
Active Target Search from UAVs in Urban Environments

Christopher Geyer

Abstract— In this paper we consider the problem of
searching for a target from a camera-equipped unmanned
aerial vehicle (UAV) flying in an urban area. Urban areas
present challenges because buildings can hamper the ability
to see regions on the ground. We describe an algorithm
that constructs paths that take into account obstructions due
to buildings or other large objects. The approach combines
search trees and a particle filters to evaluate a large number
of possible paths, while at the same time performing all the
Bayes’ filter innovations that would need to occur during the
evaluation of each path.

I. INTRODUCTION

In this paper we consider the problem of searching a
region with complex geometry, looking for a moving target
from an aerial sensing platform such as an unmanned aerial
vehicle that has a limited field of view. In addition, we are
interested in environments that have complex geometry,
where targets may be behind buildings, and without taking
these into account we may fail to find the target. As an
example of such an environment, see Figure 1. This is
an approximate three-dimensional model of the McKenna
MOUT site located at Fort Benning, which we have
reconstructed manually from orthographic imagery. The
target in red lies somewhere in this area, and as the target
moves around within the environment, we would like to
locate the target. This problem has immediate application
to military operations in urban or mountainous terrain,
but may also be applicable to search, rescue, or wildlife
monitoring operations in mountainous terrain, or planning
for movie production, for example.

A. Related Work

In 1965 Isaacs [8] first presented a unifying treatment
of differential games, where the prototypical problem is to
find a strategy that guarantees collision with, or capture of,
another vehicle. Later, Parsons [11] considered a pursuit-
evasion game on a graph, where the goal is to occupy the
same edge as the evader.

Even earlier, much work had been done in World War
II with the aim of finding search strategies for locating
submarines. Koopman assembles much of this knowledge
in the monograph [10]. This topic was explored again by

C. Geyer is at the Robotics Institute, Carnegie Mellon University, 5000
Forbes Ave., Pittsburgh, PA; e-mail: cgeyer@ri.cmu.edu .

I would like to thank Geoff Hollinger, Athanasios Kehagias, Ben
Grocholsky, and Sanjiv Singh for their insight and comments on this
paper.

Fig. 1. A UAV searching for a target in an urban environment with com-
plex geometry and occlusions. The model shown is an approximate 3D
model of Fort Benning’s McKenna MOUT site reconstructed manually
from orthographic imagery.

Stone in [13]. These works treat macroscopic issues such
as resource allocation, as well as optimal sweep widths for
searching in wide open areas, with uniform geometry and
target distribution.

Several works have considered exact algorithms that
guard and search indoor polygonal areas while guaran-
teeing capture if feasible; we mention only a few. Suzuki
and Yamashita [14] first examined the problem of how
to guarantee capture in polygonal environments—where
capture only requires that the pursuer see the evader
with a beam. Guibas et al. [6] consider the same, except
that instead of a beam, they assume a pursuer with an
omnidirectional sensor for capture. Recently Gerkey et
al. [5] extend this to allow for a limited field-of-view.

Often the solutions or representations for the exact ap-
proaches become infeasible with large regions or multiple
search, or they do not provide solutions in the case where
no solution with a guarantee exists. Other approaches
solve the problem probabilistically, most commonly using
partially observable Markov decision processes (POMDP).

Roy [12], for example, computes policies on the space
of densities representing where the evader may be. He
represents the high-dimensional densities using a small
basis of distributions, thereby expressing the density in a
lower-dimensional space. He then solves the POMDP in
the smaller space.

Yu et al. [16] enumerate several criteria for deciding
when it is sufficient to compute open-loop plans instead

2008 IEEE International Conference on
Robotics and Automation
Pasadena, CA, USA, May 19-23, 2008

978-1-4244-1647-9/08/$25.00 ©2008 IEEE. 2366

of full policies. They claim that under certain conditions,
such as that there is no sensor feedback, the agent’s plant
can be assumed to be noiseless, or that there is a “stopping-
time” sensor, then open-loop plans are sufficient.

