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Abstract— This paper deals with localization of a mobile
robot using received signal strength indicator (RSSI) in low
power IEEE 802.15.4 conform wireless communication in an
outdoor environment. Hardware modifications are derived to
reduce the radio irregularity and to increase the uniqueness of
the measured RSSI to distance. A novel algorithm is elaborated
allowing for sub meter accuracy. It accounts for the noise and
implicitly models the uncertainty. Additionally it is robust to
node failures. To further improve the accuracy a particle filter
is employed to perform probabilistic sensor fusion of odometry,
ultrasonic and RSSI sensors and a map. The suitability of this
approach is shown with real measurements achieving a mean
positioning error of 0.32m.

I. INTRODUCTION

Due to the progress in computing technology the intelli-
gence of the devices in our environment is continuously in-
creasing. They start to communicate with each other, sharing
their resources as services, making wireless communication
a critical component. Further the intelligent devices are
aware of the context, one important aspect of which is the
location. A lot of research efforts have been invested into the
development of localization systems to enable location based
services [1]. Many of them utilize networking technology
such as WLAN, Bluetooth or UWB to determine the position
of a device.

Localization is also one of the fundamental problems in
mobile robotics. The expense of the existing localization
approaches utilizing sophisticated hardware such as laser-
scanners or omnidirectional cameras, which require high
computational resources, is currently not salable for con-
sumer products. In this work the approach of the ubiquitous
robot [2] is adopted. The ubiquitous robot utilizes infras-
tructure resources such as the networking components to
accomplish its tasks and to provide services to the user. This
way resources can be utilized by multiple entities in space
simultaneously, decreasing the cost of the overall system.
At the same time the quality of the services improves. For
example using wireless networking technology for localiza-
tion increases its robustness due to the absolute reference
without increasing the cost, since the networking component
is required for communication purposes in any case. This
applies especially in the case of using the received signal
strength indicator (RSSI), which signifies the power of a
received radio signal. In theory the power of a radio wave
decreases with the square of the distance from the transmitter
under line of sight conditions. This relationship allows to
deduce the position of the receiver. In practice this is impeded
by radio irregularities.

This paper analyzes the suitability of the RSSI based local-
ization for mobile robot navigation. The target environment is
a common garden. Possible tasks of the robot might be irriga-
tion, lawn mowing or fertilizing. Due to the recent advances
in MEMS technology many miniature sensors are likely to be
installed in the garden for plant monitoring, weather forecast
or surveillance. These sensors conveniently use wireless links
for communication. The employed open standard specified
by the IEEE 802.15.4 defines a communication protocol with
low data rate, low power and cost using the license free
2.4 GHz frequency. It also implements adhoc connectivity
allowing a mobile node to connect with other nodes in its
vicinity.

The paper is organized as follows. First related work
is depicted in section II. Then hardware modifications are
derived to reduce the radio irregularity in section III. Based
on the improved radio characteristic a new algorithm is
developed in IV. To further increase the accuracy of the
localization, particle filter based fusion of ultrasonic data
and a map is performed. This is depicted in section V.
Results of experiments conducted in the target environment
are presented in section VI. The paper closes with concluding
remarks in section VII.

II. RELATED WORK

Since the received signal strength is available without
any additional hardware, there have been a lot of research
activities during the last years, thoroughly investigating its
use for localization.

A. Analysis of the RSSI variability

The main problem of localization by means of received
signal strength is its high irregularity mainly caused by
the nature of the radio signal. Researchers working on
RSSI based localization are aware of this problem and have
considered it in their algorithms. But only a few hardware
measures have been proposed. Andreas Savvides et al. have
identified the RF channel with its multipath and shadowing
effects, the transmitter and the receiver variability and the
antenna orientation as the main sources of RSSI variability
[3]. As a measure to minimize multipath they propose an
increase of the antenna height.

Sungwon Yang and Hojung Cha have investigated the
influence of the antenna length on the radiation pattern [4].
They have found that monopole antennas with the length
5
8λ, where λ is the wave length, have a more isotropic
radiation patterns than a common 1

4λ antenna. Since the
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antennas eigen frequency does not meet the signal frequency
they increase the gain by means of a loading coil. Further
they raise the antenna apart from the board circuit to avoid
electrical interference.

J. Ma et al found that lower communication frequency and
constant battery voltage have a positive effect on the variance
of the RSSI [5].

