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Abstract— This paper describes a 2D localization method
for a differential drive mobile vehicle on real forested paths.
The mobile vehicle is equipped with two rotary encoders,
Crossbow’s NAV420CA Inertial Measurement Unit (IMU) and
a NAVCOM SF-2050M GPS receiver (used in StarFire-DGPS
dual mode). Loosely-coupled multisensor fusion and sensor
fault detection issues are discussed as well. An extended Kalman
Filter (EKF) is used for sensor fusion estimation where a GPS
noise pre-filter is used to avoid introducing biased GPS data
(affected by multi-path). Normalized Innovation Squared (NIS)
tests are performed when a GPS measurement is incorporated
to reject GPS data outliers and keep the consistency of the
filter. Finally, experimental results show the performance of the
localization system compared to a previously measured ground
truth.

I. INTRODUCTION

A. Research Motivation

Our research motivation is the automation of construction

vehicles in woodland mountain environments. The final

goal is the achievement of autonomous navigation in such

environments where a reliable and robust localization system

is crucial. This research objective is the development of a

robust, reliable, sensor fault-proof localization system.

Vehicle localization in outdoor woodland environments

is a challenging field that is still unexplored and open for

research. In such outdoor environments, common odometry

fails because of non-flat irregular surfaces, dead reckoning

using inertial units is subject to integration errors and GPS

which is one of the most used solutions in outdoor is not

completely reliable when there are tall obstacles such as trees

that can block the signal coming from satellites.

In this paper authors report the particular problems of

vehicle localization on forested paths; furthermore, the mul-

tisensor localization framework with sensor outlier rejection

is also presented.

B. Related Works

Many works in multisensor fusion and fault tolerant lo-

calization methods have been proposed in previous works.

P. Sundvall in [1], proposed a method for detecting slip

in real time applying the mahalanobis distance using as

threshold chi square criteria in a denominated CUSUM test.

N. Schmitz et al. in [2] developed a 3D localization system
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fusing odometry with DGPS, IMU, magnetic field sensor

and vision offering 2m precision. J. Huang et al. in [3]

proposed a positioning system using a noise preprocessor

for DGPS data to reduce non-Gaussian noises from GPS

observations obtaining accuracy in the range of 30-50cm. S.

Scheding et al. in [4] proposed a metric for determining the

detectability of faults using frequency domain techniques in

Kalman filter based systems mentioning the importance of

sensor redundancy. E. M. Nebot et al. in [5] and [6] treats

the issues of sensor faults, decentralized architectures and

asynchronous sensor fusion where there are individual loops

incorporating information to a master filter. K. Ohno et al.

in [7] achieved autonomous navigation in walkways between

buildings fusing odometry with DGPS data, rejecting GPS

outliers thresholding mahalanobis distance. P. Lamon et al

in [8] developed a multisensor system for navigating and

mapping in large scale environments. Thrun et al. in [9]

describes the multisensor system used for winning DARPA’s

Grand Challenge 2005 where vehicle autonomous navigation

of 142 miles in desert environments was achieved.

The core of this work is the implementation of a multi-

sensor localization approach using an EKF on real outdoor

paths with tree foliage and to report experimental results.

C. Forested Paths

In this work, a forested path is a paved or graveled path

where a common wheeled vehicle can traverse. The path

sometimes is surrounded by many variations of trees around

it. The surface is sometimes covered with fallen leaves,

branches, acorns and small stones that cause wheel slip (non-

systematic errors). The length and type of trees and tree

percentage around the path vary from each environment. The

lowest tree percentage around the path the highest percentage

where GPS can be used for vehicle localization. These

kind of environments do not present favorable conditions

for vehicle localization. For this research, University of

Tsukuba’s campus woodlands were used as experimental

environments.

In this section introduction was provided, in section II

sensor fault detection is briefly discussed, sections III and

IV present system hardware and software, section V explains

the localization approach, section VI presents experimental

procedure and conclusions are presented on section VII.

II. SENSOR FAULT DETECTION

A. Redundancy

It is crucial to construct a system capable of detecting

and handling a fault in a localization system. In order to be
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able to detect and find faults in a multisensor system, sensor

redundancy is necessary. A system with sensor redundancy

is a system in which a variable can be measured by two

or more sensors with different characteristics. As there is

nothing such as a “perfect sensor” multiple sensors with

different properties that fail in different ways measuring the

same variable are complementary used.