Approaches to pursuit-evasion can be applied to search
and rescue, and Bourgault et al. [2] consider spotting
survivors of a marine accident from an unmanned aerial
vehicle (UAV). They formulate the problem similar to that
of a POMDP and compute an open-loop plan over a finite
horizon.

Vidal et al. [15] demonstrate a pursuit-evasion im-
plementation collaboratively with both unmanned aerial
and ground vehicles. They provide approximate greedy
policies, and represent the state of the evader on a grid, and
assume Markov motion model, or non-adversarial model,
for the target.

Hollinger et al. [7] investigates pursuit-evasion in an
in-door environment, and provide algorithms for approxi-
mating a POMDP solution on a graph representation of the
environment, and test the effects of coupling or decoupling
multiple pursuers.

B. Contribution

We express the problem as a pursuit-evasion problem in
which the target is ignorant of the pursuers presence, or is
non-adversarial. In a formulation similar to that of [2], we
derive the probability of finding the target as a function of
an open-loop path. Here we approximate the integral by
a sampling scheme. By doing so we can more efficiently
evaluate possible control laws over a finite horizon. Our
primary contribution:
• Efficient filtering. We present a planner that updates

a particle filter based on the expected measurements,
and does so with reasonable efficiency for horizons
up to 16 timesteps deep. We can perform what is
equivalent to 16,000 particle filter updates on 1,000
particles per second on a 2Ghz Pentium M processor.

• Compression of visibility function. We present a
method to compress the visibility function so as to
efficiently evaluate whether a given UAV point can
see a specified point on the ground. The visibility
representation is stored in a set of images, which give
the minimum visible elevation of the sky that is visible
from each point on the ground in a fixed number of
directions.

• Memory-less planners do just as well. We also find
a negative result: a planner that updates the expected
posteriors along the way does only marginally better
than a memory-less planner, which does not update
the posterior based on expected measurements.

II. A SEARCH GAME

In this section we describe a simplified search game
which is a simplification of a pursuit-evasion game in

which the evader’s movements are conditionally indepen-
dent of the pursuer’s state. This models a situation in which
the evader is non-adversarial, or indifferent to the evader,
or if the pursuer is sufficiently stealthy that the evader is
unaware of the pursuer’s state. Specifically, we make the
following assumptions:
• Target. A target of interest exists in an environment

described by state-space X . State transitions occur
at discrete timesteps, and on a finite horizon, T -
timesteps into the future, PxT gives a probability
distribution on sequences during this horizon, e.g.
xT = (x1, . . . ,xT)∈X T . This distribution need not be
stationary, that is, have identical distributions across
time periods, but we assume for notational simplicity
that PxT is the most current distribution. We further
assume that the transitions are Markov.

• Pursuer. Our pursuer(s) exist in a state-space Y , and
our agent(s) transitions in Y occur deterministically.
We assume that the effects of high-level controls are
modeled by a kinematic (or dynamic) model specified
by:

yk+1 = F(yk,uk) (1)

where uk ∈U . Noisy control effects are assumed to
be handled by a low-level motion planner (see for
example or [16]).

• Capture event. Cxi,yi represents the event that when
the agent is at yi at timestep i, it captures the target
at xi. For a capture event, it is necessary—but not
sufficient—that the target be within the field-of-view
of the sensor.

• Conditional distribution. The conditional distribution
P(Cxi,yi |xi) depends not only on xi and yi, but also on
the properties of a target detection system (e.g., false
negative rate or the signal-to-noise ratio of the target
against the background), as well as the environment
(such as whether the environment occludes the target
for the given xi and yi). We further assume that condi-
tioned on xi and x j, Cxi,yi and Cx j ,y j are independent.
We discuss visibility in section II-B.

• Stopping time τc. The stopping-time τc gives the first
timestep that our agent(s) captures—i.e., sees—the
target.

• Non-adversarial agent. We assume that the sequence
xT is independent of yT ; i.e., the target’s transition
Pxk|xk−1

is independent of yk−1. This could be the case
if the target is indifferent to or unaware of being
pursued, or alternatively the agent may be stealthy,
so that the evader is unaware of the agent’s position.

