
Multi-robot Surveillance: an Improved Algorithm for the

GRAPH-CLEAR Problem

Andreas Kolling Stefano Carpin

School of Engineering

University of California, Merced

Merced – USA

Abstract— The main contribution of this paper is an im-
proved algorithm for the GRAPH-CLEAR problem, a novel
NP-complete graph theoretic problem we recently introduced as
a tool to model multi-robot surveillance tasks. The proposed al-
gorithm combines two previously developed solving techniques
and produces strategies that require less robots to be executed.
We provide a theoretical framework useful to identify the
conditions for the existence of an optimal solution under special
circumstances, and a set of mathematical tools characterizing
the problem being studied. Finally we also identify a set of open
questions deserving more investigations.

I. INTRODUCTION

The use of multi-robot systems for the surveillance of vast

regions is one of the well established areas in multi-robot

research. Up to now, however, there have been still very few

on-field deployments of these systems for real world appli-

cations. Besides the obvious matter of cost, another reason

for their moderate use is the fact that many basic questions

about the efficient coordination of these systems are still

unanswered. A big fraction of former theoretical research

developed models where robots were equipped with sensors

abstractions pretty far from realistic applications, e.g. sensors

with infinite range and the alike. In this paper we instead

extend our previous findings aimed to investigate surveillance

tasks by multi-robot systems where individual agents use

sensors with limited capabilities. We started this research

thread with two papers [5][6] aimed to extend the CMOMMT

(Cooperative Multi-robot Observation of Multiple Moving

Targets) problem initially posed by Parker [11]. One of the

main limitations of these algorithms is the requirement that

robots operate in open areas. Our following efforts have

therefore been devoted to scenarios where robots operate

in cluttered environments [7]. In particular, we modeled

the problem of discovering multiple intruders in a complex

environment using a novel graph theoretic problem, dubbed

GRAPH-CLEAR. Informally speaking, the problem asks

what is the minimum number of robots needed to detect all

possible intruders in a given complex environment that can

be modeled as a graph. In [8] we proved that the associated

decision problem is NP-complete. As clarified later on, a way

to circumvent the intractability of the problem on graphs,

is to perform certain guard operations that turn graphs into

trees. In [7] and [8] we have provided two algorithms that

produce search strategies for trees, i.e. course of actions for

a robot team that ensures each intruder will be discovered.

Both algorithms are known to be suboptimal. In this paper

we present a new approach for the GRAPH-CLEAR problem

restricted to trees that outperforms the previous ones. It is

worth to outline that many of the properties regarding the

GRAPH-CLEAR problem restricted to trees are still to be

investigated. For example, we do not know yet whether such

restriction to trees allows to find the optimal solution in

polynomial time. This paper, however, provides a further

improvement that sheds some more light on this problem,

and provides some more formalism that could be used to

answer this question and similar ones.

The paper is organized as follows. In section II we re-

vise former research related to multi-robot surveillance, and

we provide references to seminal papers on graph theory

related to the problem at hand. Section III summarizes

the GRAPH-CLEAR problem and shortly addresses our

formerly developed algorithms. The new approach and a

theoretical framework are presented in section IV, followed

by a new algorithm that computes strategies for the new

approach under certain conditions. Section V concludes with

a discussion of remaining problems and possible extensions

of the presented work.

II. RELATED RESEARCH

Visibility-based pursuit evasion games have attracted re-

markable attention from the robotics community. On the

theoretical side Suzuki and Yamashita first investigated the

problem of a pursuer searching intruders using a beam sensor

with unlimited range [14]. LaValle and colleagues further

investigated this problem considering various restrictions and

extensions. For example, the case of an omnidirectional

unlimited range sensor was investigated [4], or the case of a

robot equipped just with a gap sensor, i.e. a sensor capable

only of detecting discontinuities [13]. On the more applied

side, the formerly cited work on CMOMMT by Parker [11]

set a milestone in the field. More recently Gerkey at al. [3]

describe an implementation of the visibility based pursuit

evasion problem on a robot with limited field of view.