B. Sensor Selection

Three sensors with different characteristics were used

for vehicle localization: wheel encoders for vehicle linear

velocity, an IMU for angular velocity and GPS for position.

Wheel encoders and IMU offer high rate information which

are integrated in time to offer vehicle localization which

suffers from unbounded errors as traveled distance increases.

A low response sensor such as GPS which does not suffer

from integration errors is used as external sensor for position

correction.

C. Consistency

As defined by Y. Bar-Shalom et al. in [11], in a state

estimation filter such as in the Kalman filter framework,

a filter is considered consistent if its estimation errors are

commensurate with the filter-calculated covariance. This is,

if the estimated state with its covariance is within the real

ground truth. Kalman Filters rely strongly on the model of

the system and observation. If the models are not adequate,

the filter will have incorrect innovations and estimations

so it will not be consistent. On the other hand, if models

are correct but sensor observation data or sensor noise

covariance are incorrectly introduced, the filter estimation

will not be consistent. Normalized Innovation Squared “NIS”

test (section V) for consistency check is used for GPS data

outlier rejection to keep filter’s consistency.

III. SYSTEM HARDWARE

A. Mobile Robot Platform

For this research we use a Yamabico Platform medium

sized robot. This robot is a differential drive vehicle with

front wheel traction. Its dimensions are 50cm x 50 x 170cm

(LxWxH).This robot has two Sanyo Denki 60 Watt DC Mo-

tors with rotary encoders attached for odometry computation.

The robot is equipped with Crossbow’s NAV420CA IMU

and NAVCOM SF-2050M GPS receiver (Fig. 1.). The user

notebook is a Panasonic Toughbook CF-30 with a 1.66Gz

Intel core duo processor, the OS used is Ubuntu Linux, kernel

2.6.20-16.

B. Crossbow’s NAV420CA Inertial Measurement Unit (IMU)

NAV420CA IMU is a measurement system composed of

three accelerometers, three gyros, four temperature sensors,

a three axis fluxgate magnetometer board and a GPS receiver

(not used in this work), It operates in a temperature range of

-40 to +71 oC, it detects angular velocities within 200o/sec

and accelerations of within 4Gs. Authors have performed

several tests in outdoor environments and determined to

use and integrate temperature corrected angular velocity

information for vehicle orientation.

Fig. 1. Yamabico Platform Mobile Robot with GPS Receiver and Antenna

C. NavCom SF-2050M

SF-2050M GPS receiver has 26 tracking channels (12

L1/L2 full wavelength carrier phase tracking GPS + 2

dedicated SBAS), C/A P1 and P2 code tracking. It has a

tri-band antenna which can receive GPS and StarFire signals

[12][13][14]. It has an accuracy using real-time StarFire

system of within 10cm in horizontal position and within

15cm (rms) in vertical position. Antenna Type: Triband

Dipole.

1) GPS Receiver Configuration: For experiments reported

in this paper, GPS receiver had the next settings:

• Used in StarFire-DGPS dual mode (StarFire Differential

Service coupled with CSI-Wireless SBA-I beacon for

differential correction). In this configuration, solution

changes in a seamless way to the most precise available

mode (Fig. 2).

• Satellites Required for solution: 4

• Solution Mode: 3D

• Max HDOP1: 5

• Logging Rate: 1Hz

• Antenna Height on Mobile Vehicle: 1.70m

IV. SOFTWARE

For appropriate sensor data fusion, it is necessary to utilize

information from each sensor at the proper time of the

measurement, i.e., sensor data has to be fused as precisely

as possible in the instant the measurement was realized. For

this purpose, in this work, “SSM” (Sensor Sharing Manager)

software developed in our laboratory was utilized [15]. SSM

is a multiprocess software composed of three sections (see

Fig. 3.):

1) Sensor driver: Is in charge of connecting to each sen-

sor, receive data and register it in the SSM. There are

1DOP Dilution of Precision is a unit less measure of the magnitude of
error in GPS position fixes due to the orientation of the GPS satellites with
respect to the GPS receiver. DOP is provided by GPS as output in NMEA
format. There are different terms to measure different components of the
error (GDOP,PDOP, HDOP, VDOP,TDOP)
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Fig. 2. StarFire-DGPS dual mode

3 sensor drivers running in parallel. One for encoder

information running at 20ms (receiving 4 readings each

sampling). Second sensor driver is for Crossbow’s IMU

information running at 10ms. Third sensor driver is for

GPS data received each 1 second.

