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Abstract— In this paper, we present an approach allowing a
robot to learn a generative model of its own physical body from
scratch using self-perception with a single monocular camera.
Our approach yields a compact Bayesian network for the
robot’s kinematic structure including the forward and inverse
models relating action signals and body pose. We propose
to simultaneously learn local action models for all pairs of
perceivable body parts from data generated through random
“motor babbling.” From this repertoire of local models, we
construct a Bayesian network for the full system using the pose
prediction accuracy on a separate cross validation data set as
the criterion for model selection. The resulting model can be
used to predict the body pose when no perception is available
and allows for gradient-based posture control. In experiments
with real and simulated manipulator arms, we show that our
system is able to quickly learn compact and accurate models
and to robustly deal with noisy observations.

I. INTRODUCTION

Kinematic models are widely used in robotics, in parti-

cular for prediction and control of robotic manipulators [1],

[2]. Such models are typically derived analytically by an

engineer [3] and usually rely heavily on prior knowledge

about the robot’s geometry and kinematic parameters. As

robotic systems become more complex and versatile, ho-

wever, or are delivered in a completely reconfigurable way,

there is a growing demand for techniques allowing a robot

to automatically learn its current body scheme with no or

minimal human intervention. Such a capability would not

only facilitate the deployment and calibration of new robotic

systems but also allow for autonomous re-adaptation when

the body scheme changes, e.g., through regular wear-and-tear

over time or even intended reconfiguration as for example in

the case of temporary tool use.

Neuro-physiological evidence indicates that humans as

well as higher primates learn and adapt their internal models

continuously and autonomously using self-perception [4].

Brain scan studies on monkeys that have been trained to use

tools revealed that the tool itself even gets integrated into

their body schemes over time [5]. Mirror neurons as found

in brain area F5 map proprioceptive sensations to tactile

and visual ones and thereby seem to serve as a neurological

representation of the body scheme [6]. Moreover, they seem

to translate external visual stimuli, for example from a

demonstrator, into proprioceptive ones, and thereby play an

important role in imitation and imitation learning.

In this paper, we investigate ways of realizing such

capabilities on artificial systems, in particular on robotic
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Fig. 1. Experimental setup: the robot issues random commands (“motor
babbling”) to its joints and perceives the resulting movements of its body
parts using a monocular camera. From this self-perception, it learns a
compact Bayesian network that it can then use for prediction and control.
The right picture shows a visualization of the robot’s self-model after
learning.

Fig. 2. Left: Initially, the Bayesian network representing the robot’s
body scheme is fully-connected. Middle: After training, only the local
models most consistent with the observed data are retained to form a sparse
kinematic model for the whole system. Right: Template of a local model
for a body part Xj which depends on its predecessor Xi in the kinematic
chain and all available action signals a1, . . . , am. Observed variables are
depicted as rectangles, while hidden variables are depicted as circles.

manipulators in conjunction with visual self-perception. We

propose to learn a Bayesian network for the robot’s kinematic

structure including the forward and inverse models relating

action signals and body pose. More precisely, we start with

a fully connected network containing all perceivable body

parts and available action signals, to perform random “motor

babbling,” and to iteratively reduce the network complexity

by analyzing the perceived body motion. At the same time,

we learn non-parametric regression models for all dependen-

cies in the network, which can later be used to predict the

body pose when no perception is available or to allow for

gradient-based posture control. In experiments with real and

simulated manipulator arms, we show that our approach is

able to quickly learn compact and accurate models and to

robustly deal with noisy observations.

II. RELATED WORK

Several approaches for learning and adapting body sche-

mes at different levels of complexity have been proposed in

the past. Self-calibration, for instance, can be understood as
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a subproblem of body scheme learning. When the kinematic

model is known up to a number of parameters, they can

in certain cases be efficiently estimated by maximizing the

likelihood of the model given the data [7]. Genetic algorithms

have been used for parameter optimization when no closed

form is available [8]. To a certain extend, such methods can

also be used to calibrate a robot that is temporarily using a

tool [9]. However, such approaches require a parameterized

kinematic model of the robot.

There have also been approaches on learning sensor-motor

maps when no such model is available. For example, [10]

applied Hebbian networks to discover the body scheme

from self-occlusion or self-touching sensations and later

learned classifiers for body/non-body discrimination from

visual data [11]. Other approaches used nearest-neighbor

interpolation [12] or neural networks [13]. By considering

body scheme learning as a problem of function approxima-

tion, such approaches are applicable in cases even where

little prior knowledge is available. Without knowing the

underlying structure, however, these approaches scale poorly

with an increasing number of free variables.

