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Abstract— A control strategy inspired by the hunting tactics
of ladybugs is presented to simultaneously achieve sensor
coverage and exploration of an area with a group of networked
robots. The controller is distributed in that it requires only
information local to each robot, and adaptive in that it modifies
its behavior based on information in the environment. The
ladybug controller is developed as a modification to a basic
coverage control law, first for the non-adaptive case, then
for the adaptive case. Stability is proven for both cases with
a Lyapunov-type proof. Results of numerical simulations are
presented.

I. INTRODUCTION

We present a decentralized adaptive control law that causes

networked robots to explore an area while simultaneously

searching for an optimal coverage configuration for sensing

over the area. The exploration strategy is modeled on one

used by ladybugs in their hunt for aphids (Fig. 1). Further-

more, the exploration strategy is provably stable and can

be arbitrarily aggressive. The ladybug control law improves

upon previous coverage controllers by avoiding locally opti-

mal configurations and providing richer trajectories for better

learning of the distribution of sensory information in the

environment. Our controller would be useful in controlling

teams of robots to carry out a number of tasks including

search and rescue missions, environmental monitoring (e.g.

for forest fires), automatic surveillance of rooms, buildings,

or towns, or simulating collaborative predatory behavior.

Virtually any application in which a group of automated

mobile agents is required to both monitor and explore an

area could benefit from the proposed controller.

The two notions we investigate in this paper, coverage

and exploration, are often interchanged, and therefore it is

important to clearly delineate what we mean by each. By
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coverage, we refer specifically to the locational cost function

introduced in [1]. A high value of this function corresponds

to poor coverage and a low value to good coverage. Further-

more, the function has well-defined minima corresponding to

static optimal coverage configurations. This is quite different

from the other common notion of coverage defined as the

total area swept out by a sensing disk surrounding an agent.

In fact, the swept sensing disk notion is closely related to

what we call exploration. Specifically, we define the degree

to which a robot trajectory is exploratory by the minimum

eigenvalue of a certain matrix, as defined in Section IV-

A, and we show that this value is linked to the notion

of a sweeping disk. In this work, our main objective is

Fig. 1. The exploration strategy that ladybugs use to hunt for aphids was
used to inspire a decentralized controller for networked robots to perform
exploration and coverage tasks.

coverage (minimizing the locational cost function), while

exploration (maximizing the swept disk area) is considered

as an additional desirable property. We show that a certain

class of exploration, “ladybug exploration,” can proceed

without disrupting the coverage objective. Other kinds of

exploration, e.g. a random walk, may prevent convergence

2008 IEEE International Conference on
Robotics and Automation
Pasadena, CA, USA, May 19-23, 2008

978-1-4244-1647-9/08/$25.00 ©2008 IEEE. 2346



to an optimal coverage configuration, and therefore subvert

the main objective.

The controller that we present superimposes a ladybug

exploration force on a basic coverage controller causing

both exploration and coverage to proceed orthogonal to one

another. Robots explore the whole area, at first aggressively,

while they have little information about the sensing envi-

ronment, and increasingly less aggressively as they collect

information about the sensing environment and settle into

an optimal configuration for coverage. The exploration force

causes the robots to spiral around regions of high sensory

interest, which is analogous to the way ladybugs turn more

tightly around areas in which they encounter aphids [2], [3].

The robots asymptotically spiral in to fixed positions such

that their density in different regions of the environment is

directly related to the sensory importance of those regions.

Thus regions of greater importance receive more concen-

trated sensor coverage than regions that are less important.

The control law is presented first in a non-adaptive form,

then in an adaptive form. The main difference between the

two forms is that for the non-adaptive controller, the robots

are assumed to know a priori the distribution of sensory

information in the environment, whereas in the adaptive

form, they learn the distribution using an adaptation law.

The non-adaptive controller is simpler, providing an intuitive

platform from which to describe the ladybug exploration

force. For the non-adaptive controller, the main effect of the

ladybug exploration is to prevent the robots from getting

trapped in locally optimal configurations. In this way it has

an effect similar to simulated annealing strategies [4], [5],

though without any stochasticity.

On the other hand, the main benefit of ladybug exploration

for the adaptive controller is to improve parameter learning.

The adaptive controller uses an adaptation law to learn the

distribution of sensory information in the environment from

collected sensor measurements. The fidelity of the learned

distribution to the actual distribution is intimately related to

the extent to which the robot has explored the environment.