Researchers in graph theory also investigated problems re-

lated to graph search. Three papers are particularly important

in order to put our contribution into context. The concepts

of contaminated and clear edges were introduced by Parsons

[12], who pioneered this research vein. The problem he

defined, called edge-search, deals with graphs where edges

can be contaminated and have to be cleared by agents placed

on vertices or marching along edges. The search number

2008 IEEE International Conference on
Robotics and Automation
Pasadena, CA, USA, May 19-23, 2008

978-1-4244-1647-9/08/$25.00 ©2008 IEEE. 2360

s(G) of the edge-search problem is the smallest number of

agents with which one can find a sequence of actions, called

strategy, such that all edges become clear. The problem of

determining s(G) was shown to be NP-hard by Megiddo et

al. in [10]. An important extension to Parson’s work was

proposed by Barriere et al. [1], who first considered the

edge-search problem with weighted vertices and edges. This

extension implies that more than one agent is needed to

perform the basic operations of clearing an edge or blocking

a vertex. They also introduce the concept of contiguous

strategies, i.e. solving strategies such that the clear subset of

vertices always forms a connected subgraph of the original

graph. They show that optimal contiguous strategies can

be found in linear time on trees (contiguous strategies are

however not optimal in general).

III. GRAPH CLEAR

This section offers a formalization of the GRAPH-CLEAR

problem, pertinent notation and current algorithms for com-

puting strategies on trees which serve as a basis for the new

approach. Before moving to the formalism, we outline the

connection between real world problems and the mathemat-

ical models presented herein. We are mainly interested in

scenarios where robots operate in complex indoor environ-

ments with many rooms connected by multiple doors. In this

scenario, rooms are modeled as graph vertices, while doors

are mapped into graph edges connecting adjacent vertices

(i.e. rooms). Figure 1 shows a simple environment and its

corresponding graph model.

44

1 2 3
1 2 3

Fig. 1. An indoor environment and its corresponding graph model for the
GRAPH-CLEAR problem.

As our focus is on robots with restricted capabilities, we

assume that multiple robots are needed to patrol and search

these environments. In particular, we suppose that in order to

guarantee that no intruder crosses a door, we need to place a

certain number of robots to guard it. This number is indicated

as the weight of an edge. Similarly, more than one robot

could be needed in order to sweep a room and make sure it

contains no intruder, or detect them. This number is indicated

as the weight of a vertex. While in the following we strictly

stick to graph theory jargon, the reader could translate every

instance of the word vertex with room, edge with door and

agent with robot.

A. Definitions

GRAPH-CLEAR was formalized in [8] and is here shortly

summarized. We define a weighted graph1 as a triple G =

1while in graph related literature weighted graphs have weights for edges
only, we instead assume that weights are defined both for edges and vertices.

(V,E, w), where V is the set of vertices, E is the set of

edges, and w : V ∪ E → N \ {0} is the weight function.

The graph is undirected. Edges and vertices can be clear

or contaminated. A clear vertex or edge hosts no intruders,

while a contaminated vertex or edge could potentially hide

one or more intruders. G is said to be clear when all vertices

and edges are clear. A clear vertex v, however, can become

contaminated again if there exists a path from v to another

contaminated vertex or edge2. Recontamination of edges is

analogue. Contaminated vertices or edges can be cleared by

applying clearing and blocking operations respectively. A

clearing operation applied to a vertex v ∈ V detects all

intruders under the assumption that no new intruders enter

or leave the vertex. It hence clears the vertex using w(v)
agents. A blocking operation is applied to an edge e ∈ E
and detects all intruders passing through the edge and as such

prevents contamination from spreading through the edge and

clears it. The number of agents needed for a block is w(e).
When using multiple agents to clear a graph, we can deploy

agents in edges or vertices in order to perform the blocking

and clearing operations defined above. The policy we follow

when deploying agents is called strategy and defined as:

Definition 1 (Strategy): Let G = (V,E,w) be a weighted

graph. A strategy S for G is a function S : (V ∪E)×N→ N.

S(x, t) is the number of agents deployed on x ∈ V ∪ E
at time t. If S(x, t) ≥ w(x), then x is blocked or cleared

at time t, depending on whether it is an edge or a vertex.

Associated with each strategy there is a cost, i.e. the number

of agents needed in order to implement the strategy.