This problem can be tackled by reducing the dimensiona-

lity of the learning problem. Principal component analysis

(PCA), for example, has been used successfully for lear-

ning efficiently high-dimensional walking gaits for humanoid

robots [14]. Whereas such approaches effectively remove

the redundancy in the body scheme for a particular motion

sequence, they run the risk of losing important information

in the projection step. Our approach makes the factorized

nature of the body scheme explicit and, thus, reduces the

dimensionality of the learning problem in a more direct

way. In [15] the structure of the body scheme is made

explicit, by formulating a model selection problem between

different Bayesian networks. Here, the qualitative relation

between actions and observations is optimized to describe the

observed data well. By using the structural information, the

robot can infer motor commands to imitate the movements of

a human demonstrator. To our knowledge, the approach only

qualitatively describes the effects of actions and, thus, does

not allow for precise and continuous actuation or prediction.

In contrast to the above mentioned approaches, we present

an algorithm that both learns the kinematic structure as well

as accurate functional mappings for all local connections.

III. A PROBABILISTIC MODEL FOR KINEMATIC CHAINS

In this work, we seek to enable a robotic system to

autonomously learn the relationship between action signals

a1, . . . , am and body part configurations X1, . . . , Xn, which

can be (partially) observed as Y1, . . . , Yn. In our concrete

scenario, in which we learn the kinematic model of a

robotic manipulator arm, the action signals ai are real-

valued variables corresponding to the rotation angles of

the joints. These are measured using joint encoders. The

Xi ∈ R
4×4 are homogeneous transformation matrices, each

encoding the 6-dimensional pose of a body part relative to

a reference coordinate frame. On the real robotic platform

used in our experiments, the observations Yi are obtained

by tracking visual markers in 3D space including their 3D

orientation [16]. Note that these observations are inherently

noisy, especially in the z dimension, which is the distance of

the marker from the camera, and we also consider markers

that are cannot be detected at all, i.e. due to self-occlusion.

Our central idea is to model the kinematic structure of the

robot as a Bayesian network. The action signals a1, . . . , am,

the (hidden) true body part configurations X1, . . . , Xn, and

their observed counterparts Y1, . . . , Yn are modeled as indivi-

dual nodes in the network, see Fig. 2. The action nodes have

only outgoing edges, corresponding to their interpretation as

causing the observed movements. The body pose nodes have

in- and outgoing edges, indicating that they depend on certain

actions and on the pose of their predecessor (the body part to

which they are attached to), and that they influence the pose

of their succeeding body parts. The sub-graph containing

only the body pose nodes and their connections corresponds

to the kinematic chain(s).

We denote the local transformation function of pose Xi

to Xj given the current joint configurations a1, . . . , am by

∆ij(Aij) = X−1

i Xj , where Aij ⊂ {a1, . . . , am} corre-

sponds to the relevant subset of the complete action signal.

Learning the body scheme now means

1) finding the correct network topology (which parts are

directly connected?) and

2) learning the local transformation models ∆ij(Aij) for

this topology

by observing the joint angles a1, . . . , am and the resulting

body poses Y1, . . . , Yn.

A. Finding the Network Topology

We are looking for a compact Bayesian network for

p(X1, . . . , Xn|a1, . . . , am) that is composed of local models

of the form p(∆ij |Aij) with Aij ⊂ {a1, . . . , am} and ∆ij =
X−1

i Xj . A trivial solution would be to assume that all local

models depend on all action signals available. Such a model,

however, would not generalize well over the training data as

it could not take advantage of the intrinsic redundancy of

the body structure. Additionally, since the individual models

would be of high dimensionality, considerably more training

examples would be required than for a sparse composition

of low-dimensional local models. The upper arm of a robot,

for example, only depends on the position of the trunk and

the shoulder joints, while the lower arm would only depend

on the position of the elbow and the remaining joints. If,

however, intermediate body parts are not observable – a

situation that we evaluated in the experimental section –

higher order local models are necessary for describing the

full system. In order to find the optimal dimensionality of

local models, we formulate a search problem over all possible

dependencies and model dimensionalities. The search space

has an upper bound of nlocalmodels =
∑n

k=1

(

m
k

)(

n
2

)

local

models that would have to be considered, since the ordering

and dependencies of joints and observed body parts is

initially unknown to the robot. In order to connect all n body

poses in the Bayesian network, exactly (n− 1) local models

3329



−400

−300

−200

−100

 0

 100

 200

 300

 400

−150−100 −50  0  50  100  150

T
a

rg
e

t 
v
a

lu
e

 [
m

m
]

