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Abstract— In this paper, a new serial algorithm for high-
speed autofocusing of cells is proposed. The proposed algorithm
extracts depth information of target cells from their diffraction
patterns. High-speed focusing of yeast cells with 20 ms response
time was demonstrated. Continuous autofocusing of yeast cells
with a scanning microscope was also demonstrated. The suc-
cessful continuous autofocusing suggests that image-based high-
throughput measurement of cells could be realized using the
proposed algorithm.

I. INTRODUCTION

With the rapid development being seen in life sciences and

biotechnology, automated observation of cells and tissues

using microscopes is becoming increasingly important. A

critical step in such automated observation is autofocusing.

Since the depth of focus of microscopes is usually very

shallow, typically on the order of several micrometers, small

shifts in the depth direction cause the image of the specimen

to easily become out of focus. Thus, autofocusing is essential

to keep the object in focus for precise observation. Further-

more, major applications of such automated measurement,

such as image cytometry, require high throughput because the

number of target specimens tends to be enormous. Therefore,

high-speed operation is also important.

Many microscope focusing methods based on the spatial

frequency of the acquired image have been proposed [1], [2],

[3]. The best focal position providing the highest amount of

detail can be estimated from a so-called focus curve formed

by sampling the image to obtain a focus score and plotting

it against focal position in the depth direction. The best

focal position is then found by searching for the peak in

the focus curve. However, this sampling takes a considerable

amount of time because many images at many focal positions

must be individually acquired and processed. Assuming that

acquisition and processing of each image takes 40 ms [3] and

that 20 samples of the focus score are necessary to estimate

the focus curve, the entire autofocus process takes at least

0.8 s.

To solve this problem, Oku et al. proposed the “depth

from diffraction” (DFDi) method that estimates the depth

of a target cell based on its diffraction pattern [4]. The

performance of the proposed method was demonstrated by

applying it to three-dimensional tracking of a swimming

paramecium. Because this method uses only one defocused

image for the estimation, it is capable of high-speed focusing.
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Fig. 1. Diffraction images of yeast and paramecium cells at three focal
positions. The yeast cell has a spherical body about 5 µm in diameter.
Paramecium is a motile cell with an ellipsoidal body whose longitudinal
length is from 100 to 200 µm. The paramecium cell was held in a micro-
capillary to keep it in the field of view. In the case of the yeast cell, an
intensity variance was observed in the interior of the cell. For z < zf , no
clear inner fringe was observed in the yeast cell, but a bright inner area was
observed.

The image processing algorithm described in that study,

however, could handle only a single cell. To remove this

restriction, Makise et al. proposed an autofocusing algorithm

that could handle an image including multiple cells [5]

and demonstrated its application to high-speed focusing of

yeast cells. However, these image processing algorithms were

developed for specialized parallel vision systems [6], [7] with

parallel processing elements. Conventional computers with

single processors cannot run these algorithms.

In this paper, we propose a new serial image processing

algorithm to achieve high-speed autofocusing of cells. The

performance of the proposed algorithm was demonstrated by

quick autofocusing of yeast cells. The effectiveness of the al-

gorithm for high-speed measurement of cells was confirmed

by demonstrating dynamic autofocusing of a field-scanning

microscope that shifts its field of view automatically to

measure a large number of cells.

II. DEPTH FROM DIFFRACTION METHOD

Depth estimation of target cells is essential for autofocus-

ing. The “depth from diffraction” (DFDi) method estimates

their depth from just one defocused image by using optical

characteristics of cells.

Consider a cell observed with a microscope under Köhler

illumination [8]. When the target cell is in focus, a clear

image of the cell is observed. If we adjust the focus slightly

2008 IEEE International Conference on
Robotics and Automation
Pasadena, CA, USA, May 19-23, 2008

978-1-4244-1647-9/08/$25.00 ©2008 IEEE. 3124



Focal plane

Cell membrane

(a) (b)

Observed image

Z Z

Fig. 2. Relationship between focal plane position and features of the
acquired image. Two illustrations are shown to explain the diffraction pattern
generation qualitatively: (a) the object is in front of the focal plane and a
bright fringe appears inside the cell, or (b) the object is behind the focal
plane and a bright fringe appears outside the cell.

to defocus the image, bright and dark diffraction fringes can

be observed near the periphery of the cell. For example, Fig.