Definition 2 (Cost of a strategy): Let G = (V,E, w) be

as before and let S be a strategy for G. The cost of S is

ag(S) = max
t∈N

∑

x∈V ∪E

S(x, t) (1)

A strategy S clears a graph G, if by deploying agents in the

order dictated by the strategy, there exist a time t such that

all edges and vertices are clear. While this notion could be

made formal, we here omit the details. This leads us to the

GRAPH-CLEAR problem.

Definition 3 (GRAPH-CLEAR problem): Let G be as be-

fore with all edges and vertices contaminated. Determine a

strategy S for G that clears G and is of minimal cost ag(S).
The following formula gives the cost to clear a vertex

safely, i.e. the cost to perform a clearing operation on the

vertex while blocking all the edges connected to it to avoid

immediate recontamination.

s(v) := w(v) +
∑

e∈Edges(v)

w(e). (2)

Any strategy which clears more than one vertex at time t
has ag(S) ≥ ag(S′) for some strategy ag(S′) which clears

at most one vertex at time t. Therefore, as the focus of our

research is in finding strategies of minimal cost, we will

exclusively deal with strategies clearing at most one vertex

2we also consider edges connecting two vertices in the path, contrary to
the common definition of a path as a sequence of vertices. We opt not to
formalize this slight difference to keep the notation simpler.

2361

at once. There may be multiple strategies S of minimal cost,

so we define the number of agents to clear a graph G as

ag(G) := ag(S) for any optimal strategy S.

B. Previous results for GRAPH-CLEAR

The concepts of contiguous and non-contiguous strategies

play an important role in the algorithms we have formerly

developed. As defined by Barriere at al. [1], a contigu-

ous strategy requires that the subset of cleared vertices

forms a connected subgraph. This requirement is relaxed

for non-contiguous strategies. In [7] the GRAPH-CLEAR

problem was first attacked, and an algorithm to produce

non-contiguous strategies on trees was presented, as well as

a upper bound on its cost w.r.t. to the depth of the tree.

The algorithm is based on the computation of labels on

edges which we will shortly present in this section. In [8]

the NP-completeness of GRAPH-CLEAR was proven, and

an algorithm to compute contiguous strategies on trees was

presented. It was shown that both algorithms produce sub-

optimal strategies for trees. The contiguous algorithm may,

however, produce optimal contiguous strategies as discussed

in [8]. Since contiguousness is a rather strict requirement that

is not necessary in most robotics applications we investigate

non-contiguous strategies to yield a lower number of agents.

In [8] it was proposed to combine the two algorithms, i.e.

the one producing sub-optimal non-contiguous strategies and

the one producing contiguous strategies. An approach for

finding non-contiguous strategies based on the two former

algorithms, its theoretical properties and an improved algo-

rithm are the primary contributions of this paper. First, we

will shortly introduce the underlying mechanisms of the two

previous algorithms. We restrict the problem to trees, and

let GT = (V,E,w) be an instance of the GRAPH-CLEAR

problem with GT being a weighted tree. An instance of

GRAPH-CLEAR on a graph can be reduced to an instance on

a tree by permanently deploying a set of agents on suitable

edges, so that the graph stays connected but exhibits no

cycles. Since this cost is constant we will not consider it

during the optimization process.

1) Non-contiguous labels: Let vx, vy ∈ V and e =
[vx, vy] ∈ E. We are assigning a label λvx

(e) to edge e to

represent the number of agents needed to clear the subtree

rooted in vy when entering from vx. If vy is a leaf, then

λvx
(e) = s(vy) = w(vy) + w(e). Otherwise consider all

neighbors of vy other than vx. Let these be v2, . . . , vm with

m = degree(vy). Write ei := [vy, vi] and let all vi be

ordered s.t. ρi ≥ ρi+1 where ρi := λvy
(ei) − w(ei). The

ordering defines the sequence in which we clear the vertices

vi. The clearing cost of the subtree rooted at vi is:

c(vi) := λvy
(ei) +

∑

2≤l<i

w(el), (3)

i.e. we have to use agents to block all edges to previously

cleared subtrees and then use agents to clear the subtree

rooted in vi. The label on e hence becomes:

λvx
(e) = max{s(vy), max

i=2,...,m
{c(vi)}}. (4)

The order defined by ρi minimizes this term. Once all labels

are computed we can find a strategy to clear GT from a

vertex v ∈ V with neighbors v1, . . . , vm by considering:

ag(v) = max

{

s(v), max
i=1,...,m

{cag(vi)}

}

, (5)

where cag(vi) = λv(ei) +
∑

1≤l<i w(ei) similar to c(vi),
but including all neighbors since we do not enter from

another vertex when we start the clearing from v directly.

