rate,

ρ, and the intra-robot connection rate, κ. Note that these

individuals do not necessarily represent complete solutions,

since they may not fully (or even partially) solve the task

given to the robots. This maintenance of partial solutions

during the search process is one of the principal ways in

which the EL algorithm differs from the CA and RA algo-

rithms. These partial solutions represents chunks of schemas

that solve important subtasks.

As with any genetic algorithm, the fitness value of each

individual, F , is determined after each new generation is

created through either initialization or evolution. In our

definition, F depends not only on the aggregated cost of

the active schemas, c, (which is the criterion also used in

CA and RA to calculate the cost of the solution), but also

on the complexity of the solution, x, and the degree of

goal achievement, q and u. The value of x is measured by

the total number of schema connections for that solution,

and is normalized to the range [0, 1]. The degree of goal

achievement is measured in two ways: 1) by the percentage

of information types that are required by the goal and that

are fulfilled (q/qmax), and 2) by the percentage of robots that

can fulfill their individual goals (u/n). F is calculated as a

weighted sum of the normalized values of c, x, q, and u. The

weight for each factor is domain-specific and determined by

the user.

In our approach, the evolutionary process consists of

fitness proportionate selection, single point crossover opera-

tions, and single point mutations. In the crossover operation,

a crossover point is a randomly selected connection between

two random schemas Si and Sj in one randomly chosen indi-

vidual solution. In the crossover process, another individual

5We will explore the impact of the mutation rate and the complexity in
future work, therefore their default values are set to 0.
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Algorithm 1 The Evolutionary Learning (EL) search algo-

rithm.

(R, T, F): robot team composition, task, and fitness

n: number of robots in the team

m: number of different kinds of schemas in the system

p: number of individuals in a population

gmax: max. number of generations

lmax: max. number of generations without fitness improve-

ment

c: aggregated cost of active schemas

x: complexity of an individual solution

q: number of required information types

u: number of robots that can achieve their individual goals

cmax, qmax, umax: max. value for c, q, and u

1) Generate a list of nm available schemas based on R.

2) Initialize the first population of size p by connecting

the schemas while respecting the following rules:

[O((nm2 + n2)p)]

• For each robot Ri∈R, randomly at rate κ, connect

schema Sa to Sb if Sa’s output information type

matches Sb’s input information type.

• Between Ri and each robot Rj∈R (i6=j), ran-

domly at rate ρ, connect CS schema CSi to CSj

if CSi’s output information type matches CSj’s

input information type.

3) Calculate F for each individual p using the following

formula: [O(n2m2p)]

F = wc ∗ (c/cmax) + wx ∗ x

+wq ∗ (q/qmax) + wu ∗ (u/n)

4) Repeat for gmax generations

• Select ξ individuals using fitness-proportionate se-

lection for reproduction. [O(n)]
• Randomly at rate γ, perform pairwise crossover

on p. [O(n2m2p)]
• Randomly at rate δ, perform single point mutation

on p. [O(nmp)]
• Prune each child individual, which is also a partial

solution (or complete solution) for R. This process

includes eliminating invalid and redundant con-

nections, as well as calculating the fitness values.

[O(n2m2p)]
• Record the best solution if its fitness value is better

than the best solution thus far.

• Stop if:

– Every robot can fulfill its individual goal;

– Or, lmax generations have been generated with-

out fitness improvement;

– Or, a time limit is reached.

solution is randomly chosen to be the other parent, and then

the connection Si→Sj and all the connections that schema

Sj are connected to are swapped between the parents. The

connections between schemas are uni-directional, indicating

(a)

(b)

Fig. 2. (a) Parents before crossover: Solution 1 and Solution 2; (b)
Children after crossover: Solution 1′ and Solution 2′. The solid arrows
indicate the uni-directional connections between schemas in the parent
solution Solution 1, and the bold dashed arrows are the connections in
Solution 2. The connection between S1 and S5 is randomly chosen to
be the single crossover point. The connections S1→S5 and S6→S3 are
swapped from Solution 2 to Solution 1 to create the child solution Solution
1′. The connections S5→S6 and S6→S7 are swapped from Solution 1 to
Solution 2 to create the child solution Solution 2′. Note that because the
connections are uni-directional, connection S3→S4 is not swapped.

the direction of information flow. For example, Figure 2

shows one crossover process at the crossover point S1→S5.