The goal is to find an open-loop path that optimizes
some criteria that favors finding the evader. One proposal
would be to find a path that minimizes the expected time-
to-capture, which we can calculate using the path yT and

2367

the distribution PxT . In doing so, though, we need to pro-
vide a cost-to-go value at the end of the horizon. Various
heuristics could be used, or values could be obtained via
assumptions about further paths (e.g. Brownian motion).
Instead of the minimizing τc, we choose to maximize the
CDF of τc evaluated at time T . If the capture event were
the flip of a coin, then the capture time would be the first
time we get tails, and the CDF is the sum of probabilities
of getting heads on the first k− 1 tries, and getting tails
on the kth try:

P [τc ≤ T] =
T

∑
k=1

P
[
Cx1,y1 , . . . ,Cxk−1,yk−1 ,Cxk,yk

]
(2)

where Cxi,yi is the complement of the event Cxi,yi . The latter
equation is implicitly a function of the control inputs in
uT−1 that generate the path yT according to equation (1).

By conditioning on xT we can expand each of the terms
in the sum as follows:

P
[
Cx1,y1 , . . . ,Cxk−1,yk−1 ,Cxk,yk

]
=

∫
P[xT]P

[
Cx1,y1 , . . . ,Cxk−1,yk−1 ,Cxk,yk |x

T]
dxT

=
∫

P[xT]P[Cxk,yk |xk]
k−1

∏
j=1

P
[
Cx j ,y j |x j

]
dxT (3)

If dimX = d, then this integral is d T dimensional. We
can compute the integral using Monte Carlo integration,
drawing samples of the chain over the entire horizon. We
draw N samples xT (i), each of length T , from the Markov
chain with joint PDF PxT . We can then write the CDF that
is a function of the open-loop control input sequence uT−1

as:

P [τc ≤ T] (uT−1)

=
T

∑
k=1

∫
P[xT]P[Cxk,yk |xk]

k−1

∏
j=1

P
[
Cx j ,y j |x j

]
dxT

=
T

∑
k=1

[
1
N

N

∑
i=1

f (yk,x
(i)
k)

k−1

∏
j=1

f (y j,x
(i)
j)

]
(4)

where the latter equality holds in distribution as n→∞, and
where f (yk,x

(i)
k) = P[Cxk,yk |xk = x(i)

k] and f (yk,x
(i)
k) = 1−

f (yk,x
(i)
k), i.e., the probability that the target is not scene

given the agent’s current position, and the position of the
target represented by the ith particle. Since the probability
is bounded, the Monte Carlo approximation converges in
distribution by the central limit theorem. Note, though, that
as a function of the sequence uT−1, uniform convergence
is not guaranteed. In other words, the number of samples
required to achieve a given accuracy may depend on uT−1.

A. Maximizing Probability of Capture

Next we write out the probability of capture as a
function of the control input sequence, and maximize it

Fig. 2. Left: State of the algorithm during evaluation at a single node.
The dark rectangle represents the FOV of the UAV projected to the
ground. The red-backed/dark-backed particles are visible from the UAV.
Right: State of the visibility counts at the eight step in the horizon. Redder
particles have greater counts. The thinner rectangles represent previous
FOVs of the UAV projected to the ground. In both cases the red triangle
is the position of the UAV. The FOV is fixed and points down and to the
right.

by using a dynamic programming principle. In doing so
we will also show how we can ...

We let C(ut−1) be the cost of the control sequence ut−1

on a horizon of length t, wherein yt is implicitly computed
from ut−1:

C(ut−1) =
t

∑
k=1

1
N

N

∑
i=1

f (yk,x
(i)
k)

k−1

∏
j=1

f (y j,x
(i)
j) . (5)

We wish to find the maximum of C over controls, and we
let C∗ be the maximizing cost:

C∗ = max
uT−1∈U T−1

C(uT−1) (6)

Now, since in the sum comprising C(ut), the first t − 1
terms do not depend on ut , we may apply a principle
similar to that used for dynamic programming principle
[1], and write the maximizing cost function recursively, as
a function of the control inputs up to and including t−1:

C∗(ut) = D(ut−1)+ argmax
ut ∈U

C∗
(
[ut−1,ut]

)
. (7)

with terminating condition C∗(uT−1) = D(uT−1) and where
D(ut−1) is the last term of the sum from C(ut−1):

D(ut−1) =
1
N

N

∑
i=1

f (yt ,x
(i)
t)

t−1

∏
j=1

f (y j,x
(i)
j) . (8)

Unfortunately we can not get away from the fact that costs
in the future depend on the path we took to get there, and
so C∗(ut) must be computed for all possible ut . This is the
case, first, because of the dependence of yt on ut−1; and,
second, the fact that the executed path affects the belief
about where the target is. The chief advantage of writing
it in the form of (7) is so that we may use memoization
to build up C∗(ut).