To find the minimal strategy we simply compute all labels

and then select the vertex where ag(v) is minimal. The

resulting strategies are non-contiguous and not optimal. In

fig. 2 the execution of a non-contiguous strategy based on

the presented labels is illustrated. In [1] Barriere provides

details for computing labels for a similar labeling mechanism

in O(n), where n is the number of vertices in the tree.

2) Contiguous labels: The contiguous variant of these

labels is the basis of the contiguous algorithm. The key

difference is that the contiguous strategy first clears vy and

then descends into the subtrees. It is motivated by the study

of contiguous edge-search strategies for weighted trees by

Barriere in [1]. Since we first clear vy , all edges to vertices

v2, . . . , vm have to remain blocked after safely clearing vy .

This means a reversal in the order in which we clear these

vertices. Furthermore, when entering the subtree rooted in

vi we have the edge to vi already blocked, contrary to the

non-contiguous strategy. But the next step is to clear vi itself

before descending into the other subtrees. Figure 2 illustrates

the difference between the contiguous and non-contiguous

strategies. As we are using s(vi) agents for clearing vi

and also block e during this operation we can also take
∑

2≤l<i w(el) as the additional number of agents to guard

edges to contaminated neighbors rather than
∑

2≤l≤i w(el)
as done in [8]. Once vertex vi is cleared the block on ei is

removed and the term
∑

2≤l<i w(el) remains the maximum

number of agents used. Using this perspective it becomes

apparent that contiguous and non-contiguous labels actually

have the same equations complementing a lemma from [8]

that the number of agent needed for a strategy based on non-

contiguous labels is equal or better than contiguous labels

and showing that the number of agents is indeed equal. In

fig. 2 this becomes clearly visible and we therefore refrain

from presenting a formal proof.

IV. HYBRID STRATEGIES

In [8] it was proposed to combine the two current algo-

rithms by separating the neighboring vertices into two sets

and clearing one using the contiguous and one with the non-

contiguous algorithm. More precisely, for vy , coming from

vx, we seek to partition the neighbors V := {v2, . . . , vm}
into two sets of vertices V1 and V2. The first set V1 will be

cleared with the non-contiguous algorithm. Once all elements

of V1 are cleared the team clears vy and then proceeds to

clear V2 with the contiguous algorithm. We thereby divide

the weight of the term
∑

2≤l<i w(el) from equation 3 onto

two sets. This can greatly reduce the total number of agents

2362

v
x

v
y

v
4

v
3

v
2

e
4

e
3e

2

e

v
x

v
y

v
4

v
3

v
2

e
4

e
3e

2

v
x

v
y

v
4

v
3

v
2

e
4

e
3e

2

vx

vy

v4v3v2

e4
e2 e3

vx

vy

v4v3v2

e4
e2 e3

e e e e

v
x

v
y

v
4

v
3

v
2

e
4

e
3e

2

e

v
x

v
y

v
4

v
3

v
2

e
4

e
3e

2

v
x

v
y

v
4

v
3

v
2

e
4

e
3e

2

vx

vy

v4v3v2

e4
e2 e3

vx

vy

v4v3v2

e4
e2 e3

e e e e

A contiguous strategy:

A non-contiguous strategy:

1) 2) 3) 4) 5)

1) 2) 3) 4) 5)

Legend:

contaminated vertex clear vertex blocked edgeedge 0 to n vertices

Fig. 2. Illustration of a contiguous and a non-contiguous strategy.

needed. Figure 3 illustrates how such a hybrid strategy would

be executed.

vx

vy

v
3 v

2

1)

vx

vy

v
3 v

2

2)

vx

vy

v
3 v

2

3)

vx

vy

v
3 v

2

4)

Fig. 3. Execution of the hybrid strategy.