B. Algorithms to derive the position

Many different techniques have been proposed to derive
the position from the RSSI measurement. In the centroid
algorithm [6] the mobile node infers proximity to a collection
of reference nodes, for which the respective connectivity
metrics exceeds a preset threshold. The position is then
calculated as the centroid of the positions of these reference
nodes. Tian, H. et al. have developed the APIT algorithm[7],
which uses the Point-In-Triangulation Test for all combina-
tions of reference nodes within the communication range.
The unknown position is then calculated as the centroid
of the intersection of all of the triangles in which a node
resides. Another approach applies the maximum likelihood
estimation (MLE) incorporating a radio propagation model
to deduce the distance from the measured RSSI. The esti-
mated position is the one which minimizes the error for the
multilateration of the distances. Masashi Sugano et al. use
this method to derive the position of a mobile node in an
indoor environment [8]. They use a high deployment density
of 0.27 nodes/m2 to obtain an accuracy between 1.5 and 2m.
Hyunggi Cho et al. assume the variability of the RSSI to be
gaussian [9]. They use the conjugate gradient algorithm to
find the position with the maximum likelihood. Experiments
in an indoor area of 8x9 m yield a mean location error of
1.6m.

A different approach is taken by Kiran Yedavalli et al.
They have elaborated the Ecolocation algorithm [10] and its
further development sequence-based localization (SBL) [11].
The basic idea is to use the relative distances to reference
nodes defining areas with unique descending sequences.
Since the RSSI relates to the distance, the position of the
target node can be found forming the sequence of ascending
measured RSSI values. This algorithm is robust to RSSI
variability, but has an inherent limit regarding the resolution
of the position. The authors report an average localization
error of 1.22m for outdoor settings. They also show that
their method outperforms the centroid, the APIT and the
MLE algorithms.

Another methodology for localization using the RSSI is
the scene analysis. This approach considers the irregularity
of the radio signal strength by building databases, which
assign each location a vector containing the RSSI values
of all nodes within communication range. This way each
position obtains a unique fingerprint. To find the position
of the target node the database is searched for the closest
fingerprint to the current RSSI vector. This approach is taken
by the RADAR System [12], which achieves an average error
of approximately 2m. Brian Ferris et al. additionally model
the RSSI variability as a gaussian process [13]. They report
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Fig. 1. Hardware Setup

an average localization error of 2.12 m over a large indoor
area spread over different floors. The main drawback of the
scene analysis is the need for an initialization phase prior to
real time localization to record the fingerprints. This needs to
be repeated once the environment changes. Further the size
of the fingerprint database can become very large limiting the
suitability of this technique for decentralized localization. A
solution to this problem is presented by Konrad Lorincz and
Matt Welsh [14] by distributing the database to the reference
nodes. They were able to achieve a mean localization of 2m.

C. Probabilistic methods

Probabilistic sensor fusion methods can be used to incor-
porate other informations such as sensor data or building
maps to increase the accuracy of the localization. Brian
Ferris et al. use a particle filter and define probabilities for
different space transitions to factor the building layout into
the localization [13]. They achieve an improvement of the
localization accuracy of 20%. Researchers at the University
of Karlsruhe have employed a particle filter to fuse RSSI data
with an accelerometer and a map [15]. By this means they
achieve an improvement of the localization accuracy of 30%.
To our knowledge no such approaches were adopted and
no comparable accuracy data is available for mobile robot
localization incorporating RSSI data.

III. MEASURES TO DECREASE SIGNAL STRENGTH
VARIABILITY

This section describes the setup of the localization system
and the hardware modifications to reduce the RSSI variabil-
ity.

A. Basic setup of the system

The basic setup is shown in Fig. 1(a). N transmitters serve
as reference nodes. Each node ni with 1 ≤ i ≤ N is attached
to an extendable post at a known positions xr,i in the garden
in a gridlike fashion. The mobile node nm is installed on
top of the mobile robot and connected via UART interface
to a mobile computer. The absorbing plate is used to cope
with multipath effects and will be explained in detail below.
In order to get reference data an optical tracking system
measures the position and orientation of the robot with high
accuracy in the range of millimeters. XBee Pro Modules
shown in Fig. 1(b) are used as an integrated RF solution.
The modules include MC13193 RF chip by Freescale, which
is compliant to the IEEE 802.15.4 norm. In order to obtain
a RSSI value Ri from a reference node ni, the mobile node
nm transmits a message with its address. The reference nodes
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Fig. 2. RSSI Values depending on the distance

are configured to simply send a return message. The mobile
node receives the message, reads the RSSI associated with
it and forwards it to the mobile computer for storage. 4
Ultrasonic sensors are attached to the robot and connected
via I2C interface to the mobile computer to log the data.