1 shows these fringes in images of paramecium and yeast

cells.

The mechanism of the diffraction pattern generation can

be explained qualitatively by modeling the cell as a spherical

shell. Fig. 2 shows a schematic diagram illustrating the

diffraction pattern generation. It is assumed that the cell is

illuminated by planar monochromatic light from the left, and

the incident light is refracted mainly by the cell membrane.

The membrane acts as a lens for the light rays that go through

the membrane but not through the inside of the cell. The cell

affects the rays in two ways. One set of rays passes through

the side of the cell (and not the center). These are deflected

inward. A second set of rays passes through one side of

the cell, the cell’s center, and then the other side. These are

deflected by only a small amount. Thus, when the focal plane

is behind the cell, we can observe a real image with a bright

fringe inside and a dark fringe outside. Conversely, when the

cell is behind the focal plane, we can observe a virtual image

with a bright fringe outside and a dark fringe inside.

Although the above discussion is based on paraxial rays,

Fresnel’s diffraction theory [9] should be adopted for a more

rigorous treatment of the phenomenon [4].

We concentrate on two useful characteristics of these

fringes: first, the interval of the fringes depends on the

distance between the focal plane and the target cell; and

second, the order of the bright and dark fringes depends

on the positional relationship between the focal plane and

the cell. These characteristics suggest that the depth of

the target cell could be estimated from a single defocused

image of the cell containing such diffraction fringes. A

similar phenomenon known as Becke lines is used in optical

mineralogy [10], [11] to determine the refractive index of a

transparent mineral.

Based on this idea, we previously proposed a new depth

estimation method using the diffraction fringes of a cell [4];

we called this method “depth-from-diffraction”, or DFDi.

Since this method can estimate the depth from only a single

defocused image, the depth estimation can be performed

extremely rapidly. Once the depth is estimated, focusing can

be easily realized by moving the focal plane to the estimated

Intensity

Cell Image

Average

Radial

Intensity Profile

Intensity

Radial Position

Average Radial

Intensity Profile

Fig. 3. Schematic diagram of the extraction process of the radial intensity
profiles and their average. Four radial intensity profiles are extracted for
each cell.

depth, or by moving the specimen to the focal plane.

Although we have confirmed the validity of the DFDi-

method only for paramecium (φ ∼ 100µm) and yeast (φ ∼

5µm) cells, we expect this method could be applied to many

spherical and ellipsoidal cells, as well as transparent micro-

beads.

Depth estimation methods of microscopic objects using

two cameras have also been studied by other groups [16],

[17]. In these methods, the optical path of a microscope

is split into two to acquire two images from different

viewpoints. However, splitting the optical path decreases

the intensity of the image. Since microscope images tend

to be quite dark to begin with, this may cause insufficient

intensity for observation. In contrast, the DFDi method could

be applied to a conventional microscope system with just one

computer vision sensor and a conventional mechanical stage.

Furthermore, note that an origin in the depth direction can

be defined on a physical basis using the DFDi method by

setting the origin at the focal depth where no bright or dark

fringes are observed. The focal plane should be located at the

depth where the cell membrane is parallel to the optical axis,

considering the mechanism of diffraction pattern generation

of a spherical cell shown in Fig. 2. This means that a three-

dimensional coordinate system of each cell can be defined

based on its shape, since a two-dimensional origin (in X and

Y directions) can be defined easily as the image centroid of

the cell, for example.

III. SERIAL IMAGE PROCESSING ALGORITHM

FOR DFDI

A serial image processing algorithm was developed to

estimate a specimen’s depth from its diffraction pattern. The

algorithm was developed based on the assumption that each

cell is spatially separated and not in contact with another

cell. This assumption is satisfied when the specimen is an

isolated floating cell, such as a blood or yeast cell. Even

when the target cells are in the form of tissue, some of

them can be dissociated into isolated cells using well-known

techniques, for example, by using enzymes or surfactants.

Thus, this assumption is realistic. In this study, yeast cells

were adopted as the specimen.

Three photographs in the upper row of Fig. 1 are yeast

images captured by a CCD camera mounted on the micro-

scope. The following features of the diffraction pattern can

be obtained from this figure.
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Fig. 4. Flow chart of the proposed image processing algorithm.

