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Abstract— Bevel-tip flexible needles have greater mobility
than straight rigid needles, and can be used to reach targets
behind sensitive or impenetrable areas. Accurately planning
and executing the optimal motions for such steerable needles is
difficult, however, and requires solving inverse kinematics for
a nonholonomic system.

This paper presents an approach to 3D motion planning
for bevel-tip needles in an environment with obstacles. Instead
of discretizing the configuration space as in earlier work,
we discretize the control space, such that the trajectory of
the needle can be expressed analytically without the need
for approximate numerical simulation. This results in a fast
optimization routine that finds a locally optimal path in a 3D
environment with obstacles, requiring just a few seconds of
computation time on a standard PC.

We introduce two different discretization strategies that lead
to differently structured paths and show that both produce
valid trajectories from start to goal. To our knowledge, the
presented method is the first to address motion planning for
bevel-tip needles in a 3D environment with obstacles.

I. INTRODUCTION

In the range of minimally invasive surgical instruments,

the needle is probably the oldest and most pervasive tool

available. Needles are used in many forms of diagnosis and

treatment, from tissue biopsies to placement of radioactive

seeds for cancer treatment. As in all areas of medicine,

technology is pushing the boundaries, and improvements in

medical imaging (fluoroscopy, ultrasound, MRI, etc.) and

real-time control enable alternatives to the regular rigid

needle.

Flexible needles have greater mobility than rigid needles,

and thus make it possible to reach targets around corners

and to avoid sensitive or impenetrable areas. These advan-

tages come at a cost: fast and accurate medical imaging

feedback is required to compensate for model uncertainties,

and trajectory planning is complicated and usually requires

both medical experience and computer algorithms. This is

certainly true for a class of asymmetric flexible needles with

a beveled tip (Figure 1), which are the topic of this paper.

Bevel-tip flexible needles are asymmetric needles that

move along curved trajectories when a forward pushing

force is applied. Mechanical properties of these needles have

been studied experimentally [1] and their advantages over

rigid needles have been shown [2]. The use of a bevel-tip

flexible needle as opposed to a symmetric flexible needle

[3] has the advantage that needle trajectories can still be
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Fig. 1. Model setup for the bevel-tip needle with inputs ω and v.

influenced even after relatively deep penetration. From a

robotics point of view, a bevel-tip needle can be described as

a kinematic system with nonholonomic constraints [4], and

although motion planning algorithms for such systems exist

[5], many of them cannot be applied since the needle only

curves when moving forward, not when moving backward.

An additional complication is tissue flexibility [6], [7], which

is often disregarded for planning purposes, as we do here.

Path planning for bevel-tip needles has been studied in

several ways, most of which are applicable only to a planar

situation, in which the needle can either curve upward or

downward. Alterovitz et al. [8], [9], [10] discretize the full

configuration space (translations and rotation) of the needle,

and search the resulting discrete state space for optimal

paths in the presence of obstacles and uncertainty. Although

control laws exist that stabilize the needle motion to a plane

[11], truly 3D paths would allow more possibilities than

planar paths. Park et al. [12] use a diffusion-based approach

to path planning in an obstacle-free 3D environment, but,

to the best of our knowledge, no previous work exists

that considers path planning for bevel-tip needles in 3D

environments with obstacles.

In this paper, we propose a solution to the 3D path

planning problem that relies on analytic rather than dis-

cretized solutions whenever possible. The specific kinematic

properties of the needle allow this, as outlined in Section II,

and only the final stages of the path planning formulation
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require model discretization. By delaying discretization for

as long as possible, the resulting quantities remain compact,

low-dimensional expressions that are fast to compute and

suitable for use in optimization routines. Simulations of the

path planning algorithm can be run in a matter of seconds.

The outline of the paper is as follows. Section II presents

the model setup of the needle and the details of the path

planning problem we are trying to solve. Section III then

proposes two specific path planning algorithms, each of

which uses a different discretization of the control inputs.

Section IV shows simulation results of the two path planners

in synthetic environments with and without obstacles, and

Section V presents conclusions and possible directions for

future research.

II. MODEL SETUP AND CONTROL OBJECTIVE

A. Needle geometry and kinematics

We make the following reasonable assumptions and ap-

proximations in order to obtain a finite-dimensional tractable

system model. First, we assume that the needle is flexible

relative to the tissue, such that the tissue is not displaced

during the needle motion. Second, the motion of the needle

is fully determined by the motion of the needle tip, i.e. the

needle body perfectly follows the needle tip. Third, the

needle tip is beveled in such a way that, when pushed forward

from the needle base, the needle follows a perfect arc of

fixed radius r independent of velocity and tissue properties.