B. Hardware optimization measures

In a preliminary stage we have recorded the RSSI using
the standard PCB antenna, which is installed on the RF board
by default as shown in Fig. 1(b). The height of the nodes was
set to approximately 30cm. The robot traveled a meander like
path aiming for a complete area coverage. Fig. 2(a) shows
the recorded RSSI values of one reference node against the
distance regardless of the receiver’s orientation. It shows very
high noise and only slight drop with distance. Both make
accurate localization almost impossible.

For this reason first the measures proposed in [3],[4] and
[5] and already mentioned in section II were adopted:
• The height of the nodes from the ground was increased

to at least 1m.
• A monopole antenna with the length of 5

8λ was used
for all nodes.

• A voltage regulator was installed on the RF board.
Further antennas were build and connected by a coaxial

cable and a miniature RF connector to the RF module in or-
der to increase the isotropy of the gain and to avoid electrical
interference. Therefore orientation tests were performed with
the default PCB, a monopole antenna with the length of 1

4λ
and 5

8λ, a dipole and a loop antenna of optimal lengths.
During these tests the transmitter and receiver were kept on
the same position while the receiver was rotated a full turn
to obtain the radiation pattern. The experiments have shown
the highest isotropy for a monopole antenna with a length
of 5

8λ. Fig. 3(a) shows the results of the orientation test
for the default PCB and the monopole antenna. The latter
shows a significantly more isotropic and higher gain than
other antennas despite the suboptimal length. For this reason
the monopole antenna was installed on all RF modules. The
simple and low cost antenna is shown in Fig. 3(b).

In order to minimize multipath effects, the use of an
absorbing plate below the antenna was considered, to avoid
interference with signals reflected by the ground. Its impact
was analyzed by a simulation model in MATLAB. The free
space path loss model [16] was applied to calculate the power
of the direct signal. The reflection was supposed to attenuate
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Fig. 4. Effect of an absorbing plate

the signal by 20 dB. A phase delay between both radio waves
causes a change in the received signal strength. To further
decrease the power of the reflected signal and therewith the
change of the RSSI, an absorbing plate is installed below
the antenna. Its influence is modeled by an absorption of 60
dB. The simulation result is shown in 4. For x > 0 the RSSI
is calculated with consideration of the absorbing plate. Here
the RSSI decreases monotonically with the distance. It is also
shown, that after exceeding a certain distance, which depends
on the size of the absorbing plate, the reflected signal passes
the plate and interference occurs again. The diameter of the
absorbing plate was set to 0.2m within the simulation. The
same size was chosen for the experiments.

Further experiments with transmitters and the receiver on
different heights were conducted. The results indicated that
the lowest RSSI irregularity is achieved with nodes on the
same height. This can be explained by the vertical anisotropy
of the antenna gain [16]. For this reason the nodes needed
to be leveled on the same height due to the slope in the test
garden.

Additionally experiments with different RF modules were
conducted, which have shown, that even identical RF hard-
ware with identical antennas, position and orientation, yield
different RSSI values. This can be explained by production
tolerances of the low cost modules, which are not optimized
for the purpose of localization.

35



0.8 1 1.2 1.4 1.6
0

2

4

6

8

Distance (m)

N
u

m
b

e
r

o
f
m

e
a

s
u

re
m

e
n

ts

(a) RSSI = -38 dBm

6 7 8 9 10
0

10

20

30

40

Distance (m)

N
u

m
b

e
r

o
f
m

e
a

s
u

re
m

e
n

ts

(b) RSSI = -58 dBm

Fig. 5. Distance histograms for different RSSI values

IV. LOCALIZATION ALGORITHM

To find the most appropriate algorithm to derive the
position xm = (xm, ym)T of the mobile node from the
RSSI vector R = (R1, R2, .., RN )T , containing the RSSI
values received from N reference nodes ni with known
positions xr,i where 1 ≤ i ≤ N , the characteristic of
the measurements was thoroughly analyzed. The hardware
modifications have yielded a significant improvement re-
garding the decrease of the RSSI with increasing distance
from reference nodes. Therefore a sensor model was defined
to derive the distance from the RSSI. Assuming that only
the direct signal reaches the antenna, the free space loss
model [16] is employed. Its inverse yields the distance di =
||xm − xr,i|| from the node ni by the following equation:

di(Ri) = di,fs +Xi =
(
f1,i

10Ri

) 1
f2,i

+Xi (1)

di,fs is the distance given by the free space model and Xi is
its deviation, modeling the RSSI irregularity. As described in
[16] the parameters f1,i and f2,i are mainly influenced by the
RF hardware (antenna gain and efficiency, transmit power,
etc.). Although we employ the same type of RF modules
the parameters can differ due to production tolerances as
already stated in section III. Determining these parameters
corresponds to a calibration of the RF hardware. In our case
the calibration was done by means of curve fitting in a prior
phase. The resulting sensor free space characteristic di,fs is
shown in Fig. 6(a).