Given that we need to compute to C∗(ut) for all possible
ut , how can we best do so efficiently? We re-write D(ut−1)

2368

as follows:

D(ut−1) =
1
N

N

∑
i=1

f
(
yt(ut−1),x(i)

t
)

gi(ut−1) (9)

where we have made more explicit the dependence of yt
on ut−1, and where h is the product of f ’s given a single
sample xT (i):

gi(uk) =
k

∏
j=1

f
(
y j(u j−1),x(i)

j

)
= f

(
yk(uk−1),x(i)

k

)
gi(uk−1)

Note the properties of gi:

• If sample i is not visible from yt then f (yt ,x
(i)
t) = 0.

Therefore, at any one timestep the set of non-zero
summands in C(ut−1) is non-zero on a set that is
likely to be small compared to N, the total number of
samples, and could be computed from a single range
query.

• If sample i is visible from yt , and if the condi-
tional distribution only depends on visibility, i.e.,
P(Cx,y|x) = ρ if x is visible from y and 0 otherwise,
then g(yt , i) = ρ (1− ρ)n where n is the number of
times in the preceding t− 1 steps that sample i was
visible.

Therefore in order to calculate the sum of g’s efficiently,
we do the following. We do a depth first traversal of control
sequences uT . We keep an array that maintains a count on
the times sample i was visible. At each yt generated from
a sequence uT−1, we determine the set of indices I (yt) of
samples visible from yt at time t. For each i ∈I (yt), we
evaluate the sum of g using the array of visibility counts;
then we increment visibility counts for each i∈I (yt) and
we recurse on each ut ∈U ; when all the recursions have
returned, we go back to each i ∈I (yt) and decrement the
corresponding visibility counts, and return. The algorithm
is presented in Algorithm 1.

B. Visibility

For each query particle x(i)
t and waypoint yt we evaluate

whether the particle lies within the field-of-view of the
UAV given it’s current state, and also whether the particle
is occluded by buildings or other structures from the
UAV’s position. In order to do this efficiently, we first
only consider points which are within in an axis-oriented
bounding box of the FOV of the UAV projected to the
ground. We construct this potential list using a 2D range
query, which is constructed for all particles at time t—
that is, we create T 2D range trees. Of the results from
the query, we remove those which lie outside the FOV
of the UAV projected to the ground. Then we remove the
particles that are occluded.

Algorithm 1 Compute optimal path

1: function BESTPATH(yt ,ut−1,v : ref,T)
2: V ← V (yt ,{x(i)

t }) . Get visible particles
3: p← 0
4: for i ∈V do . Increment visible particles
5: vi← vi +1 and calculate D(ut−1)
6: p← p+ρ (1−ρ)vi

7: end for
8: if t < T then . If not at end of horizon...
9: for u(j)

t ∈U do . We assume U is discrete
10: yt+1← F(yt ,u

(j)
t)

11: (ut (j),C(j))←
12: BESTPATH(yt+1, [ut−1,u(j)

t],v,T)
13: end for
14: j← arg max jC

(j) . Save the best sub-path
15: p← p+C(j∗)

16: u∗← [ut−1,u(j∗)
t] . Concatenate the input

17: else to the current sequence
18: u∗← ut−1

19: end if
20: for i ∈V do . Restore visibility counts
21: vi← vi−1
22: end for
23: return

(
u∗, p

)
24: end function

Fig. 3. Left and right: Two of the 16 channels of the visibility
representation for the McKenna MOUT site at Fort Benning. The axes
are measured in meters. The left corresponds to points in a π/8 wedge
due east; the right to a wedge to the south-south-west. Lighter colored
regions are more occluded in the given direction, meaning that they are
only visible at higher elevations, or directly up.