This fact is formalized in the persistent excitation condi-

tions, which are discussed in Section IV-A. The ladybug

controller, by driving each robot to explore the environment,

provides markedly improved learning performance over the

basic adaptive coverage controller. This leads to markedly

improved final configurations and faster convergence.

A. Relation to Previous Work

The basic coverage controller relevant to this work was

first introduced in [1] in a non-adaptive form, and in [6]

in an adaptive form. The ladybug exploration term can be

included in either controller in essentially the same way.

It was shown in [1] that coverage control can be phrased

as a locational optimization problem [7]. Many controllers

using this paradigm have been proposed, for example [8]–

[10]. Notably, in [8] a deterministic annealing approach

was adapted to the locational optimization problem to find

globally optimal solutions. The adaptive coverage controller

presented in [6] combines techniques from adaptive control

[11]–[13] with the controller in [1] to learn the distribution

of sensory information in the environment.

In this paper we use a deterministic framework, which

is common in the coverage control and adaptive control

literature. In Section II we set up the problem and introduce

the necessary tools from locational optimization. In Section

III we formulate the non-adaptive ladybug controller, and

show that it can provide improved performance over the

basic controller by avoiding local minima. In Section IV, we

introduce the adaptive ladybug controller, formalize persis-

tent excitation conditions, and show that it provides superior

performance to the basic adaptive controller in both learning

and final coverage configuration. Conclusions are given in

Section V.

II. PROBLEM SET-UP

A group of n robots with positions pi ∈ R
2, where i ∈

{1, . . . , n}, move in a bounded, convex region Q ⊂ R2. The

function φ : Q 7→ R+ (henceforth R+ refers to the strictly

positive orthant), determines a weighting of importance of

points q ∈ Q. Let {V1, ..., Vn} be the Voronoi partition of

Q, for which the robot positions are the generator points.

Specifically,

Vi = {q ∈ Q | ‖q − pi‖ ≤ ‖q − pj‖, ∀j 6= i}.

We can formulate a function denoting the cost incurred by

the group of robots sensing over the region Q as

H(P ) =
n

∑

i=1

∫

Vi

1

2
‖q − pi‖2φ(q) dq. (1)

The weighting 1

2
‖q−pi‖2 is included to capture the intuition

that a robot located at pi will sense information at a point

q with less reliability the farther q is from pi, thus points

q that are farther away are more expensive. Notice also

that high values of φ(q) are expensive. An optimal network

configuration corresponds to a set of robot positions that min-

imizes (1). The subject dealing with optimization problems

of this kind is called Locational Optimization. More thorough

discussions can be found in [1], [7].

To solve this optimization problem, we define three prop-

erties analogous to mass-moments of rigid bodies. The mass,

first moment, and centroid of Vi are defined respectively as

MVi
=

∫

Vi

φ(q) dq, LVi
=

∫

Vi

qφ(q) dq (2)

and CVi
= LVi

/MVi
, (3)

Note that φ(q) strictly positive imply both MVi
> 0 ∀ Vi 6=

∅ and CVi
∈ Vi\∂Vi (CVi

is in the interior of Vi). Thus

MVi
and CVi

have properties intrinsic to physical masses

and centroids. Finally, it is useful to define the position error

ei = (CVi
− pi). (4)

A standard result in locational optimization is that

∂H
∂pi

= −MVi
ei. (5)
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Fig. 2. A geometric representation of the non-adaptive ladybug controller is
shown. The robot is at pi, its Voronoi region is labelled Vi, with a centroid
at CVi

. The two components of the control law are shown as perpendicular

vectors, ei, the coverage force, and, fie
⊥

i
, the exploration force.

Equation (5) implies that local minima of H correspond

to the configurations such that pi = CVi
∀i, that is, each

agent is located at the centroid of its Voronoi region. Such

configurations are called centroidal Voronoi configurations,

and it is known that several such configurations may exist.

The optimization problem is to find a centroidal Voronoi

configuration corresponding to the minimal value of H.

III. NON-ADAPTIVE LADYBUG CONTROLLER

Let the robots have dynamics

ṗi = ui, (6)

where ui is the control input. This may simply mean there

is a low level controller in place to enforce integrator

dynamics. Results can be extended to second order and

nonholonomic dynamics. Such extension for the basic, non-

adaptive controller are given in [1], and would likely apply

straightforwardly to the ladybug controllers we discuss here.

