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Abstract— An efficient method for global robot localization
in a memory of omnidirectional images is presented. This
method is valid for indoor and outdoor environments and not
restricted to mobile robots. The proposed strategy is purely
vision-based and uses as reference a set of prerecorded images
(visual memory). The localization consists on finding in the
visual memory the image which best fits the current image. We
propose a hierarchical process combining global descriptors
computed onto cubic interpolation of triangular mesh and
patches correlation around Harris corners. To evaluate this
method, three large images data sets have been used. Results
of the proposed method are compared with those obtained from
state-of-the-art techniques by means of 1) accuracy, 2) amount
of memorized data required per image and 3) computational
cost. The proposed method shows the best compromise in term
of those criteria.

I. INTRODUCTION

Several recent publications have focused on using visual

references as environment representation (visual memory)

for mobile robot navigation [1], [2]. In this representation,

images of the robot workspace are acquired during a learning

stage and memorized. The data set can be topologically

organized as in [1] or it can contain some additional metric

information as in [3]. The first step during a navigation

process is the self localization of the robot in this map of

the environment. The localization consists on finding the

image of the memory which best fits the current image by

comparing pre-processed and on-line acquired images.

The work presented in this paper is focused on the local-

ization onto an omnidirectional images memory. Omnidirec-

tional vision is usefull in many robotic applications because it

provides a large field-of-view of the environment. However,

it exhibits some supplementary difficulties compared to con-

ventional perspective images. Such images can be acquired

by fisheye or by catadioptric cameras, which have a similar

behaviour as demonstrated in [4].

The efficiency of a visual localization method can be mea-

sured by means of: 1) accuracy of the results, 2) memory

needed to store data and 3) computational cost. The main

objective of the work presented in this paper is to optimize

the localization process under those criteria.

The methods consist on matching the current image with all

the images of the memory. Two main strategies exist to match

images: the image can be represented by a single descriptor

(global approaches) [5], [6] or alternatively by a set of

descriptors defined around visual features (landmarks-based

or local approaches) [7], [8], [2]. Some hybrid approaches

consisting on globally describing a subset of the image have

also been proposed in order to be more robust to occlusions

than global methods [9].

In one hand, local approaches are generally more accurate

but have a high computational cost [2]. On the other hand,

global descriptors speed up the matching process at the

price of affecting the robustness to occlusions. One solution

consists on using a hierarchical approach which combines

the advantages of both methods [10]. In a first step, global

descriptors allow to select only some possible images and

then, if necessary, local descriptors are used to keep the

best image. The proposed global descriptor is based on a

cubic interpolation of the image with a triangular mesh. This

descriptor has a low computational cost and provides good

results with an acceptable amount of memorized data. This

approach is combined with a classical patches correlation

around Harris corners which gives accurate results with a

low computational cost. The results of our experimental com-

parisons with state-of-the-art techniques show that the best

compromise between computational efficiency and accuracy

is obtained with this proposed method.

This paper is organized as follow. Existing approaches are

presented in Section II. The proposed approach is detailled

in Section III. Finally, experiments have been performed

with different dense datasets. Our approach is compared with

other methods by means of the given criteria in Section IV.

II. OMNIDIRECTIONAL IMAGES DESCRIPTORS

This section briefly reviews global and local descriptors

for localization in a memory of omnidirectional images.

A. Global descriptors

A first solution is to globally describe the image. In that

aim, omnidirectional images are mapped onto cylindrical

images of size 128×32 in [5]. The image is directly de-

scribed by the gray level values. In [11], a shift invariant

representation is computed by rotating the cylindrical image

in a reference direction. Unfortunately, this direction is not
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absolute as soon as occlusions appear. In order to decrease

the size of the memorized data, images can be represented

by their eigen vectors using Principal Component Analysis

as proposed in [12]. Unfortunately, when a new image is

integrated in the memory, all eigen vectors have to be re-

computed. This process is very complex and it has a very

high computational cost. Moreover those methods are not

robust to changes of the environment.

The histogram of the gray level values is largely employed

as global signature. Its computation is efficient and it is

rotation-invariant. However, histogram methods are sensitive

to change of light conditions. Blaer et Allen [13] propose

color histograms for outdoor scene localization. A normal-

ization process is applied before computing the histograms

in order to reduce the illumination variations.

In [6], a global descriptor based on a polar version of high-

order local autocorrelation functions (PHLAC) is proposed.