We use a visibility function V (x,y) which is 1 is a
target at x on the ground is visible from the UAV in state
y. Though this is a 6D function depending on the positions
of both the target and the UAV, we compress this function
into a single 2D array. To do this we assume that the target
is on the ground, and that heights in the world are given by
a 2D height function H (p) where p∈R2. In other words,
there are no tunnels, and the outward normals of building
façades have non-negative z-components. Then we let

Ṽ (x,k) = max
p : p=(x,H (x)),

2πk
n ≤θ(p−x)< 2π(k+1)

n

φ(p− x)

2369

where θ(p) and φ(p) are the spherical coordinates of p ∈
R3, where φ(0,0,1) = π/2. In other words, Ṽ (x,k) gives
the minimum elevation angle at which the target on the
ground can be guaranteed to be seen from points within the
kth pie wedge emanating from the target. Figure 3 shows
the encoding for McKenna MOUT site at Fort Benning.

C. Control Loop and Filtering

The control loop is as follows:

1) Use the sensor to evaluate whether the target is in
view—if the target is seen, we are done.

2) Update a particle filter (see [4] for a review of
sequential Markov Chain Monte Carlo methods)
based on whether the target was seen or not.

3) Sample N chains from the distribution PxT repre-
sented by the particle filter.

4) Using the N samples, evaluate the optimal control
input sequence uT ∗ over the horizon T using Algo-
rithm 1.

5) Apply u0
∗, the first coordinate of uT ∗, to the plant.

6) Repeat steps 1 through 5 until the target is found.

To compute PxT we use simple 2nd order Brownian motion
with bounded velocities. We are investigating the usage
of more realistic and predictive models such as those
described by Bruce et al. in [3].

III. EXPERIMENTS

In this section we describe some of the results of
running the closed-loop controller in a simulation environ-
ment. We use four simulated environments, three of which
are shown in 4, the fourth is the McKenna MOUT site
shown in Figure 1. We assume that the target motion model
is a 2nd order Brownian motion model with bounded ve-
locities, i.e. velocities are Brownian except for the fact that
they are restricted to a box. In the McKenna simulations,
the target has a maximum velocity of 2m/s. The UAV flies
at a low altitude of 12.5m, and the maximum roof height
is 9m. In the simpler maps the roof heights are 150 units
of height in a map with 400×400 pixels; in these scenes,
the UAV has an altitude of 200 units.

We measure four different algorithms: Full: The Al-
gorithm as stated in Algorithm 1; Blind: The same as
Full except the visibility check due to occlusions is not
done; Memory-less: A modification of Algorithm 1 that is
memory-less, meaning that there is no term that discounts
for having seen the same particle in the past—then, line 6
of Algorithm 1 becomes p← p+ρ; Memory-less+Blind:
A combination of Memory-less and Blind. To measure
performance we report the probability that the target was
captured, as well as the median time to capture. In all
cases, when measuring whether we have captured the
target, we make sure that it is not occluded.

The left column of figure 6 shows the probability of
capture and median time to capture as a function of the
map number. The map numbers are coded according to
Figure 4. In general, what turns out to be surprising is
the little difference between the Memory-less and Full
planners. Also of note, in the case of Map 3, both blind
controllers perform not as well in terms of probability of
capture. Thus, the visibility does yield an improvement in
the more complex environment.

The middle column shows the effects of horizon length.
Surprises here are the low median time for the Memory-
less+Blind planner with only 4-step look-ahead, however,
this is coupled with a lower probability of capture.

The right column gives probability of capture and
median time to capture for the McKenna MOUT site, using
6- and 11-step lookaheads. Here it is noticeable that the
Full and Blind planners, neither of which are memory-less,
excel in the 6-step lookahead.

Overall, it is notable that horizon has little effect, nor
does whether the planner is memory-less or not. The
visibility computations help when it counts, in the more
complicated Map 3 scene.

Map 1 Map 2 Map 3

Fig. 4. Three simple maps used for testing.