From fig. 3 one complication becomes apparent. Let V x
1

and V x
2 be the partitioning of the neighbors of vx when

coming from yet another vertex vz . If vy ∈ V x
1 , then e is

not blocked when the team enters vy , as seen in fig. 3. Once

we clear vy we have to add a block on e which increases

the total number of agents needed while clearing V2, as seen

in steps 3 to 5 in fig. 3. If vy ∈ V x
2 , then the situation is

reversed and we have to add a block on w(e) only while we

clear V1 and not while clearing V2.

Let us denote the case when v ∈ V x
1 as case 1 and v ∈ V x

2

as case 2. We can compute a label for both cases, using the

superscripts 1 and 2. So the labels on edge e become:

h1
u(V1, V2) = max

{

max
vi∈V1

{c1(vi)}, max
vi∈V2

{c2(vi) + w(e)}

}

h2
u(V1, V2) = max

{

max
vi∈V1

{c1(vi) + w(e)}, max
vi∈V2

{c2(vi)}

}

λ1
vx

(e) = max
{

s(vy), minV1,V2
{h1

u(V1, V2)}
}

(6)

λ2
vx

(e) = max
{

s(vy), minV1,V2
{h2

u(V1, V2)}
}

(7)

where c(vi)
j = λj

vy
(ei)+

∑

vl∈Vj ,2≤l<i w(el) for j = 1, 2.

It is easy to see, however, that h1
u(V1, V2) = h2

u(V2, V1)
given that λ1

vy
(ei) = λ2

vy
(ei), which is the case since

we compute the labels from the leaves upward and these

equations are identical. It is however, important to note that

the partition still has take into account the penalty term w(e),

i.e. only to which side it is assigned is not relevant. Hence,

to simplify notation, we will drop superscripts 1 and 2. The

problem now states as follows:

Definition 4 (Hybrid algorithm: optimal partition):

Given vx, vy and neighbors V = {v2, . . . , vm} as before

find a partition of V into V1 and V2 s.t. hu(V1, V2) is

minimal.

The proposed algorithm to find partitions will be based

on theoretical framework of the next two subsections. First

we introduce the concept of batches which cluster vertices

and then proceed by developing criteria for optimal partitions

into V1 and V2 in section IV-B. On the basis of this we will

develop an algorithm in section IV-C.

A. Batches

The following will be useful to describe at which vertex

within a set V the number of agents is maximal. The proofs

are left out here and can found in [?]. We shall call a

set of all vertices with ρi = a − p a batch Bp, where

a := max{λvy
(ei)}. The set V can have at most a − 1

batches, i.e. B1, B2, . . . , Ba−1. During the execution of a

strategy S in the non-contiguous variant we clear the batches

in sequence B1, B2, . . . , Ba−1 and then clear v. For the

contiguous variant the order of clearing is reversed. Define

the weight of a batch as w(Bp) :=
∑

vi∈Bp
w(ei) and write

w(Bp<k) :=
∑

p<k w(Bp). Define the maximum cost within

V to be h := max2≤i≤m{c(vi)} and let vq be a vertex that

assumes this maximum, i.e. h = c(vq), s.t. vq ∈ Bk with

k being the largest such possible batch index. Using this

notation we can rewrite the maximum cost to be:

h = w(Bi<k) + w(Bk)− w(eq) + λ(eq)

= w(Bi≤k) + ρq = w(Bi≤k) + a− k. (8)

The following lemma will be relevant for our further

results.

Lemma 1: Let vq and Bk be as before. Consider any non-

empty Bk′ s.t. k 6= k′. If k > k′, then k−k′ ≤ w(Bk′<i≤k).
Otherwise if k < k′, then w(Bk<i≤k′) ≤ k′ − k.

B. Criteria for optimal partitions

All vertices in batches Bi, for i > k, do not contribute

to the maximum, i.e. a removal of these vertices does not

change the maximum cost. We shall call such vertices the

tail T :=
⋃

i>k Bi of V . Their joint weight shall be denoted

by w(T) =
∑

vi∈T w(ei). As a consequence of lemma 1 we

have w(Tt) < a− k.

