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Abstract— This paper presents a robust method for localiza-
tion of mobile robots in environments that may be cluttered
and that not necessarily have a polygonal structure. The
estimation of the position and orientation of the robot relies on
the minimization of the modified Hausdorff distance between
ladar range measurements and a map of the environment.
The approach is employed in combination with an extended
Kalman filter to obtain accurate estimates of the robot’s
position, heading and velocity. Good estimates of these variables
were obtained during tests performed using a differential drive
robot in a populated environment, thus demonstrating that
the approach provides a reliable and computationally feasi-
ble alternative for mobile robot localization and autonomous
navigation.Index Terms - Mobile robot localization, Hausdorff
distance, map-matching, scan-matching.

I. INTRODUCTION

Fully autonomous mobile robots rely significantly on self-
localization techniques to accomplish navigation tasks [1].
It is well known that methods based on proprioceptive
sensors alone, such as encoders or inertial measurement
units, cannot robustly solve the localization problem [2].
This is because errors from odometry readings accumulate
leading to unbounded position errors. In view of this limita-
tion, several alternatives to dead reckoning techniques have
been developed employing exteroceptive sensors, such as
sonar [3], ladar [4], visual sensors [5], or their combina-
tion through sensor fusion techniques [6]. Most of these
techniques formulate the localization problem in a Bayesian
framework as that of finding the robot’s most probable
location and heading given the current sensor measure-
ments and predicted state using single hypothesis methods
(e.g. Extended Kalman Filters, Unscented Kalman Filters)
or multi-hypotheses approaches (e.g. Markov Localization,
Monte Carlo Localization); see [1] for an excellent review.
However, regardless of the particular Bayesian formulation,
all techniques involve a process commonly known as scan
matching or model matching in order to find the displacement
of the robot with respect to a previous position. The scan
matching process consists in finding correspondences be-
tween features extracted from current sensor measurements
and features extracted from previous scans or features in
some pre-built global map of the environment. The matching
can be performed either in a feature-to-feature or point-to-
point fashion.

The most popular feature-to-feature techniques carry out
line-to-line matchings [7], [8]; for a detailed comparison
see [9]. The advantage of line-to-line matching lies in its
speed, however a major drawback is its limited ability to
cope with unstructured or cluttered environments. On the
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other hand, point-to-point matching does not suffer from
this disadvantage, but as noted in [5], in general it is less
reliable due to the difficulties arising in (i) associating
detected points with previously detected points, and (ii)
extracting edge and corner features in cluttered and populated
environments. These problems are further complicated by the
fact that the total number of points in a map is large, thus
rendering the approach computationally expensive. Arguably
the most popular point-to-point matching strategy is the
Iterative Closest Point (ICP) algorithm [10]. The ICP relies
on the Euclidean distance to establish point correspondences
and thus cannot address the fact that points far from the
sensor may be far from their correspondents due to angular
rotation of the sensor. To alleviate this problem, different
authors have proposed metrics that capture not only sensor
translation, but also rotation [10], [11]. These approaches,
however, do not address directly the problem of robustness
in the presence of clutter or dynamic elements populating
the environment.

To effectively cope with cluttered and unstructured envi-
ronments, this paper presents a novel approach for local-
ization and pose estimation based on matching raw ladar
range scans to a relatively simple map or floor plan of
the environment that has been previously generated. Our
approach differs from existing methods in that it relies on
the computation of a set of transformations (translation,
rotation and scaling) that minimize the modified Hausdorff
distance (HD) between the observations and the model as
proposed in [12] for image alignment and shape recognition.
The localization procedure also draws on ideas from our
earlier work on radar-based ship positioning [13]. Since
measurements yield robust and accurate position and heading
information, the precision of estimates is further improved
employing an extended Kalman filter. Despite relying on a
single hypothesis, the proposed approach can recover fairly
well from “kidnapping” situations in which the robot is lifted
up and moved without being informed. This is because when
an ambigous matching occurs, the robot is allowed to move
and explore until a unique solution to the matching is found.
The inclusion of this approach as part of Markov and Monte
Carlo Localization schemes may yield further localization
improvements; this is currently being investigated by the
authors.