IV. CONCLUSION

In this paper we have described an algorithm and
framework for generating trajectories for UAVs in search
of a target, which is either non-adversarial, or is unaware
of the UAV’s presence. Nevertheless, several issues need
to be solved to make this method more effective:
• Pruning. Planning horizon is limited by the need to

test many paths. What heuristics can be used to prune
branches likely to be unfruitful?

• Gimbal cameras. We assumed a fixed camera mount,
and we assumed the aircraft does not roll, which is
unrealistic. We need to the UAV state extra dimen-
sions for the camera gimbal. This, however, would
increase the dimension of the state space, and may
require more branching.

• Convergence. Convergence properties, and uniformity
of convergence are unknown, and need to be deter-
mined.

• Transitioning to optimal pursuit plans. If the optimal
UAV trajectories for search differ for those for pursuit
when the target’s position is known, are there optimal
configurations for transitioning from search to pursuit,

2370

Fig. 5. Left: 3D view of the state of McKenna MOUT simulation in the 92nd time step. Right frames: Bird’s eye view at time steps 30, 60, and 90
showing the evolution of the path.

Fig. 6. Results of experiments; see text in section III for explanation.

and should this be taken into account when putting a
metric on search trajectories?

These are some of the issues that we plan to address in the
future. In addition, we are investigating how this algorithm
might be applied to a real UAV in a MOUT environment.

REFERENCES

[1] D. Bertsekas. Dynamic Programming and Optimal Control. Athena
Scientific, 2005.

[2] F. Bourgault, A. Göktogan, T. Furukawa, and H. F. Durrant-Whyte.
Coordinated search for a lost target in a bayesian world. Advanced
Robotics, 18(10):979–1000, 2004.

[3] A. Bruce and G. Gordon. Better motion prediction for people-
tracking. In Proceedings of the IEEE International Conference on
Robotics and Automation, April 2004.

[4] A. Doucet, N. de Freitas, and N. Gordon. Sequential Monte Carlo
Methods in Practice. Springer-Verlag, 2001.

[5] B. Gerkey, S. Thrun, and G. Gordon. Visibility-based pursuit-
evasion with limited field of view. International Journal of Robotics
Research, 25(4):299–315, 2006.

[6] L. Guibas, J. Latombe, S. LaValle, D. Lin, and R. Motwani.
Visibility-based pursuit-evasion in a polygonal environment. In-
ternational Journal of Computational Geometry and Applications,
9(5):471–494, 1999.

[7] G. Hollinger, A. Kehagias, and S. Singh. Probabilistic strategies
for pursuit in cluttered environments with multiple robots. In
Proceedings of the IEEE International Conference on Robotics and
Automation, April 2007.

[8] R. Isaacs. Differential Games. Wiley, New York, NY, 1965.
[9] V. Isler, S. Kannan, and S. Khanna. Randomized pursuit-evasion in a

polygonal environment. IEEE Transactions on Robotics, 5(21):864–
875, 2005.

[10] B. Koopman. Search and Screening. Pergamon, 1980.
[11] T. Parsons. Pursuit-evasion in a graph. In Y. Alavi and D. Lick, ed-

itors, Theory and Applications of Graphs, pages 426–441. Springer,
1976.

[12] N. G. D. Roy. Finding approximate pomdp solutions through belief
compression. PhD thesis, Carnegie Mellon University, 2003. Chair-
Tom Mitchell and Chair-Sebastian Thrun.

[13] L. Stone. Theory of Optimal Search. Operations Research Society
of America, 1989.

[14] I. Suzuki and M. Yamashita. Searching for a mobile intruder in a
polygonal region. SIAM J. Comput., 21(5):863–888, 1992.

[15] R. Vidal, S. Rashid, C. S. Sharp, O. Shakernia, J. Kim, and S. Sastry.
Pursuit-evasion games with unmanned ground and aerial vehicles.
In Proceedings of the IEEE International Conference on Robotics
and Automation, pages 2948–2955, 2001.

[16] C. Yu, J. Chuang, B. Gerkey, G. Gordon, and A. Ng. Open
loop plans in multi-robot pomdps. Technical Report, Stanford CS
Department, 2005.

2371