We assume that the robots are able to compute their own

Voronoi cell, Vi = {q | ‖q − pi‖ ≤ ‖q − pj‖} by commu-

nicating their location among their Voronoi neighbors. Also,

we require the follow assumption.

Assumption 1 (Sensory Function Knowledge): The

sensory function φ(q) is available to all of the robots.

We can formulate the non-adaptive ladybug control law as

ui = Kei, where K =

[

k −fi

fi k

]

, (7)

and where fi ∈ R is the exploration gain, and k ∈ R+, is

a control gain. A geometric schematic of the control law is

shown in Fig. 2. The key attributes of the gain matrix K
is that it is positive definite and it has a skew-symmetric

component. The controller from [1] can be recovered simply

by setting fi = 0 ∀i.

Theorem 1 (Non-Adaptive Ladybug Convergence):

Under Assumption 1, for the system of agents with

dynamics (6) and the control law (7),

limt→∞ ei = 0 ∀i ∈ {1, . . . , n} (8)

Proof: Let H be a Lyapunov-like function. Taking the

time derivative of H along the trajectories of the system

yields

Ḣ = −
n

∑

i=1

[

MVi
keT

i ei + MVi
fie

T
i e⊥i

]

, (9)

where e⊥i is the vector perpendicular to ei of the same length.

But eT
i e⊥i = 0, resulting in Ḣ ≤ 0. Also, the facts that ui is

continuous ∀i, H has continuous first partial derivatives, H
is radially unbounded, and Ḣ ≤ 0 imply that Ḣ is uniformly

continuous. Therefore, by Barbalat’s lemma limt→∞ Ḣ = 0,

which implies (8).

A. Ladybug Exploration

The exploration gain fi can be chosen in a number of

ways. In fact, it can be time varying and even stochastic (as

long as it remains bounded). In any case, it is invisible to the

convergence proof. Actual ladybugs use what appears to be

a stochastic algorithm in which their turning frequency and

amplitude increase with increased evidence of aphids. This

causes them to stochastically spiral in and linger upon groups

of aphids [2]. Furthermore, it has been found that individual

ladybugs tend to show a significant bias toward turning either

right or left [3]. These attributes might be captured in fi in a

variety of ways. We have chosen to use the most simplistic

way as it tends to give good empirical performance despite

its simplicity. In particular, we let fi = ±f be a constant,

the same magnitude for all i. We capture the right or left

handedness of the ladybugs by assigning the sign of fi

randomly at initialization.

There is one subtle technicality that must be addressed.

We desire that the robot trajectories remain inside Q for

their entire trajectories. Indeed, this is not guaranteed by the

convergence proof, but can be easily accomplished with a

stable collision detection rule. Specifically, let

fi(pi) =

{

0 if pi ∈ ∂Q
±f otherwise.

(10)

This choice for fi is bounded, therefore it does not affect

the convergence result, and it is guaranteed to keep pi ∈ Q.

To see this, if pi is on the boundary ∂Q, its velocity will

be ṗi = k(CVi
− pi). The centroid CVi

, as was previously

pointed out, is always in the interior of Q, thus pi will be

driven toward the interior preventing any escape from Q.

Unfortunately, for CVi
to be on the interior of Q, Q

must be convex (as was previously stated). This precludes

environments with obstacles or “room and hallway” type

structures. In practice the controller works well in some such

environments and not well in others. Extending the controller

to nonconvex environments is a topic of ongoing research

[14].

B. Simulation Results

Simulations were carried out in a Matlab environment to

compare the performance of the ladybug and basic con-

trollers. The dynamics in (6) with the control law in (7)
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with k = 1, for a group of n = 10 robots were integrated

using a fixed time step solver. For the basic controller, the

exploration gain fi = 0, ∀i. For the ladybug controller,

f = 10 was used with the sign determined randomly at

initialization, and with the collision detection law described

in (10). The region Q was taken to be the unit square.

The sensory function φ(q) was constructed as a sum of two

Gaussians,

φ(q) =
2

∑

j=1

100

σj

√
2π

exp

{

− (q − µj)
2

2σ2
j

}

, (11)

where σj = .18. One of the Gaussian was centered at

µ1 = [1/6 1/6]T and the other was centered at µ2 =
[5/6 5/6]T . The robots in the network were started from

the same initial positions for the two controllers, confined

to the lower-left 1/10 square of Q. The spatial integrals

in (2) required for the control law were approximated by

discretizing each Voronoi region Vi into a 7 × 7 grid

and summing contributions of the integrand over the grid.