Mutation is the process of randomly adding or deleting a

connection in an individual solution. Both crossover and

mutation are unguided, random processes.

This evolutionary process is repeated over multiple gen-

erations until one of the following conditions is fulfilled:

1) every robot can fulfill its individual goal; 2) the solution

quality has not improved in lmax generations; 3) a time limit

is reached; 4) gmax generations have been created.

For n robots, m different kinds of schemas, and p in-

dividual solutions in each population, there are up to mn
available schemas in the search space, and up to (mn)2

possible ways of connecting the schemas. If we have a

maximum of g generations, then the EL computational

complexity for initializing a population, performing genetic

operations, and pruning and evaluating the generated solu-

tions is O((mn)2pg).

III. SIMULATIONS

Four applications were implemented in simulation to com-

pare the three algorithms: (A1) multi-robot transportation,

(A2) box pushing, (A3) robot formation, and (A4) limited re-

source. In these applications, based on the available sensors,

each robot possesses different combinations of perceptual

schemas. The goal of each search algorithm is to deter-

mine which combination of sensors, distributed across which

robots, constitutes the lowest cost solution that accomplishes

the task.
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TABLE I

EL PARAMETERS AND THEIR DEFAULT VALUES.

Name Description Default
Value

p population size 500

ξ number of individuals selected for reproduc-
tion

50

γ probability for crossover 90%

δ probability for mutation 0

κ intra-robot connection rate 50%

ρ inter-robot connection rate 50%

wc weight for the aggregated cost of active
schemas; used to calculate fitness

0.2

wx weight for the complexity; used to calculate
fitness

0

wq weight for the percentage of information
types required by the goal that are fulfilled;
used to calculate fitness

0.2

wu weight for the percentage of robots that can
achieve their goals; used to calculate fitness

0.6

Application A1 requires robots to help each other (through

sharing sensory information) in reaching their goal position.

Various methods of sensor sharing are possible in this

application, as implemented by Tang [11] on both physical

and simulated robots. For example, if a robot has GPS and/or

a laser, it can apply a perceptual schema to localize itself.

If a robot has a laser and/or a camera, it can apply another

perceptual schema to calculate the relative position of another

robot within its sensing range.

Application A2 requires robots to help each other push

a box to a goal location. Again, various methods of sensor

sharing are possible in this application, as implemented by

Tang [11] on both physical and simulated robots. In this

application, if a robot has a laser, it can apply a perceptual

schema to measure the box’s position relative to itself, or

activate another perceptual schema to confirm contact with

the box. If a robot has a camera, it can detect the goal

location and use a third perceptual schema to calculate

its push direction. With sonar, a robot can apply a fourth

perceptual schema to detect the position of the box.

Tang’s implementations on both applications A1 and A2

[11] made use of the CA algorithm. Her results showed that

CA is capable of solving those two problems with highly

satisfactory results.

Applications A3 and A4 are designed to test the limitations

of CA. They are designed only as abstract applications,

and are not implemented on physical robots. Application

A3 models n robots following each other in a long chain.

The first robot is the leader of the formation and does not

need any information from the other robots. The i-th robot

needs a unique information type from the (i-1)-th robot,

indicating the (i-1)-th robot’s position, so that the i-th robot

can maintain the formation.