Finally, we assume that we can control the orientation of the

needle tip by changing the orientation at the base, either

because the torsional effect is negligible or because we

can compensate for it using realtime tip measurements or

accurate torsion models. Experimental results [1] show that

needle materials can be chosen such that the needle indeed

moves along an arc of approximately fixed radius, although

the effects of tissue inhomogeneity and especially needle

torsion can be significant and will require compensation.

Under the previous assumptions, the motion of the nee-

dle is determined kinematically by two control inputs: the

linear forward velocity, denoted v, and the bevel orientation

velocity, denoted ω. We do not consider reverse motion of

the needle and hence assume v ≥ 0 throughout the paper.

Figure 1 shows the model setup. We rigidly attach a

coordinate frame Ψn to the tip of the needle, with axes

aligned as in the figure, such that the z-axis is the direction of

forward motion v and needle orientation ω, and the beveled

tip causes the needle to rotate instantaneously around an axis

parallel to the x-axis and passing through the point (0,−r, 0).
Following standard robotics literature [13], the position

and orientation of the needle tip with respect to a reference

frame Ψs can be described compactly by a 4 × 4 matrix

gsn(t) ∈ SE(3) of the form

gsn(t) =

[

Rsn(t) psn(t)
0 1

]

(1)

with Rsn ∈ SO(3) the rotation matrix describing the relative

orientation, and psn ∈ T (3) the vector describing the relative

position of frames Ψs and Ψn.

The instantaneous linear and angular velocities of the

needle are described by a twist Vsn ∈ se(3). For this

particular system, the twist is most conveniently expressed

in frame Ψn (body coordinates), in which it takes the form

V n
sn(t) =

[

0 0 v(t) v(t)/r 0 ω(t)
]T

(2)

when written as a 6 × 1 vector, or equivalently

V̂ n
sn(t) =









0 −ω(t) 0 0
ω(t) 0 −v(t)/r 0
0 v(t)/r 0 v(t)
0 0 0 0









(3)

when written as a 4 × 4 matrix. The twist relates to gsn as

ġsn(t) = gsn(t)V̂ n
sn(t) (4)

This kinematic model is the same as the unicycle model in

[4]. When the twist is constant, (4) becomes a linear ODE

that can be integrated as

gsn(t) = gsn(0) exp(tV̂ n
sn) (5)

for which a relatively simple analytic expression exists [13].

Another way to interpret the needle motion for constant v
and ω is to look at the screw parameters pitch and axis [13],

which in this case equal

pitch h =
r2(ω/v)

1 + r2(ω/v)2
(6)

axis l =





0
−r

1+r2(ω/v)2

0



+ λ





v/r
0
ω



 (7)

For constant v and ω, the needle moves along a helical path

with axis l and pitch h.

B. Path planning objective

The goal of the path planning algorithm is to find control

actions ω(t), v(t) such that, starting from Ψs, the needle

reaches a goal position Ψg via a reasonably short path, while

avoiding any obstacles present in its course (Figure 2). We

constrain the needle to start at a specific location (the origin

of Ψs) with initial direction of motion along the z-axis of Ψs,

leaving the initial bevel orientation angle as an extra degree

of freedom. The presented method can be directly extended

to include other degrees of freedom in the initial conditions,

e.g. the position of the entry point.

We express the path planning objective numerically as the

minimization of the following cost function

J(ω, v, T ) = αg‖pgn(T )‖2 + αω

(

∫ T

0

|ω(t)|dt

)2

+ αl

∫ T

0

|v(t)|dt +
αo

T

∫ T

0

∑

i

di(psn(t))dt

(8)

with T the total path length, di(psn(t)) the penetration depth

of obstacle i when the needle is at position psn at time

t, and αg,ω,l,o positive constants. This cost function jointly

expresses several objectives. In order of appearance, these

2484



Ψs

Ψn

obstacles

Ψg

Fig. 2. Overview of the control problem: steer the needle (frame Ψn) from
Ψs to Ψg with minimal control action while avoiding obstacles.

are: deviation of the final needle tip position from the goal

location, required control effort along ω, path length, and

cost associated with penetration of obstacles. We choose the

obstacle penalty to be proportional to the sum of penetration

depths of each obstacle, integrated over time. Extensions

and adaptations to this cost function can be made if needed,

e.g. to include a penalty for deviation from a desired needle

orientation at the goal location or to penalize penetration of

sensitive obstacles such as arteries more heavily than less

sensitive obstacles such as bone.