Voronoi polygons were computed for each robot using a

distributed algorithm similar to the one described in [1]. We

point out that each robot must compute its Voronoi region at

each execution of the control loop, therefore controllers of

this kind can be computationally expensive, though still well

within the abilities of modern micro-controllers, as detailed

in the robot experiments carried out in [10].

Figure 3 shows the results of numerical simulations for

the ladybug controller (left column) and the basic controller

(right column), with the Gaussian centers marked by red

×s. The figures show the explorative, spiralling behavior of

the ladybug controller in comparison with the rather direct

trajectories of the basic algorithm. The final configuration

for the ladybug controller has an equal number of robots

concentrated around the two Gaussians, whereas the basic

controller has caused more robots to collect around the

Gaussian close to where they started.

Figure 4 shows that both controllers cause the network to

converge to a centroidal Voronoi configuration, as guaranteed

by Theorem 1. However, Fig. 5 shows that the ladybug

controller obtained a significantly lower cost configuration

than the basic controller at a significantly faster convergence

rate. This supports the assertion that exploration helps the

ladybug controller to avoid local minima.

IV. ADAPTIVE LADYBUG CONTROLLER

The adaptive controller is significantly more complicated

than its non-adaptive counterpart because it has to maintain

a stable learning algorithm within the controller. Consider

robots with the same dynamics as in (6).

We relax Assumption 1 with the following two less

restrictive assumptions.

Assumption 2 (Sensory Function Measurement): The

robots are able to measure φ(pi). That is, they are equipped

with sensors from which they can determine the value of φ
at their own position pi at any point in time.

(a) Ladybug Initial Config. (b) Basic Initial Config.

(c) Ladybug Trajectories (d) Basic Trajectories

(e) Ladybug Final Config. (f) Basic Final Config.

Fig. 3. The initial configuration, robot trajectories, and final configuration
are shown for a network of robots with the non-adaptive ladybug controller
on the left (3(a), 3(c), and 3(e)) and with the basic non-adaptive controller
on the right (3(b), 3(d), and 3(f)). The Gaussian centers of φ(q) are marked
by the red ×s.

Assumption 3 (Matching Conditions): ∃a ∈ R
m
+ and K :

Q 7→ R
m
+ , such that

φ(q) = K(q)T a, (12)

where the vector of basis functions K is known by each

agent, but the parameter vector a is unknown. Furthermore,

a(j) ≥ amin ∀j ∈ {1, . . . , m} (13)

where a(j) denotes the jth element of the vector a, and

amin > 0 is a known real bound.

Requirements such as Assumption 3 are common for

adaptive controllers. In theory, the assumption is not limiting

since any function (with some smoothness requirements)

over a bounded domain can be approximated arbitrarily well

by a network of basis functions [15]. In practice, however,

designing a suitable function approximation network requires

application-specific expertise. We use Gaussian basis func-

tions in our simulations, but there is a variety of other

basis function families to chose from including, wavelets,

sigmoids, and splines.
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Fig. 4. The position error ei averaged over the robots is shown for the
ladybug and the basic non-adaptive controllers.

Fig. 5. The decreasing Lyapunov function is shown for both the ladybug
and the basic non-adaptive controllers. The ladybug controller achieves a
lower value.

Let âi(t) be robot i’s approximation of the parameter

vector. Naturally, φ̂i = K(q)T âi is robot i’s approximation

of φ(q). Define the mass moment approximations

M̂Vi
=

∫

Vi

φ̂i dq, L̂Vi
=

∫

Vi

qφ̂i dq, (14)

and ĈVi
= L̂Vi

/M̂Vi
.

Next, define the parameter error

ãi = âi − a, (15)

and the sensory function error

φ̃i = φ̂i − φ = K(q)T ãi. (16)

Also define the estimated position error vector

êi = (ĈVi
− pi), (17)

which is not to be confused with the actual position error

defined previously, ei = (CVi
− pi). Most importantly, the

robots do not know ei, but they do know êi. Notice also that

âi = a implies êi = ei.