Joint position [deg]

x
y
z

−400

−300

−200

−100

 0

 100

 200

 300

 400

−150−100 −50  0  50  100  150

T
a

rg
e

t 
v
a

lu
e

 [
m

m
]

Joint position [deg]

x
y
z

Fig. 3. Left: Example of an accurate local model learned for two body parts and an action variable. Note the low predictive variance for the x- and y

components as well as the higher noise in the z dimension, which is due to higher measurement uncertainty in this direction. Right: Less accurate model
learned for the same body parts but a different action variable. Such a local model is less likely to be part of the Bayesian network describing the full
kinematic chain of the robot since, on average, its predictions are less accurate.

need to be selected, thus yielding the astronomical number

of nstructures =
(

nlocalmodels

n−1

)

network structures to be considered.

In practice, the number of local models nlocalmodels can be

reduced drastically by using simple search heuristics, such

as evaluating the local models ordered by their complexity

|Aij | and to stop the search when a certain level of model

accuracy is attained. The number of network structures

nstructures reflects the total number of possible spanning trees

of the network; fortunately, it is sufficient to find the minimal

spanning tree. The cost of each edge is determined by the

residual sum of squares (RSS) of the corresponding local

model p(∆ij |Aij) on a validation data set that has been

sampled during training but has not been included in the

training set for the local models. Note, that model selection

based on the RSS measure worked particularly well in our

experiments, but other selection criteria like the Bayesian

information criterion (BIC) or the data likelihood can be used

likewise.

As a result, the recovered network is indeed Bayesian, i.e.,

it is a directed, acyclic graph, and factorizes the body scheme

into the more compact representation

p(X1, . . . , Xn|a1, . . . , am) = P (Xt)
∏

<i,j>∈E

p(Xi|Xj ,Aij)

= P (Xt)
∏

<i,j>∈E

p(∆ij |Aij) ,

(1)

where Xt is the root node and E is the edge list of

the recovered minimal spanning tree corresponding to the

kinematic chain(s).

B. Learning Local Kinematic Models

In order to learn an arbitrary local model p(∆ij |Aij),
we need to find the non-linear mapping from a vector of

action signals Aij to the relative transformations ∆ij =
X−1

i Xj . Remember, that ∆ij ∈ R
4×4 is parameterized

as a homogeneous 4x4 matrix. For simplicity, we assume

all 12 free components δk
ij of ∆ij being independent of

each other and thus consider the functional mapping for

each component separately. Due to this simplification, we

cannot guarantee that the prediction corresponds to a valid,

homogeneous transformation matrix. In practice, however,

invalid transformations arise only rarely and they typically

lie close to similar, valid transformations, such that a simple

normalization step resolves the problem.

As the true relative transformations ∆ij = X−1

i Xj are

only observable through the noisy observations ∆ij =
Y −1

i Yj , we assume additive white noise on each component

δ
k

ij ∼ N (δk
ij , σm). A flexible model for learning such non-

linear functions directly from noisy observations are the

popular Gaussian processes. Due to space constraints, we

only give the main characteristics of this framework here and

refer to [17] for details. The main feature of the Gaussian

process framework is, that the observed data points are

explicitly included in the model and, thus, no parametric

form of f needs to be specified. Moreover, the dependencies

between data points is specified in an interpretable way

using a parameterized covariance function k and predictions

yield not only the most likely function value but also the

corresponding predictive uncertainty. We parameterize the

covariance function k using the often used square exponential

formulation

k(δij , δrs) = σ2

f · exp

(

−
1

2ℓ2
|δij − δrs|

)

, (2)

which depends on the Euclidian distance between points xp

and xq as well as on the amplitude parameter σ2

f and the

length-scale ℓ. This covariance function is particularly well

suited to model sinusoidal dependencies as they arise in our

setting, where we wish to infer components of harmonic

transformations.

The diagrams of Fig. 3 depict several typical regression

results, both generated using real data of our manipulator. In

the left diagram, the regression results for an accurate local

model are shown. It can be seen that the training data has
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Fig. 4. Forward model evaluation on a simulated robot with low noise. The
prediction error of the learned forward model quickly converges towards
zero. It can also been seen that the compact Bayesian network – using
a decomposition into small local models – converges much faster than
the fully-connected Bayesian model which requires higher-dimensional
regression models.

low noise in the x-y-components and slightly higher noise

rates in the z-component. In the right diagram, we depict an

alternative local model for the same transformation that is

conditioned on a different action signal (x-axis). It is clearly

visible that a much higher prediction error (RSS) on the

validation set is to be expected for this model. Therefore,

the latter model is less likely to be part of the kinematic

chain for the full system.