From (6–7) and by intuition it is clear that, under the

assumptions of Section II-A, the trajectory of the needle only

depends on the ratio of ω/v and not on the values of the two

individual variables. Although the motion speed is clearly

important in practice, for path planning purposes it presents

a redundancy: moving along a certain trajectory twice as

fast does not change its shape. The cost function reflects

this property; it is invariant to scaling of T (and inversely

proportional scaling of ω and v).

The algorithms proposed in Section III are directly based

on (8), but both the control variables and the obstacle

penalties are approximated through discretization in order

to make the problem solvable.

III. DISCRETIZED MOTION PLANNING STRATEGIES

The cost function (8) that expresses the path planning goal

contains several time integrals that are hard to compute for

general motions. A first step towards simplification is to use

the observation that needle trajectories (and their cost) only

depend on the ratio ω/v. We therefore set v(t) ≡ 1 for

planning purposes. This is equivalent to parameterizing the

trajectory by insertion distance instead of time [11]. One

side-effect is that we have to allow for impulsive ω(t) (when

changing direction while v = 0), but this does not pose

limitations, as shown in Section III-A.
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(a) Stop-and-turn strategy.

T0

ω

t

θ0
ω1

ω2
ω3

ωN

t0 t1 t2

(b) Helical strategy.

Fig. 3. Discretization of ω(t) for two planning strategies.

As a second simplification step, we approximate the inte-

gral of the obstacle penetration depths di by a finite sum at

discrete times tj ∈ {0,∆, 2∆, . . . , T} for suitable ∆ > 0,

and approximate the cost function J in (8) as

J̃(ω,T ) = αg‖pgn(T )‖2 + αω

(

∫ T

0

|ω(t)|dt

)2

+ αlT +
αo∆

T

∑

i,j

di(psn(tj))

(9)

where we used the fact that v(t) ≡ 1. This approximation

only penalizes obstacle penetrations at finite times tj , but

if ∆ is chosen sufficiently small, such an approximation

should be accurate enough. In addition, we can guarantee

obstacle detection for given ∆ by ‘padding’ the obstacles

with a conservative buffer zone of size ∆.

Using this new approximate cost function, we now present

two methods to discretize the function ω(·) such that it can be

represented by finitely many parameters. We show how for

both methods, the cost function can be expressed analytically.

A. Stop-and-turn strategy

A first discretization strategy (called stop-and-turn) is a

generalization of switching control for planar needle steering

[8]. Instead of continually varying the orientation of the

needle, we first orient the needle (ω 6= 0, v = 0), then

push it forward (ω = 0, v 6= 0), re-orient the needle (ω 6= 0,

v = 0), etcetera. Although we previously set v(t) ≡ 1, we

can represent a stop-and-turn motion by the impulse train

shown in Figure 3(a) and given mathematically as

ω(t) =

N
∑

k=0

θkδ(t −

k−1
∑

j=0

tj) (10)

with tk ≥ 0 the time intervals and δ(t) Dirac’s delta function.

Given this choice for the structure of ω(·), the total path

length becomes T =
∑

k tk, and we can calculate the integral

term in (9) explicitly as

αω

(

∫ T

0

|ω(t)|dt

)2

= αω

(

N
∑

k=0

|θk|

)2

(11)

In addition, we can compute the final position and orientation

of the needle analytically as

gsn(T ) =

N
∏

k=0

gω(θk)gv(tk) (12)
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with

gω(θ) :=









cos(θ) − sin(θ) 0 0
sin(θ) cos(θ) 0 0

0 0 1 0
0 0 0 1









(13)

gv(t) :=









1 0 0 0
0 cos( t

r ) − sin( t
r ) r cos( t

r ) − r
0 sin( t

r ) cos( t
r ) r sin( t

r )
0 0 0 1









(14)

The position error then follows directly as

pgn(T ) = Rgspsn(T ) + pgs (15)

and hence all terms in the cost function (9) can be expressed

analytically, ready to be used for fast numerical optimization.

B. Helical strategy

As a second discretization strategy, we start again from the

approximate cost function (9), but we discretize ω(·) to be

a piecewise constant function, as illustrated in Figure 3(b),

with an impulse θ0 at t = 0 to represent the initial bevel

orientation. We also include the extra time segment t0 to

obtain an expression that parallels the stop-and-turn strategy.