Application A4 consists of n robots. In this application,

except for the last q robots (robots n, n-1, n-2, ..., n-

q+1), all robots can accomplish their goals without help

from other robots, i.e., without information communicated by

other robots. However, if they can receive external help from

TABLE II

TIME (IN WALL CLOCK SECONDS) NEEDED FOR CA AND RA TO

GENERATE THEIR FIRST SOLUTIONS FOR APPLICATIONS A1 , A2 , AND

A3 , FOR A TEAM OF 25 ROBOTS. THE VALUES ARE AVERAGED OVER 10

RUNS.

A1 A2 A3

CA 0.077 0.151 0.033

RA 0.047 0.158 0.033

other robots, then the cost of the solution can be lowered. The

last q robots must receive external help in order to achieve

their goals. Only the first h robots (robots 1, 2, ..., h), can

offer this external help; hence the name “limited resource.”

The three search strategies were tested using heteroge-

neous robot teams whose size varied from 5 to 25 robots.

A robot can have three different sensors for application A1

(GPS, laser, and camera), and three different sensors for

application A2 (laser, camera, and sonar). Applications A3

and A4 are theoretical tests with only abstract sensors. We

compose heterogeneous robot teams by randomly choos-

ing different available sensors and consequently different

schemas for each robot. For the EL algorithm in these

experiments, the default parameter values shown in Table I

were used unless indicated otherwise.

IV. RESULTS AND DISCUSSION

Using the simulation results, we compare the time CA and

RA require to generate solutions, the solution quality of CA

and RA, the solution improvement over time of EL, and the

solution quality of CA, RA, and EL.

Since RA is developed as an alternative online solution

search technique to CA, we first compare the times required

by CA and RA to generate the first solutions. Table II shows

the average time needed for CA and RA to generate their

first solutions for a team of 25 robots. These results show

that CA and RA are effectively equivalent in the amount of

time required to generate a first solution for the applications

A1, A2, and A3.

Now comparing CA and RA in terms of cost, Figure 3

shows the cost comparisons for applications A1 and A2 for

an average of 10 trials running 10 minutes each, and varying

the robot team size from 5 to 25. In this figure, the compar-

ison criterion is average cost per robot. These simulations

show that the CA solutions always have a cost less than or

equal to the solutions generated by RA, if a solution can be

found by CA. (The comparison for application A3 is similar

to applications A1 and A2, and is omitted here for space

reasons.)

However, application A4 poses a challenge for CA. Be-

cause of the nature of the limited resource requirements,

a greedy search can only find the solution for specific se-

quences of robots. Because the heuristics of CA are designed

to search all small solutions first, and because the number

of possible solutions is exponential in the number of robots,

CA is not able to find a solution for a team of 15 robots

even after 50 hours of continuous running time (on a typical
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(a)

(b)

Fig. 3. Comparison of solution costs per robot for robot teams with 5, 10,
15, 20, and 25 robots.

present-day Linux PC). However, the RA approach is able

to find a solution after 30 minutes.

Figure 4 shows the change in cost values over time (during

the search process) of CA and RA algorithms for a team of

20 robots for applications A1 and A2. In these simulation

experiments, the first solution generated by CA using greedy

search is always the best solution generated by CA. The later

solutions do not improve. (This is not always the case, as

shown in [8].) However, the first solution generated by RA

is normally not the best solution, as the solution improves

throughout the search process.

The EL algorithm is developed for offline constructivist

learning. We examine its ability to improve its results over

time. We also compare its result with CA via the cost of ac-

tive schemas in the solution. EL generates both intermediate

solutions (i.e., a partial solution in which only some of the

robots can achieve the goal) as well as complete solutions. If

EL generates good intermediate solutions in the beginning,

then as the generations evolve and the fitness of the solution

improves, more and more robots can accomplish the task,

and eventually a complete solution can be found. However,

sometimes, especially as the number of robots and schemas

increases, EL does not guarantee a complete solution. (Pre-

sumably, a different set of EL parameter settings might

overcome this problem, although in general, evolutionary

techniques cannot guarantee convergence.) Figure 5 shows

EL’s simulation results for application A1 with 25 robots

(κ = 0.3, ρ = 0.2). This figure shows that the solution

cost and complexity fluctuate during the search, while the

percentage of the robots that can achieve a goal and the

solution fitness increase. The cost and complexity do not

decrease steadily because they change with the number of

robots that can achieve their goal. The solution quality

(a)