• When the specimen is farther from the objective lens

than the focal plane, the interior of the cell becomes

bright.

• When the specimen is nearer than the focal plane, a

bright fringe appears outside the cell.

Consider a half-line originating at the center of the cell. The

two features noted above indicate that the intensity profile

near the cell boundary along this half-line varies with the

profile shape, depending on the depth of the cell. Fig. 3

schematically illustrates the radial intensity profile, showing

that the cell depth can be estimated from this profile. Thus,

we concentrate on the radial intensity profile.

A. Cell boundary recognition

To extract the radial intensity profile, the algorithm needs

to recognize a single cell and its boundary. Our algorithm

extracts a single cell by extracting its boundary using a well-

known boundary tracing algorithm and Freeman chain code

[12], [13].

A captured microscope image A has a bright background

and dark cell boundaries, as shown in Fig. 4 (A). By

binarizing A with a suitable threshold, donut-shaped cell

boundaries B are obtained, as shown in Fig. 4 (B).

A pixel on a cell boundary is found by searching for a

pixel whose intensity was bright and whose left neighbor

pixel was dark, by raster scanning. The found pixel is called

the first boundary pixel a1.

The cell boundary on which pixel a1 is located is

traced using a well-known boundary tracing algorithm. Let
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Fig. 5. Schematic illustration of (a) boundary pixel search, and (b) example
of boundary tracing. Each square represents a pixel. White pixels are the
object, and gray pixels are the background.

a1, a2, · · · an be boundary pixels. The next boundary pixel

an+1 is searched for from all 8 neighbouring pixels of an.

The search path is in a clockwise direction and starts at the

next pixel for the previous pixel an−1, as shown in Fig. 5

(a). When a boundary pixel is found, that pixel is recognized

as the next pixel an+1. Then, treating an+1 as the new

current pixel, the algorithm proceeds in the same manner.

This tracing stops when the next boundary pixel am satisfies

am = a1.

The boundary is represented by a Freeman chain code

[12]. This chain code represents a boundary curve as a

sequence of connections between one pixel and its neighbors.

Eight vectors represent connections between one pixel and

its 8-neighbours, respectively. These vectors are coded as 0,

1, · · · 7 so that the curve can be represented by the sequence

of these numbers and the first boundary pixel, as shown in

Fig. 5 (b).

Each yeast cell becomes a donut-shaped pattern in the

binarized image B, as shown in Fig. 4 (B). This donut-shaped

pattern has two boundary curves forming the outer and

inner circular edges of the pattern. Although only the outer

boundary of the pattern is of interest, the inner boundary

might be detected by the boundary tracing process. To

prevent such incorrect detection, all of the pixels inside the

detected boundaries are marked as cell interior whenever the

boundary tracing ends so that only the outer boundaries of

cells are recognized. This also prevents redetection of another

pixel on the already detected cell boundary. Fig. 4 (M-1) and

(M-2) show the images of cell interior marks.

After marking the cell interiors, another pixel without

the cell interior mark is searched for by raster scanning. If

another boundary pixel is found, the same boundary tracing

process is performed in the same manner. The boundary

searching and tracing are repeated until the raster scanning

reaches the bottom-right pixel.

B. Extraction of the radial intensity profile

The radial intensity profiles of each cell are extracted after

the boundary recognition.

Each radial intensity profile is represented as a set of

intensity values of thirteen pixels. These pixels are selected

in order of their distance from the cell boundary, namely, -8, -

6, -4, 2, 0, 2, 4, 6, 8, 10, 12, 14, and 16. A negative distance

means that the pixel is outside the cell. The distances are

calculated from the cell center position and a given position
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Fig. 6. Block diagram of the experimental set-up (a), and a photograph of
the microscope with the XYZ stage (b). A slide glass including specimens
was fixed on the XYZ stage using a metal frame.

on the cell boundary. The center position of each cell is

calculated as the image centroid of its boundary pixels.

For each cell, four profiles are extracted so that an average

profile can be obtained to reduce noise included in the

intensity values, as shown in Fig. 3.