With this choice of ω(·), the motion of the needle becomes

piecewise helical, with pitch and axis given by (6–7) for

each piece. The total path length equals T =
∑

k tk and the

integral term in (9) can be computed analytically as

αω

(

∫ T

0

|ω(t)|dt

)2

= αω

(

|θ0| +
N
∑

k=1

|tkωk|

)2

(16)

The final configuration gsn(T ) of the needle becomes

gsn(T ) = gω(θ0)gv(t0)

N
∏

k=1

gV (ωk, tk) (17)

where gω(θ) and gv(t) are defined in (13)–(14) and gV (ω, t)
denotes the rigid motion along the needle twist V n

sn for time

t at rotation rate ω (and forward speed 1), i.e.

gV (ω, t) = exp









t









0 −ω 0 0
ω 0 −1/r 0
0 1/r 0 1
0 0 0 0

















(18)

for which an analytic expression can be found in the literature

[13]. Again, also for this discretization choice, all terms in

the cost function (9) are available analytically.

IV. SIMULATION RESULTS

We now show simulation results of the two discretization

strategies from Section III, applied to several synthetic

motion planning problems. Optimizations were performed

using a C implementation [14] of the Levenberg-Marquardt

algorithm for nonlinear least squares estimation. For all

simulations, we chose parameters αg = 1, αω = 10−4,

αl = 10−4, αo = 103, and ∆ = 0.1. These choices

are based on quick initial simulation trials and provide an

intuitively desired balance between position error, control
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Fig. 4. Simulation results in an obstacle-free environment for various goal
positions psg = (xg, yg , 10) and minimal control freedom N = 1..

effort, path length, and obstacle avoidance. Simulation results

are not very sensitive to changes in any of the parameters α;

trajectory shapes and algorithm convergence remain more or

less the same when the parameters are changed by an order of

magnitude. Practical values of α will depend on the ‘medical

cost’ (e.g. tissue damage) of long paths and sharp turns.

Since the numerical optimization routine may get trapped

in local minima of the cost function, we start every opti-

mization problem from several random initial estimates and

choose the best one as the optimal solution. Future work

will investigate more rigorous methods, e.g. based on inverse

kinematics or using different homotopy classes [15].

A. 3D Motion planning without obstacles

We first consider the trajectories in an obstacle-free envi-

ronment. Figure 4 shows the optimal trajectories for the two

strategies for N = 1, i.e. with only four degrees of freedom

in the optimization: initial angle θ0 and time segment t0, and

remaining angle θ1 (for the stop-and-turn strategy) or angular

velocity ω1 (for the helical strategy) and time segment t1.

We set the goal position at various locations in a grid with

corners (0,−3, 10) and (2, 3, 10).
The figure shows that, for this particular setup, the stop-

and-turn strategy has consistent cost around 0.002 and that

all goal positions are feasible. The helical strategy has
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more variable cost, depending on the goal position, and

for goal positions near (0, 0, 10) (corresponding to near-

vertical displacement), the helical strategy fails to reach the

goal. Both graphs contain jagged behavior caused by the

optimization routine getting trapped in a local minimum

when starting from unfortunately chosen initial estimates.

Starting from more initial estimates improves the result.

The graph of the cost function is almost symmetric around

yg = 0. This is to be expected, since the obstacle-free path

planning problem is the same for positive and negative yg.

The slight asymmetry is due to the (small) cost associated

with the initial orientation angle θ0, which is larger for goal

positions with yg > 0.

The cost function for the helical strategy peaks near

psg = (0, 0, 10), which can be explained by looking at the

screw motion parameters (6–7). In order to achieve a purely

vertical displacement along the z-axis with a single helix, the

rotational velocity ω would have to be chosen as ω → ∞
(a high-speed drilling motion). This is clearly prohibited by

the cost function, and hence the algorithm converges to a

compromise between low position error and low ω, which

nevertheless results in a relatively high cost and a deviation

of the motion from the desired goal position. The precise

compromise depends on the choice of parameters αω and αg .

For goal points away from (xg, yg) = (0, 0), the variables

θ0, ω1, t0 and t1 are sufficient to achieve good results.

Alternatively, if we increase the control freedom to N ≥ 2,

the difficulty with near-vertical displacements disappears.

B. 3D Motion planning with obstacles

We now turn to optimal path planning in the presence of

obstacles. We consider the problem of reaching the same goal

points in the grid cornered by (0,−3, 10) and (2, 3, 10), start-

ing from the origin, while avoiding three spherical obstacles

located at (0, 0, 5), (1, 3, 7), (−2, 0, 10), all with radius 2. We

set the dimension of the control space to N = 4 and optimize

the needle motion for both the stop-and-turn and the helical

strategy. We choose N = 4 to demonstrate the kinematic

possibilities of the needle, even with few degrees of freedom.