2) SSM (Sensor Sharing Manager): SSM is a shared

memory space which receives data from each sensor

driver, puts a time stamp to it and keeps a register of the

last values in a ring buffer on shared memory. When

sensor data is used by a user process, synchronization

is performed according to arriving time stamps (also

treated in [5][6]).

3) User process: In this case data fusion process which

connects to the shared memory block, reads time

stamped information of each sensor and fuses each

sensor data interpolating them to the closest value in

time. Many user processes can be running in parallel

accessing sensor information.

SSM software framework is a powerful tool for multisen-

sor data synchronization and fusion because of the capability

of increasing the number of sensors simply adding sensor

drivers and registering them to the shared memory.

Fig. 3. Sensor Sharing Manager “SSM” illustration

V. LOCALIZATION APPROACH

An Extended Kalman Filter (EKF) was used for data

fusion where the state vector is given by x = [x,y,θ ]T . First, it

is necessary to have a robust dead reckoning method that can

keep accurate localization estimation on irregular surfaces

when no external sensor observation is available. For air-

pressure tire vehicles, it is difficult to accurately determine

the wheelbase causing errors in angular velocity calculation.

Furthermore, having an erroneous orientation angle produces

unbounded positioning error as vehicle travels. In this re-

search, a method similar to “gyrodometry” proposed by

J.Borenstein is used for determining vehicle’s dead reckoning

with the difference that angular velocity was calculated using

only the IMU’s gyro. The measurement model is given by

expression (1):

x̂k|k−1 = x̂k−1|k−1 +





vk cos(θk)
vk sin(θk)

ωk



 t (1)

where “vk” is the velocity calculated by left and right

motor encoders vk = vr+vl
2

and “ωk” is the vehicle’s yaw

angular velocity determined by IMU. “t” is the sampling

time.

With this method, yaw angle is not affected by wheel

slip. However, slip still produces error in the calculation of

vk. The predicted covariance Pk|k−1is a 3x3 matrix given by

expression:

Pk|k−1 = GkPk−1|k−1GT
k +Qk (2)

where Gk is the Jacobian of the model and Qk is the process

noise.

GPS on forested paths

GPS receiver outputs on-line text sentences in NMEA

0183 format. NMEA sentence GGA was used for position in-

formation zk = [xGPS,yGPS]
T and quality indicator (coordinate

conversion was done according to Japanese Geographical

Survey Institute [17]). GSA sentence is used for Dilution

of Precision (DOP) parameters. GST sentence (Pseudorange

noise statistics) for measurement standard deviation infor-

mation. Standard deviation information is used to calculate

covariance matrix of GPS observation Rk =

(

σ2
xx σ2

xy

σ2
yx σ2

yy

)

Under tree shading, biased GPS position data with small

covariance can be rejected thresholding measurements with

small HDOP values and large number of satellites used

for solution (Y. Morales et al. in [18]). A value under

4 for HDOP and a number of 5 or more satellites were

used as thresholds for GPS data pre-selector. GPS data

that does not satisfy this condition is discarded under the

assumption that for filter consistency and position accuracy,

it is better to have reliable data even if availability percentage

in GPS measurements is decreased. Fig. 4. shows the general

scheme for GPS data fusing. Before filtering, GPS data

is pre-selected for reducing non-Gaussian non white noise

observations.

451



Fig. 4. Scheme for GPS data fusing

NIS test for Consistency Checking

Despite that GPS measurements passed the previously

explained pre-filtering test, there is the case that data affected

by multipath is considered as reliable (erroneous position

data with small covariance). For GPS outlier detection and

rejection, a NIS test is performed before incorporating GPS

measurement for state estimation. Under the consideration

that the model of the system and the filter is consistent, the

normalized innovation squared (NIS) test (which can also

be seen as the mahalanobis distance using the innovation

matrix as normalizer) has a chi-square distribution. This test

is sensitive to variance changes as well as changes in the

mean.