The contribution of our approach is in that it does not
require of a complex perception process to extract features
of the environment, such as different forms of line detec-
tion and association procedures predominant in vision-based
approaches. The proposed approach also does not require
to find point-to-point correspondences explicitly, which are
harder to establish in the presence of dynamic changes
and disturbances of the environment [9]. Furthermore, the
experimental results obtained using a differential-drive robot
demonstrate that the method can be implemented to perform
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in real-time, and that it is robust to sensor noise, to objects
not included in the map and to dynamic environment pertur-
bations, such as people crossing the sensor’s field of view
or arbitrary position changes of small furniture like chairs,
tables or cabinets.

The paper is organized as follows. Section 2 presents the
matching strategy based on the modified Hausdorff distance
and discusses its robustness. For the readers convenience,
an appendix has been included which briefly explains the
well-known concept of Hausdorff distance and its application
to contour matching. Section 3 presents the sensor model
and explains the solution of the localization problem. Ex-
perimental results confirming the good performance of the
proposed approach are presented in section 4. Finally, section
5 presents the conclusions of our work and discusses some
aspects concerning ongoing research.

II. THE MATCHING STRATEGY AND ITS ROBUSTNESS

In order to determine the best matching solution, a se-
quence of translation, rotation and scaling transformations
is applied to each set B of range measurements, in such a
way as to minimize the modified Hausdorff distance (MHD)
between the set and a reference set A that contains the
contour lines of the environment. The MHD between the
measurements set B and the reference set A, denoted by
h̄K(T (B), A), is a well-known measure of dissimilarity be-
tween two sets of points. Its formal definition is presented in
equation (8) of the appendix, which has been included for the
reader’s convenience. The transformations that minimize the
dissimilarity between the sets readily yield global position
and heading information relative to the reference set (global
map). Formally, the matching problem is stated as that of
finding a transformation T : Ω → T (Ω) such that it
minimizes:

min
T

h̄K(T (B), A) (1)

Here T is chosen to be Td,θ,α : Ω → α Rθ(Ω + d), i.e.
a translation d in the plane, followed by a rotation by an
angle θ and finally a scaling transformation of magnitude
α. In order to solve (1), a reliable and rapidly converging
approach to minimize (8) was implemented in terms of
standard gradient methods.

The robustness and accuracy of the matching method
based on the MHD minimization was tested using simulated
data. The simulations consider a 500× 500 pixels reference
image containing a contour formed by two circular arcs of
60 pixels radius; see figure 1. The simulated data, which
represents a contour obtained by a ladar, is generated by
adding noise to a given percentage of samples of the original
reference contour, then rotating this simulated measurements
10◦ counter-clockwise, and finally, translating the set of
points 100 pixels to the right and 150 pixels down. Two
different parameters are adjusted for the different scenarios
of measured data: the percentage of outliers or measurements
affected by noise and the average magnitude of the noise. The
noise affecting each measurement sample, if any, is assumed
to be zero-mean Gaussian with standard deviation equal to
the scenario’s noise level.

The results obtained in the simulations are summarized
in Table 1. The robustness of matching method based on
the MHD is apparent from these results, which show lit-
tle variation in the position or heading error for different