It is based on a set of 35 local masks applied to the image

by convolution. Similarly to histogram, this descriptor is

rotation-invariant.

B. Local descriptors

Global descriptor-based methods are generally less robust

to occlusion compared to landmark-based methods. In those

last methods, some relevant visual features are extracted from

the images. A descriptor is then associated to each feature

neighbourhood. The robustness of the extraction and the

invariance of the descriptor are one main issue to improve

the matching process. We can sort the approaches into two

main categories. In the first category, the feature detection

and description designed for images acquired by perspective

cameras are directly employed with omnidirectional images.

The second category takes the geometry of the sensor into

account and thus uses operators designed for omnidirectional

images. The most popular visual features used in the context

of localization in an image database are projected points.

However, projected lines can also be exploited as proposed

in [14].

1) Perspective-based local descriptor: The Scale Invari-

ant Feature Transform (SIFT, [15]) has been shown to give

the best results in the case of images acquired with per-

spective cameras. The SIFT descriptor is a set of histograms

of gradient orientations of the normalized (with respect to

orientation and scale) Difference of Gaussian images. In

view of the effectiveness of this descriptor, several extensions

have been proposed. It has been used with omnidirectional

images in [7]. Given that many points are detected in an

omnidirectional image, Tamimi et al. [8] proposed an iter-

ative SIFT with a lower computational cost. In [16], points

are detected with a Sobel filter and described by a Modified

Scale Invariant Feature Transform (M-SIFT) signature. This

signature slightly takes into account the geometry of the om-

nidirectional sensor by rotating the patch around an interest

point. In [2], the Speeded Up Robust Features (SURF) are

employed as descriptors. SURF points are detected using the

Hessian matrix of the image convolued with box filters and

the descriptor is computed thanks to Haar-wavelet extraction.

The computational cost of this descriptor is much lower than

the one obtained for SIFT.

Unfortunately, those signatures describe a local neighbour-

hood around interest points and do not take into account the

high distortions caused by the geometry of the omnidirec-

tional cameras.

2) Descriptors adapted to omnidirectional images: In

the second category, detection and description processes

are specially designed to take into account those high

distortions. In [17], [18], a classical Harris corner detector

is proposed but the shape and the size of a patch around a

feature is modified according to the position of the point

and to the geometry of the catadioptric sensor. Finally,

a standard 2D correlation (respectively a centered and

normalized cross correlation) is applied to the patches in

[17] (respectively in [18]).

After computing the descriptors of the current and mem-

orized images, those descriptors have to be matched. For

local approaches, this step is generally based on Pyramidal

matching as in [14] or on Nearest Neighbour matching as in

[15]. This last algorithm considers that a matching is correct

if the ratio between the distances of the first and second

nearest neighbours is below a threshold.

It is possible to eliminate wrong matching through the

recovery of the epipolar geometry between two views [19] at

the price of higher computational cost. A full reconstruction

can also be obtained with three views and the 1D trifocal

tensor as proposed in [20].

C. Hybrid descriptor

Some hybrid descriptor have been designed to combine

the advantages of the two previously cited categories (local

and global approaches) by globally describing subsets of

the image. In [9], five histograms of the first and second

orders derivatives of the grey-level image are considered.

Instead of the whole image, the image is decomposed into

rings (refer to Fig. 1(a)). In one hand, a decomposition

into few rings decreases the accuracy. On the other hand,

increasing the number of rings increases the computational

cost and decreases the robustness to occlusions. In [12], the

image is first projected onto an englobing cylinder and a grid

decomposition is then proposed. This projection step is time

consuming and it implies the modification of the quality of

the image which can lead to less accurate localization results.

The proposed approach detailled in the next section allows

to obtain equal size subregions by using triangular mesh

(refer to Fig. 1(c)). In the experimental results (Section IV),

an angular sector decomposition (Fig. 1(b)) has also been

considered for comparison purposes.

III. PROPOSED APPROACH: CUBIC INTERPOLATION AND

ZNCC AROUND HARRIS CORNERS

We propose a new hierarchical approach for localization

in a database of omnidirectional images. The computational

efficiency is ensured in a first step by defining a well suited

global descriptor which allows to select a set of candidate
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(a) (b) (c)

Fig. 1. Different subregions decomposition: (a) rings, (b) angular sectors,
(c) triangular mesh
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Fig. 2. The proposed hierarchical approach

images. Local descriptors are then exploited to select only

the best image and thus to ensure accuracy. This principle is

summarized in Fig. 2.