When partitioning V into V1 and V2 we shall write Bi,1,

Bi,2 for the batches of V1 and V2, k1, k2 for k, vq,1, vq,2

for vq, hV1
, hV2

for h and T1 and T2 for T . For notational

simplicity we will ignore the penalty term in this section

and discuss it thereafter when presenting the partitioning

algorithm. Finally, for a partition V1 and V2 we define a

maximization criterion as:

c(V1, V2) := k1 + k2 + w(T1) + w(T2)− |h1 − h2|. (9)

2363

Definition 5 (Balanced and full partitions): Let V be a

set of vertices as before. A partitioning of V into V1 and

V2 is called

• full if k = k1 = k2,

• balanced if w(Bi≤k1,1)− k1 = w(Bi≤k2,2)− k2,

• maximal if for any other partition V ′
1 , V ′

2 we get that

c(V1, V2) ≥ c(V ′
1 , V ′

2).
It is easy to see that a partition that is full and balanced

will minimize hu and is therefore optimal. Also any full

and balanced partition will be maximal. To show that any

maximal partition is optimal we need the following lemma

to show that hb := w(Bi≤k)/2 + a− k is a lower bound on

hu.

Lemma 2: Given V , with a and k as before and any

partition V1 and V2 we have that:

hu ≥ w(Bi≤k)/2 + a− k = hb. (10)

Proof: Detailed proof found in [9].

For full and balanced partitions we have hu = hb. But a

full and balanced partition may not exist and hence we have

to consider maximal partitions.

Lemma 3: If V1, V2 is a maximal partition of V , then hu

is minimal, i.e. the partition is optimal.

Proof: Detailed proof found in [9].

In colloquial terms, we have to find a partition with the

largest k1, k2 and large tails T1, T2 and with w(Bi≤k1,1)
roughly equal to w(Bi≤k2,2).

C. The partitioning algorithm

The algorithm is based on a dynamic programming ap-

proach motivated by the relation of the maximization cri-

terion to the subset sum problem, one of the early NP-

complete problems [2]. In short, the subset sum problem

is to determine whether a set of integer values contains a

subset whose values sum up to some given integer z. A

dynamic programming algorithm to solve it runs in pseudo-

polynomial time O(Cn) where C is the sum of all members

of the set and n is the number of elements. Translated to

our case this becomes the problem to determine whether V
contains a set of vertices V2 s.t. the sum of the weight of their

respective edges w(V2) sums up to z = ⌈w(V)/2−w(e)/2⌉.
Here w(e) is the penalty term from equation 6. A solution

V2 would minimize hu given that V1 = V \ V2, V2 is a full

partition, i.e. it satisfies k1 = k2 = k. Obviously, using the

dynamic programming approach for solving the subset sum

problem gives no guarantee that k1 = k2 = k. In fact, such a

partition may not even exist. The following will be concerned

with an algorithm that guarantees to find a full partition if

one exists.

Let A be a table with m − 1 rows and z = ⌈w(V)/2 −
w(e)/2⌉ columns. Set A(0, j) := 0,∀j and A(i, 0) := 0,∀i.
Each row represents a vertex and they shall be ordered as

vm, . . . , v2, i.e. vm corresponds to row one, vm−1 to row

two and so on. Write ci for w(em−i+1), i.e. the cost added

to V2 by adding the vertex in row i. If ci > j, then A(i, j) =
A(i−1, j), otherwise A(i, j) = max{A(i−1, j), A(i−1, j−
ci) + ci)}. An entry A(i, j) in the table is then the maximal

weight for V2 achievable using vertices vm, . . . , vm−i+1. The

table is filled as usual for the subset sum problem. If an entry

in A exists s.t. A(i, j) = ⌈w(V)/2−w(e)/2⌉, then we have

a partition that is optimal w.r.t. to the distribution of the edge

weights onto V1 and V2. This is, however, only one part in

the optimization. An entry in A represents possibly multiple

partitions, some of which do not satisfy that k1 = k2 = k.

A particular partition can be thought of as a path within the

table. In [9] examples illustrating this are presented. Finding

an optimal partition is hence the problem of finding an entry

with A(i, j) = ⌈w(V)/2 − w(e)/2⌉ for which we have a

path that represents a maximal partition. We will show how

to compute whether such a path exists for the case of full

partitions.