Finally, in order to compress the notation, we introduce the

shorthand Ki = K(pi(t)) for the value of the basis function

vector at the position of robot i, and φi = φ(pi(t)) for the

value of φ at the position of robot i. As previously stated in

Assumption 2, robot i can measure φi with its sensors.

Consider a control law of a similar form to (7),

ui = Kêi, (18)

with K defined as before. The parameters âi used to calculate

êi are adjusted according to a set of adaptation laws which

are introduced below.

Define two quantities,

Λi =

∫ t

0

w(τ)Ki(τ)Ki(τ)T dτ, (19)

and

λi =

∫ t

0

w(τ)Ki(τ)φi(τ) dτ. (20)

The function w(t) ∈ L1, where w(t) ≥ 0, determines a

data collection weighting. These quantities can be calculated

differentially by robot i using Λ̇i = w(t)KiKT
i , and λ̇i =

w(t)Kiφi, with zero initial conditions.

Define another quantity

Fi =

∫

Vi

K(q)(q − pi)
T dqK

∫

Vi

(q − pi)K(q)T dq
∫

Vi

φ̂i dq
, (21)

The matrix Fi can also be computed by robot i as it does

not require any knowledge of a.

The adaptation law for âi is defined as

˙̂apre
i
= −Fiâi − γ(Λiâi − λi), (22)

˙̂ai = Γ( ˙̂apre
i
− Iproj

i

˙̂apre
i
) (23)

where Γ ∈ R
m×m is a diagonal, positive definite adaptation

gain matrix, and γ ∈ R+ is an adaptation gain scalar. The

diagonal matrix Iproj
i

is defined element-wise as

Iproj
i
(j) =







0 for âi(j) > amin

0 for âi(j) = amin and apre
i
(j) ≥ 0

1 otherwise

,

(24)

where (j) denotes the jth element for a vector and the

jth diagonal element for a matrix. Equations (23) and (24)

implement a projection operation that prevents any element

of âi from dropping below the lower bound amin. The

controller and adaptation law from [6] can be recovered by

setting fi = 0 ∀i.
The terms in the adaptation law 22 have a natural inter-

pretation. The term −Fiâi compensates for uncertainty in

the centroid position, and the term −(Λiâi − λi) carries out

a gradient descent to minimize the sensory function error

φ̃i(pi) integrated over time. The projection is then required

because the controller has a singularity at M̂Vi
= 0. We

could also add a consensus term to the adaptation law to

speed convergence, as described in [16]. The controller and

adaptation law cause the network of robots to converge to

an advantageous configuration as formalized in the follow

theorem.

Theorem 2 (Adaptive Ladybug Convergence): Under As-

sumptions 2 and 3, for the system of agents with dynamics

(6) and the control law (18),

i) limt→∞ êi = 0 ∀i ∈ {1, . . . , n} (25)

ii) limt→∞ Ki(τ)T ãi(t) = 0 ∀τ | w(τ) > 0 (26)

and ∀i ∈ {1, . . . , n}.
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Proof: Let

V =

n
∑

i=1

(
∫

Vi

1

2
‖q − pi‖2φ(q) dq +

1

2
ãT

i Γ−1ãi

)

. (27)

Taking the time derivative of V along the trajectories of the

system yields

V̇ = −
n

∑

i=1

[

M̂Vi
kêT

i êi + M̂Vi
fiê

T
i ê⊥i + (28)

ãT
i Iproj

i
apre

i
+ γ

∫ t

0

w(τ)(KT
i (τ)ãi(t))

2 dτ
]

,

For details of this derivation, please refer to [6]. As before

êT
i ê⊥i = 0, resulting in

V̇ = −
n

∑

i=1

[

M̂Vi
kêT

i êi + ãT
i Iproj

i
apre

i
+ (29)

γ

∫ t

0

w(τ)(KT
i (τ)ãi(t))

2 dτ
]

,

It can be shown that all terms inside the sum are positive,

therefore V̇ ≤ 0. Also, the facts that ui is continuous

∀i, V has continuous first partial derivatives, V is radially

unbounded, and V̇ ≤ 0 imply that V̇ is uniformly continuous.

Therefore, by Barbalat’s lemma limt→∞ V̇ = 0, which

implies (8) from Theorem 2, and

lim
t→∞

∫ t

0

w(τ)(KT
i (τ)ãi(t))

2 dτ = 0 ∀i ∈ {1, . . . , n}.