But although the hardware modifications have shown
significant improvements, the recorded RSSI is still highly
irregular resulting in high noise in Fig. 6(a) modeled by Xi in
equation (1). This needs to be considered in the localization
algorithm to make it robust to irregularities. To analyze the
distribution of the noise, histograms of the distance at which
the same RSSI was recorded were examined. Fig. 6 shows
exemplary histograms for two different RSSI values received
from the same node at different positions and orientations.
The figures allow for two conclusions:
• The distance for the same RSSI can span over a wide

range which depends on the RSSI. Fig. 5(b) indicates,
that this range increases for lower RSSI values.

• The histogram cannot be approximated by a normal dis-
tribution as was assumed in [9]. The same observation
was already made in [3].

Therefore the heuristically determined distribution shown
in Fig. 6(b) was chosen. The resulting probability density
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Fig. 6. Distance histograms for different RSSI values

function of the deviation Xi is described piecewise by the
following equation:

pd(Xi|Ri) = ab arctan(X̃i) + wlow; 1 ≤ b ≤ 4 (2)

Here X̃i maps the deviation into the domain of the arctan
function. wlow is equal for all nodes. It defines the probability
of wlow = p(Xi = Li) = p(Xi = Ui). The coefficient ab

depends on the range. The ranges are defined by the lower
and upper bounds Li and Ui, which are described by the
following equations:

Li(Ri) =
(
l1,i

10Ri

) 1
l2,i

− di(Ri) (3)

Ui(Ri) =
( u1,i

10Ri

) 1
u2,i − di(Ri) (4)

The parameters need also to be determined in a calibration
phase. Ideally this is done in an environment similar to the
one in the application to also capture the variability due
to multipath. The calculation is done by curve fitting the
parameters l1,i, l2,i, u1,i and u2,i to the upper and lower
distance deviations respectively measured for the same RSSI
in a prior phase. Fig. 6(a) shows the lower and upper bounds
for the employed RF hardware.

Assuming that the deviations of the measurements are
independent for different nodes and given the RSSI vector
R, the probability p(xm = x|R) of the mobile node being
at position x with distance vector d = (d1, d2, ..., dN ),
containing the distances to the reference nodes, is given by
the following product:

p(xm = x|R) =
N∏

i=1

pd(di − di,fs|Ri) (5)

To find the position with the highest probability, a grid of the
size nx×xy is spanned over the localization area defining the
grid points xij = (xi, yj)T with 1 ≤ i ≤ nx and 1 ≤ j ≤ ny .
Given a RSSI vector the probability pij = p(xm = xij |R) is
calculated for each point. Since a geometrical interpretation
of the probability distribution in the grid results in a torus
around each node, the new algorithm is named as probability
torus localization (PTL). The position of the mobile node can
then be determined as the best grid point with the highest
probability:

x∗m = xk|pk=max(pij) (6)
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In another approach the expected mean with normalized
probabilities p̂ij = pij∑

pij
represents the position of the

mobile node by
x∗∗m =

∑
xij p̂ij . (7)

A third method uses the robust mean, which considers only
points in space with distance ε from the best grid point (also
called robust mean).

V. PARTICLE FILTER SENSOR FUSION

Due to the high irregularity of the radio signal the lo-
calization accuracy achieved by the RSSI based localization
is not sufficient for mobile robot navigation. Therefore a
particle filter is applied to estimate the posterior conditioned
on additional information, given by odometry, ultrasonic
sensors and a map of the environment. The particle filter
represents the posterior belief of the robot’s state at time t
by a finite set of samples Xt := x[1]

t ,x[2]
t , ...x[M ]

t [17], where
each of the M samples represents a hypothesis of the true
state. An importance weight w[m]

t is assigned to each particle
during the filtering process signifying its quality based on the
received measurements.

A. Prediction phase

The state of the robot is described by the state vector xt :=
(x, y, ϕ)T

t , where x and y denote the position and ϕ the
orientation. Given the most recent control ut := (ωl, ωr)T

t

with the rotational speeds ωl and ωr of the left and right
wheels respectively and the particle x[m]

t−1 from the particle set
Xt−1, the hypothetical x̄[m]

t of the state at time t is generated
by

x̄[m]
t = x[m]

t−1 + B(ϕt−1)(ut +N (0,Q)) (8)

The matrix B(ϕt−1) modesl the differential drive of the robot
and depends on its orientation. Gaussian noise with zero
mean and the covariance Q is added to the control input
to model the uncertainty.