The global descriptor is based on a cubic interpolation of

the image, with the nodes of the triangular mesh as control

point. The local descriptor is based on the neighbourhood of

Harris corners.

A. Proposed global descriptor

In order to be more robust to occlusions, we propose a

new approach which can be classified as an hybrid global

method. In hybrid methods, images are divided into s
subregions. After this decomposition step, each subregion

is globally described by a d-dimensional vector. The size

of the obtained descriptor is s × d. The major drawback of

those approaches is that subregions are seen as independant

zones while a continuous change exists between two

contiguous regions. Based on this observation, we propose

to use a geometrical image representation derived from

surface interpolation.

Subregion decomposition: In order to have

approximately the same quantity of information for each

subregion (similarly to square decomposition for perspective

images), a triangular mesh is employed (see Fig. 1(c)). In

this decomposition, nodes are approximately equidistant

one-by-one and the obtained triangles cover the same area.

We use the triangular mesh generator proposed in [21]. The

technique is based on the analogy between a simplex mesh

and a truss structure. Meshpoints {P1 , P2 , . . . Pp} are

nodes of the truss and segments between two meshpoints

are bars. An appropriate force-displacement function is

applied to the bars at each iteration. This function takes into

account the internal force due to the bars and the external

force due to the boundaries. Node locations Pi = [xi yi]
are computed by solving for equilibrium in a truss structure

using piecewise linear force-displacement relations. Those

nodes {P1 , P2 , . . . Pp} will be employed as control points

(a)

(b)

Fig. 3. (a) Image and (b) same image as a surface, with the control points
of the interpolated surface (small circles)

for the surface interpolation.

Surface interpolation: Images have first their histogram

equalized in order to be more robust to illumination changes.

A grey-level image can be seen as a 3D surface with the grey

level as the third coordinates (refer to Fig. 3):

I :

{

[0, 1, . . . , N ] × [0, 1, . . . , M ] 7→ [0, 255]
(u, v) → I(u, v)

The interpolation consists on locally approximating this sur-

face I(u, v) by a surface f(s, t), s ∈ [0; 1] , t ∈ [0; 1]. Many

interpolation techniques exist: linear, cubic, bicubic, nearest

neighbour. . . . All techniques are considering control points

(plotted in Fig. 3(b)). In order to compare descriptors of

different images, it is necessary to have control points at the

same positions. Moreover, regular positions ensure a better

interpolation. In that aim, we propose to use the triangular

mesh vertices presented previously as control points and the

altitude Z of the control points of the approximated surface as

descriptors. The surface is interpolated by a cubic function.

The required computational cost is low and interpolation

errors are small.

B. First selection

Descriptor Zc (respectively Zi) is computed for the current

image Ic (respectively for the memorized image Ii). The

distance between those two images is di = d(Ic, Ii) =
‖Zi−Zc‖. The chosen distance is the L1 distance: d(Zc,Zi) =
∑d

k=1 |Zc,k − Zi,k| where Zc,k (respectively Zi,k) corre-

sponds to the kth element of the descriptor of the image Ic

(respectively Ii). The best memorized image corresponds to
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the image with the minimum distance dmin. Kept candidate

images are such that di

dmin

≤ t where the threshold t ≥ 1
allows to not reject the images which have a distance similar

to dmin. If the number of candidate images is upper than 1,

a matching based on local descriptors is then applied for

those selected images. Else, the result of the localization is

the image Ik such that dk = mini(di).

C. Local descriptor

The two main local descriptors approaches are the SIFT

[7] and the SURF [2]. As already mentionned, those ap-

proaches do not take into account the geometry of the omni-

directional sensor. If two omnidirectional images have been

taken approximately at the same position, those descriptors

are efficient whereas it is not the case for images taken

at distant positions. As we will see in the next section,

a classical local approach based on the Zero Normalized

Cross Correlation (ZNCC) between patches around Harris

corners has a lower computational cost than SIFT or SURF

and similar accuracy when images corresponding to closed

viewpoints are considered. The distance between two images

is di = d(Ic, Ii) = 1/(number of matched features). The

final result of the localization is the image Ik such that

dk = mini(di).