The integrand in (30) is non-negative, therefore it must

converge to zero for all τ , which implies (26) from Theorem

2.

A. Persistent Excitation and Ladybug Exploration

The closeness of the learned sensory distribution to the

true sensory distribution is intimately related to the extent to

which a robot has explored the environment. Indeed, this was

the main justification for introducing the ladybug force. The

concept of persistent excitation (PE) from adaptive control

captures this intuition precisely. In our case, conditions for

PE fall out naturally, along with a metric for determining

how explorative, or persistently exciting, a robot’s trajectory

is.

Formally, the assertion (26) of Theorem 2 states that the

estimate of the sensory function φ̂i will converge asymptot-

ically to the true sensory function φ for all points on the

robot’s trajectory with positive weighting w(τ). This does

not, however, imply that φ̂i(q) → φ(q) everywhere in Q.

This requires an extra condition.

Corollary 1 (Persistent Excitation): In addition to the re-

quirements for Theorem 2, if for some i ∈ {1, . . . , n}
∫ t

0

w(τ)Ki(τ)KT
i (τ) dτ > 0, (30)

then the following also occur

lim
t→∞

âi = a, (31)

lim
t→∞

φ̂i = φ ∀q ∈ Q, (32)

lim
t→∞

ei = 0. (33)

Proof: Consider the last term in the sum from (29).

Take the two ãi outside of the integral to give

V̇ = −
n

∑

i=1

(

· · · + γãT
i

∫ t

0

w(τ)Ki(τ)KT
i (τ) dτãi

)

.

Since V̇ → 0, if
∫ t

0
w(τ)Ki(τ)KT

i (τ) dτ is positive definite

for some i, ãi → 0. Convergence of the sensory function (32)

then follows directly from (16), and implies ĈVi
→ CVi

from

(14), which in turn implies position error convergence (33).

What is more, even if PE is achieved, parameter conver-

gence can be prohibitively slow. A useful metric for assessing

parameter convergence rates is

λmini
(t) = mineig

∫ t

0

w(τ)Ki(τ)KT
i (τ) dτ, (34)

where mineig denotes the minimum eigenvalue of a matrix.

If this quantity is strictly positive, PE has been achieved,

and the larger it is, the faster parameter convergence will

take place. Intuitively, the more of Q visited by a robot, the

larger λmini
will be, and the faster parameter estimates will

converge to the true parameters. The ladybug exploration

gain fi promotes exploration of the space and is therefore

likely to produce trajectories that are more PE than the basic

controller.

There is also an implicit trade-off between the richness

of the basis function set and the difficulty of achieving a PE

trajectory. For example, if K(q) consists of a single Gaussian

function, all trajectories are PE. If K(q) consists of two

Gaussian functions with radial symmetry, all trajectories are

PE except those which are perpendicular to the line passing

through the centers of the Gaussians. As the number of basis

functions grows, the set of non-PE trajectories also grows. If

the set of basis functions is too rich, it becomes very unlikely

that PE will be achieved. Thus a balance must be found

depending upon the requirements of the application. This is

a manifestation of the well-known dichotomy of goodness-

of-fit vs. generalizability.

B. Simulation Results

Simulations were carried out in the same environment

as for the non-adaptive controllers, with the same initial

configuration and exploration gain. The function φ(q) was

constructed slightly differently to meet the requirements of

Assumption 3. Specifically φ(q), was parameterized as a

Gaussian network with 9 Gaussians and a constant offset.

In particular, for K = [ 1 K(2) · · · K(10) ]T , each

component, K(j) for 2 ≤ j ≤ 10, was implemented as

K(j) =
1

σj

√
2π

exp

{

− (q − µj)
2

2σ2
j

}

, (35)
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(a) Ladybug Initial Config. (b) Basic Initial Config.

(c) Ladybug Trajectories (d) Basic Trajectories

(e) Ladybug Final Config. (f) Basic Final Config.

Fig. 6. The initial configuration, robot trajectories, and final configuration
are shown for a network of robots with the adaptive ladybug controller on
the left (6(a), 6(c), and 6(e)) and with the basic adaptive controller on the
right (6(b), 6(d), and 6(f)). The Gaussian centers of φ(q) are marked by the
red x’s.

where σj = .18. The unit square was divided into

an even 3 × 3 grid and each µj was chosen so that

one of the 9 Gaussians was centered at the middle of

each grid square. The parameters were chosen as a =
[ amin 100 amin · · · amin 100 ]T , with amin = .1
so that only the lower left and upper right Gaussians

contributed significantly to the value of φ(q), producing a

bimodal distribution essentially identical to the one used

previously.