B. Update

In the update phase the sensor measurements are incorpo-
rated to generate the posterior belief of the robots position.
For each sensor a model is defined, which assigns each
particle a weight denoting the probability to obtain the given
sensor measurement.

1) RSSI measurement model: As described in section IV
the PTL algorithm implicitly assigns a probability to each
position. Therefore each particle x̄[m]

t is simply processed
through the algorithm yielding the weights w[m]

t,r .
2) Ultrasonic measurement model: To incorporate the

ultrasonic sensors in conjunction with a map of the environ-
ment, the probability to detect an obstacle with robot being
at pose x̄[m]

t needs to be determined. Therefore the ultrasonic
sensor beam is modeled by a two dimensional cone with an
angle of 60◦. If the sensor produces the measurement zu,t all
particles having an obstacle in this range are good hypotheses
for the true pose reflected by a high weight w[m]

t,u . Positions
with different distances are assigned a lower weight, but not
excluded completely allowing for unknown objects.

3) Map measurement model: Under the assumption that
the environment of the robot is partially known, a particle
x̄[m]

t obtains a low weight w[m]
t,m if the position is occupied

by other objects in the map such as buildings or obstacles.
Assuming independence of all sensor data the overall

weight is given by the product of the single weights by

w
[m]
t = w

[m]
t,r w

[m]
t,u w

[m]
t,m . (9)

Analogue to the localization algorithm the weighted mean,
the best particle or the robust mean can be chosen to estimate
the position of the robot.

VI. EXPERIMENTAL RESULTS

To evaluate the performance of the localization algorithm
and the accuracy gain achieved by particle filtering based
sensor fusion, experiments were conducted in the test gar-
den. 11 reference nodes were placed to span an area of
approximately 140 sqm. The robot was controlled remotely.
All sensor measurements, including odometry, ultrasonic and
RSSI data were recorded along with the real pose of the robot
given by the optical tracking system.

A. Performance of the localization algorithm
Fig. 7 shows the real path driven by the robot. Further

it shows the positions estimated by the PTL and SBL
algorithms. For the PTL algorithm the grid point with the
maximum probability was chosen to represent the estimation.
To quantify the accuracy, the locilization error LE :=
||xest − xtrue|| is defined, where xest represent the esti-
mated and xtrue the true position, provided by the optical
tracking system. The mean error for the PTL algorithm was
LEPTL = 0.95m. The estimation given by the SBL algo-
rithm averagely deviates by LESBL = 2.17m. Fig. 8 shows
the cumulative probability of the error for both algorithms. It
makes clear that the PTL algorithm is more accurate than the
SBL and has a significantly lower maximum error. Since the
SBL algorithm represents the state-of-the-art, we see that our
approach outperforms the current RSSI based localization
techniques for the outdoor environment.

To prove the robustness of the approach we have tested it
for the failure of reference nodes. Removing 2 nodes from
the calculation increased the mean error by only 10cm. This
is due to the redundancy and its optimal utilization by the
PTL algorithm.
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Fig. 8. Cumulative probability of the error

B. Performance of the Sensor Fusion

The result of the particle filter based sensor fusion is
shown in Fig. 9. The number of particles was np = 2000 and

the covariance Q =
[

0.5 0
0 0.5

]
1
s . Fig. 9 also depicts the

objects of the employed map. The mean error for the shown
path was LEpf = 32cm. This means an improvement of
the accuracy by 67% compared to the sole PTL algorithm.
To demonstrate the suitability of the sensor fusion the path
calculated by dead reckoning based on the odometry data is
also depicted. The initial position was set to the true position
given by the optical tracking system. The mean error here
was LEod = 68cm. Not only that it is half as accurate, dead
reckoning is also not capable to provide a global position
and the error will increase with time.

VII. CONCLUSIONS

An accurate prediction of the position based on the re-
ceived signal strength turned out as a complex problem,
especially in low cost and low power RF hardware, since
it is not optimized for this purpose. Therefore the first step
to consider before implementing localization algorithms is to
employ the hardware modifications described in this paper.
These are an absolute prerequisite for enabling high accuracy.

The developed algorithm optimally calculates the position
considering the uncertainty. Experimental results have shown
sub meter accuracy, which is higher than other state of the art
methods. Further it has proven to be robust to node failures. It
also needs to store only 6 parameters for each node to define
its characteristic. This makes it suitable for a decentralized
localization architecture.
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Since it implicitly models the uncertainty, it can be easily
integrated in probabilistic sensor fusion as was shown in
this article by means of a particle filter. The sensor fusion
minimizes the mean error to 32cm and make the approach
applicable for mobile robot navigation.
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