NIS = χ2 = (zk − ˆxk|k−1)
T S−1(zk − ˆxk|k−1) (3)

where “S =▽HkPk|k−1▽HT
k +Rk” is the innovation matrix

in the Kalman filter correction step, “zk = [x,y]T ” is the

GPS observation and x̂k−1 = [x,y]T is the state vector before

update. χ2 can be shown to be the sum of the squares of n

independent zero mean univariate Gaussian random variables

[16]. The fitting error χ2 (“goodness of fit”) has to be below

a threshold in order to be acceptable. In this work, according

to the degrees of freedom of the system, the 95% confidence

level was used as threshold.

If the observation pass the NIS check test, then Kalman

gain is calculated and state vector and covariance matrix are

updated. The update step of the Extended Kalman Filter is

standard and equations are omitted on this paper. Finally, if

check test is not passed then GPS observation is discarded

and no update is performed.

On outdoor forested environments, there are three different

types of configurations for vehicle localization estimation:

1) Dead reckoning position corrected by GPS on open

sky (normally, reliable GPS data is available).

2) Dead reckoning position occasionally corrected when

reliable GPS information is available (partial open sky)

and NIS test for consistency is passed.

3) Dead reckoning without correction when there is not

reliable or no GPS data at all because of tree foliage

around the path (barely or no open sky).

VI. EXPERIMENTAL SETUP & RESULTS

A. Experiment Location

Experiments were done on a forested path at the Campus

of the University of Tsukuba (depicted on Fig. 5). A total

of fourteen points connected by straight lines were measured

and used as ground truth. Ground truth points were measured

in stand still mode (with a GPS tripod) using Trimble’s 5700

RTK-GPS in fixed solution (precision within 2 cm) taking

10 minutes for each point. The total length of the path is of

303.3 meters. The testing path is classified as follows:

1) Both sides of the path covered by trees (barely or none

open sky available). Segments D-E, and E-F, covering

32.062% of the total path.

2) One side of the path covered by trees (half open sky).

Segments F-G, G-H, H-I, M-N, covering 24.346% of

the path.

3) Open sky available. Segments A-B, B-C, C-D, I-J, J-K,

K-L, L-M: 43.574%

Fig. 5. Map of RTK-GPS measured points on the Forested path

B. Running Experiments

Start position was selected to be a tree free environment

(point “A”), where GPS could be initialized. After initial-

ization, mobile platform was moved by remote control at a
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maximum speed of 1m/sec traveling in straight line passing

through all the points marked in the map (Fig. 5.) until

finishing on point “N”, while sensing and fusing data.

C. Experimental Results

First, DGPS-StarFire measurements information is shown

on Fig. 6. Preselected data considered as reliable is shown

on red and discarded DGPS data is shown on blue.

Fig. 6. DGPS-StarFire Dual Mode Result of one running experiment

Estimated final results are shown on figure Fig. 7 which

shows estimated vehicle position in dark blue, estimated

covariance ellipses in light blue and previously measured

ground truth in red. When there is reliable GPS data avail-

able, dead reckoning prediction is corrected with such data

canceling accumulated error. Experimental results also show

that after the longest period when GPS data is not available

(Segment D-H), the maximum error of position estimation

is within 3m. It has to be noticed that even is position

estimation has error, the ground truth is within the estimated

covariance ellipses.

Several running tests were performed on the same environ-

ment at different times obtaining similar results. If the EKF

is not initialized with reliable GPS observations and there is

an immediate GPS outage, all GPS data could be rejected by

NIS test. To avoid this, several minutes were taken for GPS

receiver initialization before going into the tree foliage.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper a localization strategy for a differential drive

wheeled vehicle in forested paths was proposed. The hard-

ware and software framework were also described. More-

over, loosely coupled sensor fusion approach with GPS data

pre-selector and GPS outlier rejection were presented and

discussed. Experimental results on real outdoor woodland

paths show the performance of our approach, where in the

path sections where GPS was not available, dead reckon-

ing precision was within 3 meters. When available, GPS

could correct accumulated error. This method works with

periodically GPS observations, in the case of large periods

without GPS, the method can fail if dead reckoning error is

too big so that correct GPS data is rejected by NIS test. If

there is the certainty that a GPS observation is correct, this

problem could be solved reseting the EKF, setting new mean

and covariance. As future work in a map based localization

framework (using a previously measured map as presented in

this paper), authors plan to incorporate a laser range scanner

for road detection and vehicle’s position and orientation

correction towards the map.
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