percentage values of noisy samples and noise levels. Even
if simulated clutter was intentionally added in the form
of uniformly distribuited range measurements noise, the
quality of the match is preserved as can be appreciated from
figure 1, which shows the initial unmatched scan and its
final alignment with respect to the reference contour once
the matching is completed. Figure 2 shows the convergence
of the MHD to a minimum in an almost linear fashion for
the different scenarios. The final value of the MHD increases
proportionally to the noise level. However, it is worth noting
that the final value remains zero for the simulations in which
only 20% of the samples are corrupted by noise. This is
because the ratio λ for calculation of the MHD was set at
0.7. The ratio λ is a parameter of the MHD (see appendix). A
value of λ = 0.7 means that only 70% of the total number of
samples that best match the reference set are used, while the
remaining 30% samples that include those corrupted by noise
are automatically discarded from the calculation of the MHD.
Figure 3 clearly shows that the regular HD curves have
largest values beyond the threshold. While scenarios with
noise percentages below 30% yield final h̄K(A, B) equal
to zero, scenarios with noise percentages above 30% yield
final h̄K(A, B) which are non-zero and are proportional to
the standard deviation of the noise for a fixed threshold λ;
see Table 1. The results in Table 1 also confirm that the
accuracy is high, as expected according to the theoretical
result in [14], which states that the matching error due to
spatial sampling is at most one rasterization unit (see Claim
3 in [14]) for the noise-free situation. This result may also
be extended to the zero-mean Gaussian noise situation.
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Fig. 1. Initial misalignment and final match between simulated scan (dots)
and the reference contour (line).

III. LOCALIZATION PROBLEM

For convenience of exposition, let x and y denote the posi-
tion coordinates of the robot in the global 2D Cartesian frame
of reference, and let θ denote its orientation with respect
to the vertical axis. The first step to determine the robot’s
position and heading is to express each of the N raw range
measurements zs

i = [ri, θ
s
i ], i = 1, 2, . . . , N , obtained in

polar coordinates relative to the sensor coordinate frame O s,
as Cartesian coordinates relative to the global coordinate
frame Ow. To this end, the following measurement model is
employed:

zw
i =

[

(rs
i + βr) cos(θs

i + θ + βθ) + x + ηx

(rs
i + βr) sin(θs

i + θ + βθ) + y + ηy

]

(2)
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TABLE I

SIMULATION RESULTS OF THE POSITIONING ACCURACY.

Noise
Percentage

[%]

Noise Level
σ

[pixels]

Final Match
Position Error

[pixels]

Final Match
Heading Error

[◦]

Initial
h̄K(A, B)

[pixels]

Final
h̄K(A, B)

[pixels]
0 0 2 2.67 88.99 0.65
20 10 0 0.33 88.66 0
20 20 0 0.33 88.98 0
50 10 0 0.33 88.76 0.76
50 20 0 0.17 87.73 1.64

100 10 2.83 0.67 88.93 4.65
100 20 1.41 1.33 87.65 8.36
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Fig. 2. Convergence of the modified Hausdorff distance h̄K(B, A) setting
λ = 0.7 for the different scenarios with percentages of noisy samples NP
and noise levels NL.
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Fig. 3. Sorted partial Hausdorff distances hK(B, A) and their convergence
to the optimal set hK(T ∗(B), A) using λ = 0.7 for the simulation with
NP=100% and NL=10.

where (rs, θs) and the measurement range and bearing
(sensor coordinates). The variables βr, βθ are assumed to be
common to all points and account for sensor measurement
errors induced by biases in range and bearing, respectively,
while ηx and ηy are assumed to be zero-mean Gaussian
noises arising from errors in the matching, as will be
explained next. The range bias βr results from errors in
leveling the sensor (azimuth error). The bearing bias β θ

describes the rotation that suffers the measurement image due
to misalignments of the sensor base with respect to the robot.
Since normally ladar sensors are fixed and do not rotate with
respect to the platform, it becomes difficult to determine βθ

without an additional heading sensor, such as a compass,

because the main rotation of the measurement image results
from the rotation θ of the robot as it moves and turns. Thus,
it is assumed here that βθ = 0.