IV. LOCALIZATION EXPERIMENTS

The performance of the method proposed in the last

section is shown for the localization in three large sets of

images by means of accuracy, amount of memorized data

required per image and computational cost. Best results for

a given criteria are set in bold type and worse results in

italic. The results of the proposed method are given in the

last raw of each table.

The cubic interpolation approach (Cub) is compared with

PHLAC [6] (PHLAC) and Gonzalez [9] (Gonz) methods.

It is also compared with three other global approaches:

using the mean gray level for each angular sector (Sect)

or for each triangular region (Triang), or representing each

sector by the histogram of gray level values (HistoSect).

The local approach CorrHar as proposed and successfully

employed in [3] is compared with SIFT (SIFT) and SURF

(SURF) methods. Finally, the proposed hierarchical method

(CubCorrHar) is compared with the other approaches

and with the hierarchical approach consisting of a sector

decomposition Sector and then CorrHar (SectCorrHar).

SIFT 128-dimensional descriptors are computed with the

C demo code of D. Lowe and SURF 64-dimensional

descriptors with the C++ code provided by the authors. The

matching is based on a Nearest Neighbour matching. For

CubHarris, around 500 Harris points neighbourhoods are

matched with the same C++ code as used in [3].

Three data sets are used: Almere, UAV and Walking data

sets. Almere data set was provided for the workshop [22].

It contains images of size 1024×768 pixels acquired by a

catadioptric camera pointing to the ceil and embedded onto

a mobile robot navigating in a typical house environment

with people walking around. As in [2], every 5th frame are

extracted for the experiments: half for reference and the other

half for testing. The number of test images is 978. UAV data

set contains images of size 384×288 pixels taken by a fisheye

camera embedded onto a X4-flyer UAV navigating in an

indoor environment. The camera points a third to the ground,

a third to the ceil and the other third forward. One frame

every 5 frames is extracted for the experiments (reference)

and one frame every 20 frames with an offset for testing. The

number of test images is 188. Finally, Walk data set contains

images of size 640×480 pixels taken by a fisheye camera

carried by a human in different environments into or nearby

our laboratory. The number of test images is 445. Contrary

to the other data sets, test images come from an other walk,

during an other day thus conditions are different between the

training and the navigation steps. This method provide thus

more realistic conditions.

A. Required memory size

Tab.I shows the needed memory for the descriptors used

in the sequel. For the local methods, the dimension of a

descriptor depends on the number of detected features and

of the size of a patch descriptor. Excepted for the PHLAC, all

global descriptors depend on the sub-region decomposition.

Almere dataset UAV dataset Walk dataset

B&W image 768 Kb 108 Kb 300 Kb

SIFT 1 100 Kb 440 Kb 800 Kb
SURF 240 Kb 80 Kb 150 Kb

Gonz 0.3 Kb 0.3 Kb 0.3 Kb
PHLAC 0.45 Kb 0.45 Kb 0.45 Kb
Sect 0.9 Kb 0.9 Kb 0.9 Kb
CorrHar 8 Kb 8 Kb 8 Kb
Triang 3.4 Kb 3.8 Kb 3.8 Kb

Cub 2.2 Kb 2.4 Kb 2.4 Kb

TABLE I

APPROXIMATIVE REQUIRED MEMORY FOR DIFFERENT DESCRIPTORS

Local descriptors are much bigger than global descriptors.

A higher computational time is thus expected for those

approaches. The SIFT descriptors are approximately 5 times

bigger than the SURF descriptors. Gonz and PHLAC require

small memory. The size of cubic descriptor remains reason-

able.

B. Global descriptor performances

The performances of the global descriptors are detailled

in Tab. II where:

• GM is the percentage of tests where the correct image

is found

• GCM indicates the percentage of tests where the correct

image belongs to the set of selected images. For a

hierarchical approach, this is the main indicator in term

of accuracy. It is compared to the GCM of the cubic

approach GCMC thanks to the ratio rg=GCM/GCMC .
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• t indicates the needed computational cost measured in

seconds and it is compared with the computational cost

of the cubic approach tC by means of the ratio rt=t/tC .

• extr. is the mean number of kept images and is also

important for computational cost issue since the second

step of hierarchical approaches is applied only on these

images.

GM(%) GCM(%) rg(%) t(s) rt extr.