Each robot used a copy of the 9 Gaussians described above

for K(q). The estimated parameters âi for each robot were

started at a value of amin, and Λi and λi were each started

at zero. The gains used by the robots were k = 1, Γ = I10,

and γ = 5. The data weighting function was chosen to be

w(t) = ‖ṗi‖2. In all other respects the simulations were

identical to those described previously.

Figure 6 shows the results of numerical simulations for

the adaptive ladybug controller (left column) and the basic

controller (right column), with the Gaussian centers marked

by red ×s. As in the non-adaptive case, the figures show the

spiralling behavior of the ladybug controller. Evidently, the

(a) True Pos. Error (b) Est. Pos. Error

Fig. 7. The true position error ei is shown on the left and the estimated
position error êi on the right averaged over all of the robots for the ladybug
and the basic adaptive controllers. The convergence of êi is guaranteed by
Theorem 2 for both controllers, however the ladybug controller leads to a
lower true position error.

Fig. 8. The decreasing Lyapunov function is shown for both the ladybug
and the basic adaptive controllers. The ladybug controller achieves a lower
value indicating a better sensing configuration and a better sensory function
approximation.

ladybug controller finds a better final configuration for sens-

ing over the bi-modal distribution than the basic controller.

Recall that the robots had no knowledge of the distribution

before hand, but each robot learned an approximation of it

during its trajectory.

The right side of Fig. 7 illustrates that the estimated

position error converges to zero for both controllers, as

asserted in Theorem 2. However, the true error (shown in the

left of Fig. 7) indicates that the ladybug controller converged

to a truly centroidal Voronoi configuration and the basic

controller did not. Also, Fig. 8 shows that the ladybug

controller obtained a lower Lyapunov function than the basic

controller at a faster convergence rate, indicating both a

(a) Minimum Eigenvalue (b) Exploration Area

Fig. 9. The left plot shows a metric indicating the richness of the robot
trajectories. A larger value denotes faster parameter convergence and also
indicates more exploration. The ladybug controller gives richer trajectories
than the basic controller. The plot on the right shows the minimum over
all the robots of the area explored during a trajectory. Again, the ladybug
controller causes the robots to explore more of the space than the basic one.
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lower-cost configuration and a better function approximation.

Finally, Fig. 9 compares the richness of robot trajectories

for the two controllers. The minimum over all the robots of

λmini
(as defined in (34)) is shown for the two controllers

on the left (Fig. 9(a)). With the adaptive controller, PE was

achieved for every robot in the network, thus satisfying the

conditions for Corollary 1. For the basic controller, at least

one of the robots (in fact 8 of them, though this is not

evidenced in the plot) did not have PE trajectories, and

therefore did not gather enough information to learning the

true sensory distribution function. Also, the minimum over

the robots of the area explored by a robot is shown on the

right (Fig. 9(b)). This was computed by dividing the area Q
into a 50×50 grid and summing up the grid areas visited by a

robot. Even the least exploring robot visits 12% of the space

with the ladybug controller, while for the basic controller,

the least exploring robot visits less than 1% of the space.

V. CONCLUSION

In this work we proposed a decentralized controller for

causing a network of robots to explore and cover an area. The

exploration was inspired by the strategy used by ladybugs to

hunt for aphids. A non-adaptive and an adaptive version of

the controller was presented, with the ladybug exploration

force appearing as an addition to a basic controller in each

case. Convergence of the controller was proven with a

Lyapunov-type proof. In both the adaptive and non-adaptive

cases, the ladybug controller was shown to perform better

than the basic controller. For the non-adaptive controller, this

was attributed to the ladybug controller’s ability to avoid

locally optimal configurations. For the adaptive controller

this was explained by showing that exploration leads to

richer trajectories, causing better parameter learning, and

eventually better coverage. In the future we would like

to carry out experimental investigations with this control

strategy on robot platforms, such as those used in [10]. Also,

it would be interesting to look for adaptation rules to allow

the positions and number of basis functions to adapt based

on sensor measurements. We hope that the combination of

animal behaviors with control theoretic concepts can lead to

more creative and effective control strategies in the future.
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