Employing (2), a measurement image can be created from
the N measurement samples by setting all pixels to zero
except for those at the coordinates zw

i , i = 1, ..., N , which
must be set to one. Similarly, the environment map, such as a
CAD floor plan drawing must be rasterized, i.e. the drawing
must be sampled discretely to create a model image in which
pixels are set to one wherever there is a geometric element
or to zero otherwise. The resolution of both (measurement
and model) images should be sufficiently large, in order to
allow for accurate position estimates, but should not exceed a
value such that each pixel represents a dimension far smaller
than the precision of the sensor itself.

Labeling the model image by A and the measurement
image by B, the matching algorithm presented previously
can be employed to estimate the values of x, y and θ,
as well as ηr, through the solution of (1), which yields a
transformation T ∗ that minimizes (8). The transformation T ∗

can be parametrized by a translation δ = (x, y), a rotation
by θ, and scaling α, such that α rs

i = rs
i + E(ηr), where

E(ηr) denotes the expected value of ηr. Thus the solution
of (8) that minimizes the difference between the model and
measurement image naturally results in an observation of
the robot’s location and orientation. In practice, the matching
process is not perfect because the sensor and the model have
a finite resolution, and also the sensor measurements may be
affected by clutter and occlusions, which limit the precision
of the results. On the other hand, the actual transformation
from polar to Cartesian coordinates in (2) also produces
deformations of the objects in the image. Thus, to account
for these sources of error, the noises ηx and ηy need to be
included in the measurement model given in (2).

Despite these errors, the accuracy of the position and ori-
entation estimates can be further improved using an extended
Kalman filter (EKF), which additionally allows to obtain
estimates of the robot’s velocity and the sensor range bias
βr, as shown in the next section.

IV. EXPERIMENTAL RESULTS

The proposed localization approach was evaluated using
an ActivMedia� Pioneer 3 All Terrain (P3-AT) differential
drive robot carrying a Sick� PLS-101 Laser range finder,
shown in Fig. 4. The sensor was set to scan 180◦ with a
range span of 0 to 50 m. Its range accuracy is of the order
of ±0.05 m with a resolution of 0.07 m or better and an
angular resolution of 0.5◦. The 360 samples covering the full
distance range and angular sweep obtained with this system
configuration have proven sufficient to ensure an accurate
matching.
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Fig. 4. P3-AT differential drive robot with a Sick PLS-101 ladar.

In order to implement the EKF, the following simplified
model equation is employed to describe the motion of the
robot:















ẋ
ẏ
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+ ξθ

u1 + ξu1

u2 + ξu2

u3 + ξu3















def
= f(x, u) (3)

where ξx, ξy , ξθ , ξu1
, ξu2

and ξu3
are all assumed to be

zero-mean, i.i.d. Gaussian process noises. The above model
corresponds to the standard kinematic model for a differential
drive robot [1], augmented to include the accelerations v̇R

and v̇L of the left and right wheels, which are controlled
through the commands u1 and u2, respectively. It is to be
noted that using the velocities of each wheel is equivalent to
including terms for the longitudinal velocity v of the robot’s
mass center and its angular rate of change ω, since v =
(vR + vL)/2 and ω = (vR − vL)/L. Inertia moments and
masses are not explicitly considered in the model because
the EKF can automatically compensate and adjust the gain
dynamically as needed. The model has also been augmented
to include the unknown range bias, which is assumed to be
constant throughout the experiment, and hence, the virtual
input u3 is set to zero.

Considering that the matching strategy automatically out-
puts the observations that feed the EKF, the following simple
measurment model is employed:







z1

z2

z3

z4






=







x + ζx

y + ζy

θ + ζθ

βr + ζβr







def
= h(x) (4)

where ζx, ζy , ζθ and ζδr
are assumed to be zero-mean i.i.d.