(b)

Fig. 4. Comparison of solution cost over time during a search for a team
of 20 robots for applications A1 and A2.

improvement can be credited to the evolving connections

among chunks of schemas. Hence, EL provides a structural

basis to further explore the search space, finding patterns

of schema connections that cause the solution fitness to

improve. We further compare the solution quality of CA and

EL for application A1 and A2
6. Figure 6 shows the cost for

each robot in the solutions generated by CA and EL.

In summary, the simulations show that CA is usually very

effective in finding solutions with low cost quickly. RA finds

solutions in the same timely manner as CA, albeit with higher

cost. However, CA cannot always find solutions in the time

permitted, as discussed earlier for application A4 that we

developed to challenge the concept of CA. By contrast, RA

was able to find solutions in this case. In RA, the cost of the

discovered solution decreases throughout the search process.

Table III shows some key characteristics of the three

search strategies. Compared with CA and RA, EL is more

flexible because it can generate partial solutions with pro-

gressively improved quality by building upon previous dis-

coveries. This ability of the EL algorithm to identify partial

solutions and progressively improve the quality of the solu-

tions without exhaustively searching the entire search space

is important for helping us achieve our ultimate constructivist

learning objectives. This ability is distinct from the CA and

RA search processes, which do not have mechanisms for

making use of these partial solutions, since they cannot

compare the fitness of alternative partial solutions. Instead,

the CA and RA algorithms discard these partial solutions

(i.e., valid schema connections that lead to the provision of

some, but not all, required information types) that have been

6Because CA’s result is superior to RA for application A1, we only
compare EL with CA and omit the comparison between EL and RA.
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(a)

(b)

(c)

(d)

Fig. 5. These graphs show, during the search, the change over time of: (a)
fitness value; (b) the total aggregated cost of all active schemas; (c) solution
complexity; (d) the percentage of robots that can accomplish the task.

generated during the search process for each permutation

arrangement of robots and starts the search process anew for

the next robot sequence. Hence, the CA and RA approaches

do not appear well-suited for our main research objective of

achieving constructivist learning through schema chunking.

In contrast, the simulation results show that the EL approach

is competitive with the CA and RA approaches, and thus

forms a solid foundation upon which to build constructivist

learning techniques. Our goal is to enable online CA and

RA search processes to use discovered schema chunks as if

they were schemas, and in this way take advantage of these

partial solutions generated by offline EL.

V. RELATED WORK

The schema-based building block approach, upon which

all three of our search algorithms are based, is derived from

the work of Arbib [1] and others. Arbib gives an overview

(a)

(b)

Fig. 6. Comparison of solution cost for each robot in a team of 25 robots
performing application A1 and A2. (a) EL generates a partial solution for
the application A1 that enables 16 robots to achieve their individual goals.
From these 16 robots, 11 robots have solutions comparable to CA. (b)
By increasing the connection rate between the schemas, EL generates a
more complete team solution for the application A2. However, most of the
robots have higher costs than the CA solution. This result shows that EL is
sensitive towards parameter settings. Another reason for the higher cost is
that multiple solutions are generated for each robot. In the future, we are
planning to separate those solutions into different chunks.

of the theoretical aspects of schemas and explores schema

theory from the neurological perspective. The definition of

perceptual schema and motor schema originated from Arbib.

Schemas are recursive in the sense that they can be divided

into sub-schemas. Our research in constructivist learning is

aimed at recursively build higher-level schemas based on

existing schemas.