Since we ordered the vertices in reverse order we can view

the problem from the perspective of adding vertex by vertex

with decreasing index to V2 as we proceed through the rows

of A. For V1 we can view it as if we are removing vertices

with decreasing index from V1. The main question is what

happens to k1 for V1 and k2 for V2 as we remove and add

vertices. When we add a vertex v ∈ Bu,1 from V1 to V2

we know that all other vertices in V2 are in batches Bj≥u,2.

Write V ′
1 = V1 \ {v} and V ′

2 = V2 ∪ {v}. Define S(V2) :=
∑

1≤i≤k2
w(Bi, 2) to be the support of V2. Now if k2 −

u > S(V2), then v = v′q will be the new maximum for V ′
2 .

Otherwise, if k2 − u ≤ S(V2), then vq = v′q. To illustrate

this with our example set of vertices simply choose V2 =
{v9}. Clearly vq,2 = v9 and S(V2) = 2 and adding v5 will

lead to v′q,2 = v5. Similarly for V ′
1 , when removing v with

associated edge ev , the support will be reduced to S(V ′
1) =

S(V1)−w(ev). Now the maximum v′q,1 may shift to a vertex

of a lower batch if ∃Bb s.t. k1−b > S(V1), otherwise it will

remain at it former vertex s.t. v′q,1 = vq,1.

As long as k1 = k2 = k we know that S(V1) =
w(V1), S(V2) = w(V2), w(T1) = w(T2) = 0 and we do not

need to keep track of these values. Once we add a vertex

v ∈ Bu,1 from V1 to V2 with k2 − u > S(V2) we will have

k′
2 < k and the path will not be a valid solution. Let us

define two further tables K1(i, j) and K2(i, j) in which we

will keep track of k1 and k2. For our case the computation of

K1(i, j) and K2(i, j) involves only a simple check, whether

upon addition/removal of the vertex the current K1 and K2

can be maintained. If this is not the case we discard the

solution path by setting K1(i, j) = 0 or K2(i, j) = 0. The

pseudo code in 1 shows how to compute A, K1 and K2.

Initially we set K1(0, j) = K2(0, j) = k. It is obvious

that k1, k2 are monotonically decreasing w.r.t. to growing

i, j, except for the special case for V1 if we remove the

first vertex v2 in the last row of the table and at this point

have vq,1 = v2 and Bb1,1 = {v2}, i.e. there is no other

vertex in its batch. Dealing with this special case merely

complicates notation without changing the methodology and

we will therefore ignore it. Now, an entry A(i, j) = z with

K1(i, j) = K2(i, j) = k has a path that represents a full

and balanced partition which is therefore optimal. If no such

entry exists, then neither does a full and balanced partition.

In [9] a starting point to construct an analogue algorithm for

2364

Algorithm 1 Compute table entry(i, j)

if ci > j then

A(i, j)← A(i− 1, j)
K1(i, j)← K1(i− 1, j)
K2(i, j)← K2(i− 1, j)

else

A(i, j) = max{A(i− 1, j), A(i− 1, j − ci) + ci)}
if A(i, j) = A(i− 1, j − ci) + ci then

if ρ2 < K1(i− 1, j − ci)− (w(V)−A(i, j)) then

K1(i, j)← 0
else

K1(i, j)← K1(i− 1, j − ci)
end if

if a − ρm−i < K2(i − 1, j − ci) − A(i − 1, j − ci)
then

K2(i, j)← 0
else

K2(i, j)← K2(i− 1, j − ci)
end if

end if

if A(i, j) = A(i− 1, j) then

if K2(i−1, j) ≥ K2(i, j) and K1(i−1, j) ≥ K1(i, j)
then

K1(i, j)← K1(i− 1, j)
K2(i, j)← K2(i− 1, j)

end if

end if

end if

maximal partitions is given.