Gaussian measurement noises.
To determine the performance of the proposed approach,

a reference trajectory of known geometry was defined first.
The experiment consisted in scanning the environment once
every second while the robot followed the reference trajec-
tory at a constant velocity of 5 cm/s. Thus the change in
position between scans was about 5 cm. In order to find the
transformation that minimizes the MHD, h̄K(B, A) given in
(8), the matching strategy described in the previous sections
is applied with λ = 0.7, resulting in an almost perfect match
as shown in Fig. 5. It is worth pointing out that the matching

procedure is carried out successfully in spite of the large error
in the initial state state and the presence of people walking
around the robot as shown in the video.

The matching procedure is repeated after every ladar scan,
yielding position, orientation and radar bias measurements
that are fed to the EKF in order to obtain smoothed estimates
of the robot’s state vector. The estimated trajectory traversed
in 100 seconds is shown in Fig. 6. The magnitude of the
error between the estimated position and the actual trajectory
coordinates is shown in Fig. 7, while the heading error is
shown in Fig. 8. Both figures confirm that the estimation
is reasonably good for most part of the trajectory except at
the points in which the heading changes, such as at t = 38
seconds. The velocity estimates can be derived using the
model equations (3). Thus, the forward velocity estimate
is given by v̂(k|k) = (x̂4(k|k) + x̂5(k|k))/2, while the
turning velocity estimate is given ω̂(k|k) = (x̂4(k|k) −
x̂5(k|k))/L, where L is the distance between wheels, and
x̂i(k|k), i = 4, 5 are the right and left wheel estimated
velocities, respectively. Since the commands issued to the
robot are constant throughout the piecewise linear trajectory,
the estimates remain constant for most part of the trajectory,
except at points where there are heading step changes. The
turning ratio estimate is also constant and approximately
zero, except at the turning point. Similarly, the estimated
range bias remained constant throughout the experiment
because the resolution of the rasterized model is equal to
5 cm per pixel and the resolution of the scanner is better
than 7 cm, while its precision is within ±5 cm.

The algorithm was implemented in Matlab� running on
a 2.8 GHz Pentium IV computer with 512 MB RAM. Its
execution period was verified to be on average below 0.10 s
per scan consisting of 360 samples. The complexity of our
algorithm is is smaller than W ·O(Ns log(Ns)), where W is
the largest axis of the reference map and Ns is the number
of samples per scan. This complexity is similar to that of the
best point-to-point or line-to-line localization approaches [9],
e.g. Split-and-Merge with clustering.

V. CONCLUSIONS

A robust approach for estimating the position, heading
and velocity of a mobile robot in a cluttered environment
was presented. The approach relies on matching ladar mea-
surements to a previously created map of the environment,
such as an image of a rasterized floor plan drawing. Central
to the matching process is the identification of a set of
image transformations that minimize the modified Hausdorff
distance (Appendix, eq. (8)). The advantages of incorporating
this metric lies in the fact that (i) it can be applied to non-
structured environments unlike most line-to-line matching
techniques, (ii) it does not require to find one to one
correspondences between points unlike traditional point-to-
point methods, and (iii) it is more robust to outliers arising
from clutter and occlusions than point-to-point or feature-
to-feature methods. To further improve the position, heading
and velocity estimates, the raw position and orientation mea-
surements are passed to an EKF. The approach also allows to
readily obtain the sensor’s range bias as part of the matching
process, and can be easily modified to obtain the sensor’s
bearing bias, if a heading sensor is added to the robot.
The results obtained demonstrate the effectiveness of the
approach as it yields rapidly converging accurate estimates
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with a comparable computational cost to that of Split-and-
Merge line extraction based localization algorithms, which
are among the fastest.