Having validated the evolutionary search process (EL) as

appropriate for our ongoing constructivist learning work,

we now briefly relate our schema-based foundation to other

constructivist learning approaches. Drescher [6] and Chaput

[3], [4] both developed schema-based constructivist learning

models to emulate an infant exploring the environment

using very basic perceptual schemas and motor schemas.

Their work concentrated on the biological verification of the

constructivist point of view using very basic level schemas

that reflect the inherent abilities of an infant. Unlike their

approach, our emphasis lies in automatically generating robot

behaviors. We employ higher-level schemas, aiming for less

computational complexity.

Our overall ideas for combining the offline search process

for schema chunks together with the online use of these

chunks to solve current tasks, in a constructivist learning

model, originate from Piaget [9]. According to Piaget, the

basic process of constructive intelligence development con-

sists of two parts: accommodation and assimilation. Ac-

commodation refers to modifying existing knowledge to

adjust to the environment; assimilation refers to creating new

knowledge by assembling existing knowledge. This paper
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TABLE III

COMPARISON BETWEEN CENTRALIZED ASYMTRE SEARCH ALGORITHM (CA), RANDOMIZED ASYMTRE SEARCH ALGORITHM (RA), AND

EVOLUTIONARY LEARNING SEARCH ALGORITHM (EL)

Algorithm Computational Solution Partial Learning

Complexity Quality Solution

CA Search for one robot sequence: O(mn2) Locally No No
Complete search for n! permutation arrangements of robots: O(mn!) optimal
m: number of potential solutions, n: number of robots

RA Search for one robot sequence: O(mn2) Locally No No
Complete search for n! permutation arrangements of robots: O(mn!) optimal
m: number of potential solutions, n: number of robots

EL Search for one generation: O((mn)2p) Locally Yes Yes

Search for g generations: O((mn)2pg) optimal
m: number of different schemas, n: number of robots
p: number of individual solutions in the population

proposed offline learning to accomplish assimilation. This

offline learning process makes use of our EL search algo-

rithm, validated in this paper, to generate chunks of schemas

(SCSs). These chunks can then be used to generate new

task solutions, with chunks treated in a similar manner as

fundamental schemas. That is, chunks become more abstract

schemas, which can then be treated the same as low-level

schemas in the task solution generation process. The process

iterates, with the objective of demonstrating constructivist

learning over time.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have explored three different schema-

based search strategies for generating robot coalitions to

solve multi-robot team tasks — Centralized ASyMTRe (CA),

Randomized ASyMTRe (RA), and Evolutionary Learning

(EL). We compared these search strategies using four differ-

ent simulated applications. The objective of these studies was

to validate that our evolutionary learning technique can serve

as the basis for constructivist learning without sacrificing

solution quality.

RA is developed as alternative online solution search

technique to CA. Our simulation results showed that none of

CA and RA approach is always superior. For example, the

heuristic CA approach can often find good solutions much

more quickly than the other approaches. However, on one

simulated application, CA was unable to find a solution in the

allotted time whereas RA was able to find multiple solutions.

EL is developed for the purpose of offline constructivist

learning. Our studies showed that the EL approach is com-

parable to the CA and RA approaches, and thus can serve as

a valid foundation for continual robot learning. The main

characteristic that EL has for this purpose is the ability

to generate partial solutions, or chunks of schemas, that

can be used to generate more complete solutions. This

ability to generate partial solutions is especially important

for constructivist learning, since we need a means to record

and apply knowledge from previous searches to future prob-

lems. These partial solutions can be recorded as chunks of

schemas, consisting of active schemas, connections among

these schemas, and information types that the chunk, as

a whole, requires and provides. A chunk of schemas can

then be recorded in a schema repository and utilized for

later search. For future studies of constructivist learning, we

will apply the EL algorithm to develop a schema repository

to hold learned chunks of connected schemas, and apply

the chunks in subsequent search processes to solve new

problems.
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