C. Depth estimation by linear regression

The depth of a cell is estimated by multiple linear regres-

sion of its average radial intensity profile. We assume that

the relationship between a cell’s depth and its average radial

intensity profile is linear and capable of being represented

by the following equation:

Z = c0 + c1i1 + c2i2 + · · · + c13i13, (1)

where Z is the depth of the target cell, i1, i2, · · · i13 are

the average radial intensity profiles, and c0, c1, · · · c13 are

coefficients of the linear regression. These coefficients are

calibrated using cell images captured at various depths.

IV. EXPERIMENTS

A. Experimental set-up

To verify the effectiveness of the proposed algorithm

experimentally, we developed the experimental set-up shown

in Fig. 6. The set-up consisted of an optical microscope

(BX50WI, Olympus), a computer vision system (Profile

Imager), an XYZ automated stage, a personal computer (PC)

for stage control, and another PC for image processing. Both

PCs were connected via a shared memory, allowing them to

communicate with each other.

A bright-field image of target cells with Köhler illumina-

tion was magnified with a 100-times objective lens (NA 0.95,

UMPlanFl, Olympus) and projected onto the vision system.

To realize high-speed focusing, the vision system must

be capable of high-speed image acquisition and processing.

Therefore, the vision system we adopted was the so-called

Profile Imager system developed by Hamamatsu Photonics

K. K. [14], a high-speed CMOS imager with adaptive readout

of a region-of-interest (ROI). In our experiment, the ROI was

set to 232×232 pixels at 1-kHz frame rate. The effective view

field of the Profile Imager was 46.4 × 46.4 µm.

The image processing PC included two dual-core Intel

Xeon 3.0-GHz processors running Microsoft Windows XP.

An image processing program was developed using the C++

TABLE I

SPECIFICATIONS OF THE XYZ AUTOMATED STAGE

Specifications X axis Y axis Z axis

Stroke 25 mm 25 mm 10 mm
Sensor resolution 0.25 µm 0.25 µm 0.25 µm

Repeatability ±1 µm ±1 µm ±1 µm

language with an Intel C++ compiler and Microsoft Visual

Studio. The PC could execute all image processing algo-

rithms, including binarization, boundary detection, extraction

of radial intensity profiles, and depth estimation, within 1 ms

when the 232×232 grayscale image included one yeast cell.

The estimated depth information was transmitted to the

other stage control PC having an Intel Pentium4 3.2-GHz

processor running a real-time OS (ART-Linux, Moving Eye).

This PC controlled the position of the XYZ stage to the

desired position. The control period was 1 ms.

A slide including the yeast cells was fixed on the XYZ

stage so that its position could be controlled in three di-

mensions. The stage’s specifications are shown in Table IV-

A. The step response time of all axes was around 50 ms.

All axes were actuated by AC servomotors (HF-KP053(B),

Mitsubishi Electric) driven by AC servo amplifiers (MR-J3-

10A, Mitsubishi Electric).

B. Depth estimation using radial intensity profiles

The average radial intensity profiles of a yeast cell were

measured at various depths to confirm that the profiles

actually depended on the depth of the cell. This experiment

required high positional resolution in the depth direction.

Thus, we used a piezoelectric stage (P-731.10, PI GmbH &

Co. KG.) that had a high positional resolution of <1.0 nm

instead of the XYZ stage. The piezoelectric stage was used

for the experiments described in IV-B and IV-C.

A yeast cell was held on a slide glass with its medium

covered by a cover glass. The cell was placed at the center

of the field of view of the microscope. The radial intensity

profiles were measured by scanning the depth of the cell

from -6 µm to +6 µm in 0.1 µm steps. The depth origin

was defined as the depth when an observer recognized that

the cell was in focus. Positive depth means that the cell

was nearer the objective lens than the focal plane of the

microscope.

Fig. 7 shows three of the measured profiles at -4, 0, and

+4 µm in depth. The following characteristics were obtained

from this figure.

• When the cell was in focus, the intensities of pixels

outside the cell and those of pixels inside the cell were

almost identical.

• When the cell depth was +4 µm, the outside of the cell

was brighter than the inside.

• When the cell depth was -4 µm, the inside of the cell

was brighter than the outside.

The results confirmed that the profile depended on the depth

of the cell.