Future work considers incorporating the MHD as part
of the underlying matching process in Markov and Monte
Carlo Localization schemes to assess the tradeoff between
increased computational complexity and the possible im-
provement in the global localization capability. Continuing
research also considers finding systematic approaches to
dynamically adjusting the the number of samples that are
rejected in the calculation of the MHD, as this may improve
the accuracy of the measurements.
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APPENDIX

MODIFIED HAUSDORFF DISTANCE

The computation of the Hausdorff distance is a technique to
measure the degree of dissimilarity among different objects.
By taking two sets of points, one being the reference model
and the other the actual measurements, the HD between them
is small when every point in one of the sets is near to some
point in the other. Given two sets, A = {a1, a2, . . . , ap} and
B = {b1, b2, . . . , bq}, the HD between A and B is defined
as:

H(A, B)
def
= max(h(A, B), h(B, A)) (5)

where

h(A, B)
def
= max

a∈A
min
b∈B

‖a − b‖ (6)

is the directed HD between sets A and B.
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Numerical procedures to compute this distance, sort the
points in A according to their distance to the nearest point in
B and then select the farthest one as the result. For instance,
if h(A, B) = h∗, then every point in A is at most at a
distance h∗ of a point in B. The point with distance h∗

is the point that most deviates from set B. Figure 9 shows
a geometric representation of the HD as applied to pattern
recognition. Here sets A and B are the reference model and
measurements, respectively. By rotating and translating the
measurements, a satisfactory matching is obtained as the one
that minimizes H(A, B).

Fig. 9. Pattern matching employing the Hausdorff distance.

In order to reduce the number of calculations, a distance
transform in the form of a Voronoi matrix is computed first.
By doing so, set A is processed only once. Further details
can be found in the paper by W. Rucklidge [12].

In most applications the sets A and B are not identical,
as would typically occur in the presence of occlusions,
measurement noise and image distortions. The latter is
particularly valid for ladar images generated through the
application of a transformation of the raw measurements
in polar coordinates to a set of measurements in Cartesian
coordinates, so offsets in range will cause a shrinkage or
enlargement of the objects. Sometimes these differences can
also be introduced at intermediate stages, such as expansion,
rotation and translation, among other.

All these sources of error will generate some false-positive
matches with Hausdorff distances significantly larger than the
one of any true-positive match. Taking advantage of the fact
that the HD computation procedure determines the distance
of the farthest point in B by ranking the distances of its
points to points in A, a way of reducing erroneous matches
is to select the Kth distance in the ranking, instead of the
largest one [12]. In other words, some of the the points in
B with the largest distances are ignored and only a subset
is used. The HD with respect to A of this subset of B is the
so-called partial (directed) HD. In order to formally define
the partial HD, it is convenient to introduce first a mapping
dΩ:

dΩ : x → dΩ(x) = min
ω∈Ω

‖x − ω‖

that measures the distance of the closest point ω in a set Ω
to some point x. Then the partial HD of the K best matching
points of the measurements set B to the model set A can be
defined recursively for K = q, q − 1, q − 2, . . . , 2, 1 as:

hK(B, A) = max
b∈BK

dA(b) (7)

where BK = BK+1 − {b∗K+1}, b∗K = arg maxb∈BK dA(b)
and the initial values Bq+1 = B, b∗q+1 = {∅}. It is worth
noting that hq(B, A) = h(B, A), and that hq(B, A) ≥
hq−1(B, A) ≥ · · · ≥ h1(B, A), since Bq ⊃ Bq−1 ⊃ · · · ⊃
B1. Hence, this definition automatically implies that there
are K measurement points in B within a distance hK(B, A)
from A (the K th partial HD). Since more than one trans-
formation of the image associated with the measurements
set may result in similar values for hK(B, A), an effective
criteria for successful matching is to minimize the average
of partial Hausdorff distances smaller or equal to hK(B, A)
for some chosen K . This average, also known as modified
HD [12], is given by:

h̄K(B, A) =
1

K

K
∑

i=1

hi(B, A) (8)

Employing the modified HD, ensures that more points in the
image will resemble the model. For practical purposes, it is
convenient to define the ratio of model points employed in
the calculation of the average as λ = K/q. Then, K may
be selected in terms of the ratio λ, simply as K = λ q, with
1/q ≤ λ ≤ 1. The value of λ is found empirically as the
one that minimizes the matching error for a set of image and
model pairs.
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