The optimal cost is strictly non-increasing with N , since we

can always cut one time segment in half (increasing N by 1)

and choose the new θk = 0 (for the stop-and-turn strategy)

or ωk = ωk−1 (for the helical strategy), without changing

the value of the cost function (9).

The results are shown in Figure 5: (a) through (d) show

the optimal paths for the two discretization strategies with

various goal positions, and (e) shows the optimal cost asso-

ciated with both strategies and all goal points. The algorithm

finds feasible motion paths in the presence of obstacles

for most goal positions, but not all. Due to the choice of

parameters for the cost function (9) with αo ≫ αg , if the goal

position cannot be reached without penetrating an obstacle,

the algorithm returns a trajectory that does not reach the goal

but avoids the obstacles. This can be seen in the figure: for

trajectories with relatively high cost, the goal is not reached

but all obstacles are avoided.
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Fig. 5. Optimal trajectories in an environment with three obstacles for
various goal positions and N = 4 control actions.

Contrary to the obstacle-free example with N = 1, the

computed curves of the two strategies for this example look

more alike and their corresponding costs are more similar.

This is to be expected, since both discretizations approxi-

mate the same signal ω(t), and both approximations should

converge to the same continuous signal as N increases.

Although the stop-and-turn strategy consistently outperforms

the helical strategy in terms of the cost function, we cannot

conclude that the stop-and-turn strategy is indeed always

better. To decide on this question, a more quantitative and

medically motivated cost function should be used: one that

determines the cost based on the amount of tissue damage,

accuracy of motion prediction, simplicity of implementation,

possibilities for real-time adjustments to account for devia-

tions, and requirements for (medical image) feedback. At this
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point, we can say qualitatively that both strategies produce

promising trajectories.

Just as in the obstacle-free example, the graph of the cost

function contains jagged sections, corresponding to relatively

low and high cost trajectories. More extended simulations

show that some of the high-cost trajectories correspond to

local minima that can be avoided by starting from a different

initial estimate, but other high-cost trajectories still remain. It

is not obvious how to distinguish between high-cost solutions

due to the numerical algorithm, high-cost solutions due to

lack of control freedom (requiring larger N ), and high-cost

solutions due to obstacles prohibiting paths of reasonable

length altogether. An example of the last category are the

goal positions near (0, 0, 10), which are ‘blocked’ by the

obstacle at (0, 0, 5).

V. CONCLUSIONS AND FUTURE WORK

This paper discusses a new path planning algorithm for

bevel-tip flexible needles in a rigid 3D environment with

obstacles. It shows how the kinematics of the needle can be

integrated analytically if a suitable discretization is chosen

for the rotational velocity of the needle, i.e. its control input.

Two discretizations are presented: a stop-and-turn strategy,

in which the needle is alternately rotated around its axis and

pushed forward without rotation, and a helical strategy, in

which the needle is pushed forward at constant speed and at

the same time rotated at a piecewise constant angular speed.

Given the discretization of the control input, the path

planning problem can be cast as a nonlinear optimization

problem, which can be solved quite efficiently due to the

analytic expression for the position of the needle as a

function of the control input. Simulations of the optimization

for a synthetic 3D environment show the feasibility of the

proposed approach, as well as its speed (less than a second

for a typical setup) compared to previous algorithms.

Several important issues are still open for future research.

Two immediate questions that arise are (1) will the algorithm

always find a solution if one exists, and (2) if a solution

is found, is it the global optimum. The algorithm attempts

to solve a nonlinear non-convex optimization problem, and

hence global convergence is not guaranteed. In the simula-

tions, the algorithm was run from several initial estimates and

the best result was chosen from these runs, but such a search

is clearly never exhaustive. Future research should investigate

more systematic ways to choose initial estimates. We also

plan to incorporate the presented path planning algorithm as

part of a global approach to path planning, e.g. based on

probabilistic roadmaps [16].

A second aspect that needs to be further addressed is the

required frequency and accuracy of position measurements

during needle insertion. These practical requirements influ-

ence the choice of discretization for the control input. More

switching instants in the path (more control freedom) will

generally imply more uncertainty and hence require more

measurements to be taken to verify the behavior of the

needle.

Another important issue is modeling uncertainty. Al-

terovitz et al. [8] presented a method explicitly incorporating

uncertainty in 2D motion planning, and it would be very

useful to extend this idea to the 3D case. Other modeling

aspects that could be added as extensions to the presented

approach include more general obstacles, deformable tissue,

and a periodically changing environment due to respiration

or cardiac motion.
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