Almere dataset

Sect 62.7 62.8 70.5 0.55 4.58 1
HistoSect 90.1 94.4 105.9 4.58 38.16 1.26

Triang 90.5 90.5 101.6 0.38 3.16 1
PHLAC 27.8 32.7 36.6 0.47 3.91 1.27

Gonz 86.9 88.5 99.3 4.09 34.08 1.07

Cub 89 89.1 100 0.12 1 1

UAV dataset

Sect 94.1 94.1 96.7 0.1 2.5 1
HistoSect 84 94.1 96.7 1.45 36.25 1.68

Triang 96.8 96.8 99.1 0.11 2.75 1
PHLAC 42 48.9 50.2 0.12 3 1.2
Gonz 83.5 86.1 88.5 0.53 13.25 1.11

Cub 97.3 97.3 100 0.04 1 1

Walk dataset

Sect 80.8 81.1 96.7 0.28 2 1
HistoSect 69.2 86.9 103.7 4.49 32.07 2.82

Triang 83.8 83.8 100 0.28 2 1
PHLAC 22.6 28 33.5 0.25 1.78 1.5

Cub 83.1 83.8 100 0.14 1 1

TABLE II

COMPARISON OF THE GLOBAL DESCRIPTORS

As detailled in Tab.II, the GCM corresponding to PHLAC

and Gonz approaches are very low. HistoSect is the more

accurate in term of GCM-indicator for Almere and Walk

data sets. Unfortunately, the number of kept images extr. is

relatively high. Moreover, this approach as a high t-indicator.

Triang gives good results for Almere and Walk data sets

but it has a higher computational cost than Cub approach.

The cubic interpolation Cub gives the best results for UAV

data set and it is the best compromise between accuracy,

computational cost and number of kept images for Almere

and Walk data sets.

C. Local descriptor performances

SURF, SIFT and CubHarris are considered. The two

main aspects are: the percentage (GM) which measures

the accuracy of the method and the computational cost t.

Execution times are compared with results of CubHarris

with the ratio: rt=t/tCorrHar.

SIFT gives the best results for Almere and Walk data

sets but the computational cost is very high (as expected).

SURF is computed approximately 7 times faster than SIFT.

For UAV and Walk data sets, the execution time of SURF

and CubHarris is similar. CubHarris gives the best results

in UAV data set and it is the best compromise between

computational cost and accuracy.

D. All descriptors

In view of Sections IV-B and IV-C, a hierarchical

approach based on a cubic interpolation in a first step

GM(%) t(s) rt

Almere dataset

SURF 93.4 4 0.43
SIFT 93.6 31.5 3.46

CorrHar 91.5 9.1 1

UAV dataset

SURF 91.4 1 0.83
SIFT 90.4 7.1 5.91

CorrHar 96.8 1.2 1

Walk dataset

SURF 88.7 8.5 0.89
SIFT 92.5 152.1 16.01

CorrHar 91.2 9.5 1

TABLE III

COMPARISON OF THE LOCAL DESCRIPTORS.

and on CubHarris in a second step seems to be the best

localization approach in terms of accuracy and efficiency.

An example of image retrieval (Walk dataset) is shown in

Fig. 4. Only some successive images of the database are

presented for clarity. The test image is given in Fig. 4(a).

The expected localization result is I17 (Fig. 4(g)) and the

actual results are: I13 for SIFT, I14 for SURF, I15 for Gonz,

I17 for CubCorrHar and I25 for PHLAC.

The whole results are presented in Tab. IV where GM and

t are defined in Section IV-B. Comparisons with results of the

proposed hierarchical method (CubCorrHar) are given with

the ratio: rg=GM/GMCubCorrHar and rt=t/tCubCorrHar .

SIFT gives the best results for Almere and Walk data sets

but it has a very high computational cost. SURF is a good

compromise for Almere data set but is less accurate for the

two other data sets. Considering the whole data sets, Cub-

CorrHar gives the best compromise between computational

time and accuracy.

V. CONCLUSION

A new efficient localization method in a memory of om-

nidirectional images has been proposed. It combines global

descriptors computed onto cubic interpolation of triangu-

lar mesh which is computationally efficient and patches

correlation around Harris corners to ensure accuracy. This

method has been compared to state-of-the-art techniques.

The obtained results show that the proposed method is the

best compromise between accuracy, amount of memorized

data and computational cost.

Future work will be devoted to combine this approach with

partial 3D reconstruction technique for metric localization.
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