C. Using the Learned Body Scheme for Prediction

The learned Bayesian network can now be used as a

predictive forward model. Given action signals a1, . . . , am,

the relative transformations ∆ij can be inferred from the

local models p(∆ij |Aij) of the kinematic chain. If one

absolute body position, e.g., X1 is known or assumed, then

the absolute coordinates of all other body positions can be

computed by re-arranging Equation 1.

In particular, the GPs underlying each local model yield

the mean and the variance for a given joint configuration.

While the mean corresponds to the maximum likelihood esti-

mate, the variance can be used as a measure of uncertainty.

In order to propagate Gaussian beliefs through the kinematic

chain, we approximate the result of Gaussian multiplication

again as Gaussians [18]. Note that this variance estimates can

be used by the robot for active exploration, or to generate

action commands that minimize the expected sensor and/or

motor noise.

D. Using the Learned Body Scheme for Control

In order to grasp an object or to imitate the actions of

a human demonstrator, the robot needs an inverse model

that maps from a given target position Xtarget to an action

command a = [a1, . . . , am]
T

that, if executed, brings the

manipulator into this position. Formally, we seek to conti-

nuously minimize the distance function f(a) = ‖Xn(a) −
Xtarget‖, where Xm(a) refers to the predicted position of
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Fig. 5. Forward model evaluation on a real robot with noisy perception.
Already after a few samples, the prediction accuracy of the forward model
becomes better than the direct but noisy perceptions of the camera.

body part m given a motor command a. This quantity can

be estimated using Equation 1 as described in the previous

subsection. As this distance function is continuous, also its

Jacobian ∇f(a) can be evaluated, i.e.,

∇f(a) =

[

∂f(a)

∂a1

, . . . ,
∂f(a)

∂am

]T

. (3)

Given ∇f(a), it is straight forward to implement a gradient

descent-based algorithm that continuously minimizes the

distance function and, thus, controls the manipulator towards

the target configuration. While such a “greedy” controller

may get trapped in local minima of the distance function

and fails to plan around obstacles, it nevertheless solves many

important control tasks and it builds the basis for higher-level

path-planning algorithms, such as probabilistic road-maps.

IV. EVALUATION

We have tested our approach in a series of experiments,

both on a simulated manipulator robot and a real one 1. The

experiments described in this section have been designed to

demonstrate that

1) our approach yields a close to optimal and compact

model when no noise is present and all quantities can

be fully observed,

2) our approach is robust w.r.t. the noisy perception of a

monocular camera on a real robot,

3) our approach can deal with unobserved body parts (in

which case higher-order local models are needed),

4) our approach allows for online control of a real mani-

pulator, even when self-perception is disabled after the

training process.

For each experiment, 400 random action commands were

generated (“motor babbling”) and sent to the motors. After

each action request was completed, the robot recorded the

1For a demonstration video of a real robot bootstrapping its bo-
dy scheme, visit http://www.informatik.uni-freiburg.de/
∼sturm/media/bodyscheme-2x.avi
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Fig. 6. Experiments with a simulated 7-DOF-manipulator consisting of 10 body parts. Body part X4 was hidden and, thus, was never observed. Left:

Screen-shot from the simulated robot. Middle: One of the potential Bayesian networks after the first training sample: the correct kinematic chain is not
yet recovered. Right: Bayesian network after 10 training samples, the kinematic structure has converged to the true solution. Note that in this situation,
a higher-order model (dashed, red arrows) is necessary to characterize the robot since one of the joints cannot be observed directly.

measurements from the joint encoders a1, . . . , am and the

observed positions Y1, . . . , Yn of its body parts. These data

sets were then used for learning, testing, and validation.

The training samples were added incrementally to the local

models, in order to investigate the learning behavior. After

each training sample, a test set of 40 data samples was used

to measure the average accuracy of both prediction (forward

model) and control (inverse model).

A. Full Observability in Simulation

For our first experiment, we used a simulated manipulator

robot with 2 rotational joints, similar to our real robot

as shown in Figure 1. We added small amounts of white

noise to both the measurements from the joint encoders

(σjoints = 0.02◦) and the observations of the body positions

(σmarkers = 1 mm). From the simulator, noise-free ground

truth information was available for evaluation.

Fig. 4 gives the prediction errors of the learned model

as a function of the number of training samples. Remember

that a single training sample here corresponds to a pair of

actions 〈a1, . . . , am〉 and visual observations 〈X1, . . . , Xn〉.
It can be seen that the prediction error quickly converges

towards zero; after only 10 training samples, the error is in

the magnitude of millimeters. For comparison, a full model

p(∆13|a1, a2) was learned directly from the training data

using a 2-dimensional GP. The resulting prediction error

is also given in Fig. 4. It can be seen that the compact

Bayesian network composed of two local models converges

much faster than the fully-connected model.