V. DISCUSSION AND CONCLUSION

We presented a new approach for finding strategies for

GRAPH-CLEAR in a tree which requires solving a parti-

tioning problem. We presented criteria for optimal partitions

and based on these we presented an algorithm that computes

optimal partitions given that a full and balanced partition

exist. In [9] the open problem to develop to compute maximal

partitions is discussed in more detail. Apart from various

other details dealt with in [9], the key problem for finding

maximal partitions efficiently is to find a way to compute

C(i, j) from the entries for A, K1, K2, T1, T2 at (i−1, j) and

(i− 1, j− ci). We do already know how K1, K2, T1 and T2

evolve when adding a vertex vm−i+1. Hence we can identify

whether the path from (i−1, j) or from (i−1, j−ci) leads to

a better partition w.r.t. to C(i, j). The only open problem that

remains is whether a path representing an optimal partition at

entry A(i, j) will be optimal at all previous entries. In other

words, it is the question whether the partition for A(i, j) that

maximizes C(i, j) can be computed based on the description

of the partitions in the previous row i− 1.

Even without computing maximal partitions a greedy par-

tition for a hybrid method already outperforms the previous

algorithms from [7] and [8]. On the other hand, in a realistic

robotic application of GRAPH-CLEAR a reduction by a few

robots is already significant decrease in costs and therefore

an optimal solution for the partitioning is of interest. Further-

more, from a graph-theoretical perspective the investigation

whether optimal solutions for general strategies on trees

exist motivates further analysis of the hybrid method. Yet,

we believe the current progress for finding GRAPH-CLEAR

strategies already gives a good basis for using it in robotic

applications for surveillance.

REFERENCES

[1] L. Barriere, P. Flocchini, P. Fraigniaud, and N. Santoro. Capture of and
intruder by mobile agents. In Proceedings of the 14th annual ACM

symposium on Parallel algorithms and architectures, pages 200–209,
2002.

[2] M.R Garey and D.S. Johnson. Computers and Intractability. A guide

to the theory of NP-Completeness. W.H. Freeman and Company, 1979.
[3] B. Gerkey, S. Thrun, and G. Gordon. Visibility-based pursuit-evasion

with limited field of view. International Journal of Robotics Research,
25(4):299–316, 2006.

[4] L.J. Guibas, J.-C. Latombe, S.M. LaValle, D. Lin, and R. Motwani.
A visibility-based pursuit-evasion problem. International Journal of

Computational Geometry and Applications, 9(4/5):471–494, 1999.
[5] A. Kolling and S. Carpin. Multirobot cooperation for surveillance of

multiple moving targets - a new behavioral approach. In Proceeding

of the IEEE International Conference on Robotics and Automation,
pages 1311–1316, 2006.

[6] A. Kolling and S. Carpin. Cooperative observation of multiple moving
targets: an algorithm and its formalization. International Journal of

Robotics Research, 26(9):935–953, 2007.
[7] A. Kolling and S. Carpin. Detecting intruders in complex environments

with limited range mobile sensors. In K. Kowzlowski, editor, Robot

Motion and Control 2007, Lecture Notes in Information and Control,
pages 417–426. Springer, 2007.

[8] A. Kolling and S. Carpin. The graph-clear problem: definition, theoret-
ical properties and its connections to multirobot aided surveillance. In
Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems, pages 1003–1008, 2007.
[9] A. Kolling and S. Carpin. An improved algorithm for the GRAPH-

SEARCH problem. Technical Report 2007-3, UC Merced, 2007.
[10] N. Megiddo, S.L. Hakimi, M.R. Garey, D.S. Johnson, and C.H.

Papadimitriou. The complexity of searching a graph. Journal of the

ACM, 35(1):18–44, 1988.
[11] L. E. Parker. Distributed algorithms for multi-robot observation of

multiple moving targets. Autonomous robots, 12(3):231–255, 2002.
[12] T. Parsons. Pursuit-evasion in a graph. In Y. Alavi and D. Lick,

editors, Theory and Applications of Graphs. Springer-Verlag, 1976.
[13] S. Sachs, S. Rajko, and S. M. LaValle. Visibility-based pursuit-evasion

in an unknown planar environment. International Journal of Robotics

Research, 23(1):3–26, 2004.
[14] I. Suzuki and M. Yamashita. Searching for a mobile intruder in a

polygonal region. SIAM Journal of Computing, 21(5):863–888, 1992.

2365