The linear regression coefficients were estimated from the

measured radial intensity profiles using the least squares
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Fig. 8. Estimated depth of the yeast cell versus its actual depth.

method. Fig. 8 shows the estimated depth profile versus the

actual depth of the target cell. The maximum residual was

about 1 µm, almost the same as the typical depth of focus

of the microscope. Thus, the assumed model was sufficiently

valid for microscope autofocusing.

C. High-speed autofocusing

An autofocusing experiment involving yeast cells was

conducted to confirm the high-speed focusing ability of the

proposed algorithm.

In this experiment, the image processing PC captured an

image of the cells and estimated their depth. The estimated

depth was transmitted to the control PC, which then con-

trolled the Z position of the specimens so that they were in

focus.

To evaluate the autofocusing speed, a step response of the

depth was measured. First, average radial intensity profiles of

yeast cells at various depths were measured to calibrate the

linear regression coefficients. Next, the cells were defocused

by -5 µm initially. Then, autofocus control was started at

time t = 0.

The focusing speed was evaluated as a settling time of the

response. Fig.9 shows the step response of the depth of the
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Fig. 9. Step response of the cell depth.

target. The settling time was about 20 ms, though the depth

estimation took only 1 ms. The residual response time was

due to the step response time of the piezo stage. The settling

time was much shorter than the typical response time of 0.8

s of conventional autofocus systems.

D. Continuous autofocusing for a scanning microscope

The developed autofocusing algorithm was applied to a

scanning microscope to show its effectiveness in a realistic

application. When the number of specimens is large, it

is impossible to observe all specimens in a static field

of view of a microscope due to the limited resolution of

the microscope or camera. A scanning microscope solves

this problem by moving its field of view to observe the

specimen as a sequence of images. Scanning microscopes

are commonly used in the field of cytometry [15].

Autofocusing is essential for the scanning microscope to

obtain a precise image of the specimen. It is not possible to

maintain focus simply by determining the best focus depth

at two points on a microscope slide and scanning along the

line between them in three-dimensional space [1]. There may

be many reasons for this, including mechanical instability of

the microscope and irregularity of the glass slide surface.

The purpose of this experiment was to keep the cells in

focus while scanning the field. A slide glass holding many

yeast cells was fixed on the XYZ-stage described in IV-A.

When one or more cell(s) was included in the image

captured by the profile sensor, the depth of a cell located

at the upper-leftmost position in the image was estimated.

The Z axis of the stage was controlled to bring the estimated

cell into focus according to the estimated depth. When no

cell was in the image, the Z-axis was controlled to keep

the previous position. The X- and Y-axes were controlled to

scan a given rectangular outline at a constant velocity of 250

µm/s. This velocity corresponded to 5.4 widths of the field

per second in our experimental set-up. The linear regression

coefficients were previously estimated for a typical yeast

cell with the same illumination conditions adopted in this

experiment.

Fig. 10 shows the images captured while focusing cells

entering the field of view. When two cells entered the field
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Fig. 10. Images captured by the profile imager while focusing cells entering
the field of view.
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Fig. 11. Trajectory of the Z-axis position. Points denoted by letters
correspond to the images shown in Fig. 10

of view shown in Fig. 10 (a), they were not focused. The

autofocusing was started when the right cell had entered the

field completely in (b). Upon completion of autofocusing,

the two cells were in focus (f). Fig. 11 shows the trajectory

of the Z-axis during this focusing. The stage was kept at its

depth position after the cells were in focus (t > 40ms). A

video of this experiment is also available [18].

By using our autofocusing algorithm, a scanning micro-

scope could scan the field at high speed while keeping

the specimen in focus. This suggested that image-based

high-throughput measurement or screening of cells could be

realized using a scanning microscope.

Current high-throughput cytometers, such as flow cytome-

ters, cannot recognize spatial information, such as the protein

distribution in a cell. This drawback could be overcome by

using the proposed algorithm.

V. CONCLUSION

In this paper, a new serial algorithm for high-speed auto-

focusing of cells was proposed. The proposed algorithm ex-

tracts depth information of target cells from their diffraction

patterns based on the depth-from-diffraction (DFDi) method.

High-speed focusing of yeast cells with 20-ms response

time was demonstrated. The algorithm was also applied

to the continuous autofocusing of a scanning microscope.

The successful continuous autofocusing suggests that image-

based high-throughput measurement of cells could be real-

ized using the proposed algorithm.
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