B. Body Scheme Learning with a Real Robot

The robot used to carry out the experiments is equipped

with a manipulator composed of Amtec (Schunk) PowerCube

modules. With nominal noise values of σjoints = 0.02◦, the

joint positions measured by the encoders were considered to

be sufficiently accurate to compute the ground truth positions

of the body parts from the known geometrical properties

of the robot. Visual self-perception was implemented using

a Sony DFW-SX900 FireWire-camera at a resolution of

1280x960 pixels. We attached black-and-white markers to

the robot’s joints (see Fig. 1), which are localized automa-

tically using the ARToolkit vision module [16]. Per image,

the system perceives the unfiltered 6-dimensional poses of

all detected markers.

The standard deviation of the camera noise was measured

to σmarkers = 44 mm in 3D space, which is acceptable

considering that the camera was located two meters apart

from the robot. In the near future, we plan to develop a

body part tracker similar to [19] that uses more natural

visual features, such that the 6D trajectories can be recovered

directly from images without the need for artificial markers.

On the real system, the measured noise levels were

considerably higher than in simulation (around 44 mm).

Still, as documented in Fig. 5, the body scheme converged

within the first 10 observations. After about 15 training

samples, the accuracy of the predicted body part positions

even outperformed the accuracy of the direct observations.

The latter is a remarkable result as it means that, although

all local models are learned from noisy observations, the

resulting model is able to blindly predict positions that are

more accurate than immediate perception.

C. Partial Observability and Long Kinematic Chains

We conducted an experiment with a simulated manipulator

with 7 joints and 10 visible body parts, with a total length of

1300 mm. The manipulator has been assembled as follows

(compare to Fig. 6):

• Body parts X1 and X2 were firmly connected to each

other.

• Two fingers X9 and X10 were mounted on the 1-DOF

gripper a7 as the end-effector.

• The remaining body constituted a chain of visible body

parts X2, . . . , X8 and 1D rotary joints a1, . . . , a6.

The learned forward model converges after around 10 samp-

les, similar as in the earlier experiments. The average pre-

diction error after convergence was lower than 1 mm.

We then analyzed the effects of partial observability. This

was realized by covering body part X4 completely, such that

no observations of that body part could be made. As a result,

none of the 1-dimensional local models is able to represent

this particular local transformation well. In such a situation,

the search algorithm also considers higher-dimensional local

models until a satisfactory kinematic chain is found, i.e.,

the predictive error over the test set becomes sufficiently
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Fig. 7. Inverse model evaluation on a real robot with noisy perception. A
gradient-descent algorithm is used to find the action command that mini-
mizes the predicted distance to the desired target position. The positioning
error reaches after a few samples the magnitude of the sensor noise.

small. The higher order (2-dimensional) model which was

automatically incorporated into the Bayesian network is

highlighted in Fig. 6 using red, dashed lines.

D. Blind Control Using the Learned Body Scheme

Finally, we evaluated the control accuracy of our system

after the body scheme had been learned from scratch. Fig. 7

shows the results on the real robot with noisy perception.

The average positioning error converges after 10 training

samples approximately at the level of the observation noise.

This result is slightly worse than the prediction accuracy of

the forward model. As a possible reason for this, the robot

here has to deal with the observation noise twice: first, the

model was learned from noisy data, and second, for testing

against the desired target position the robot again received

noisy information.

V. CONCLUSIONS

We presented an approach that allows a robot to learn its

own sensorimotor model from scratch using “motor babb-

ling” and self-perception. The fundamental idea is to decom-

pose the problem of learning a large and complex kinematic

model into smaller pieces. Based on this decomposition,

we formulate a search problem over network structures and

independent learning problems for local forward models. As

a result, the robot no longer relies on a model supplied by

an engineer. In real-world experiments, we showed that our

approach can deal with noisy perceptions. In a simulated

experiment with a much larger robot, we also showed how

a robot can use the local models to search efficiently for the

kinematic structure in the case of partially observable body

parts.

For this paper, we clearly chose the experimental setup in

such a way that the problem becomes tractable. In the future,

we therefore want to address problems like ambiguities

of data association, partial pose observations, and efficient

methods for heuristically searching through the space of

alternative explanatory networks. We think that robotic self-

perception and body scheme acquisition have a large poten-

tial. Therefore, we also want to address questions like how a

robot can update small parts of its Bayesian network locally,

for example by extending it temporarily when using a tool,

or adapting it in case of hardware failures or deformation.
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