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Abstract—This paper presents a new task assignment algo-
rithm that integrates area search and target tracking. A new
tracking metric is derived that encodes the ability of each robot
to reach an unsensed target before the uncertainty in its position
passes a given upper bound. Target activation and tracking
assignment using this method enable broader participation by
individual robots in a cooperative surveillance architecture. Area
search is added to the cooperative surveillance architecture
through the use of a coordinated coverage map that represents
the probability of new targets being detected in regions of the
environment. A key feature of the coverage map is that it is
updated by all robots, not just robots performing area search.
Thus, tracking robots aid the search process. Simulation results
validate the new integrated assignment process.

I. INTRODUCTION

Active sensing in robot networks takes advantage of robot

mobility to optimize or improve information gathering activ-

ities. For some applications, such as persistent surveillance,

proactive motion and cooperation between multiple vehicles

can improve performance in terms of execution time, search

efficiency, and system flexibility. For other applications, such

as bearing-only tracking, active sensing is necessary to provide

basic sensing observability. Future robotic sensor networks are

expected to provide ubiquitous perception for a wide variety

of applications including in-situ volumetric sensing [1], multi-

target surveillance [2], and chemical plume tracking [3].

Cooperative search, acquisition, and tracking (CSAT) refers

to the specific scenario where a robot sensor network actively

searches or patrols a region of interest, identifies and assigns

targets of interest for further tracking, and follows the assigned

targets while performing coordinated geolocalization. Each of

these three sub-tasks has been studied extensively in recent

years, however, no architecture has been developed to integrate

them into a unified framework.

Area search and coverage control refer to the task of

traversing a region of interest with a sensor with a finite

footprint in order to achieve a desired performance objective.

In general, a coverage objective is defined that combines the

percentage of area traversed by the sensor footprint with the

quality of the sensing itself. When communication and range

limitations are taken into account and the sensor is mobile,

distributed control algorithms can be used to achieve optimal

deployment [4]. When the target velocity is assumed bounded

and sensing occurs within a finite limit, optimal strategies can
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be derived to guarantee capture under certain conditions [5].

Use of a recursive Baye’s rule enables search over a grid such

that the impact of any given visit of the sensor is correctly

incorporated and plans can be made to maximize probability

of detection [6].

Related to the problem of area search is task assignment and

resource allocation. The area search problem can be decom-

posed by discretizing the environment and assigning different

regions to different vehicles. The general task of assigning

multiple robots to multiple spatially distributed locations is

dominated by tight task coupling, limited information, and

high degree of uncertainty. Fundamental difficulties arise due

to the combinatorial nature of the assignment process and

the complexity of optimal trajectory design for nonholonomic

robots in cluttered environments. A variety of methods have

been applied to cooperative task assignment including genetic

algorithms, heuristic traveling salesman methods, and mixed

integer linear programming.

The final component of a CSAT framework is cooperative

tracking of moving ground targets. Here, the goal is to

determine the position and velocity of a moving ground target

through cooperative estimation and control. Nonlinearity of the

estimation process adds a state dependence to estimator quality

that can be exploited [7] to improve the process. Different

approaches that explicitly optimize an information-theoretic

measure of estimator performance [7] or use heuristics [8] to

achieve a near-optimal relative configuration have been used

to derive tracking controllers.

This paper presents a new formulation of a CSAT control

architecture that combines all three components. In particular,

elements of target tracking and coverage control are combined

to specify desired levels of coverage and tracking (e.g. position

estimate uncertainty) that must be maintained by the team.

When new targets are detected in the environment, a naive

approach would assign one or more vehicles to track the

target until it leaves the region, in a ”man-to-man” fashion.

An intelligent adversary would simply send in more targets

than vehicles until the area was no longer being patrolled. The

approach presented here provides a ”zone defense” where tar-

gets are tracked only until their state is adequately determined.

The target is then free to move undetected until a second limit

in position uncertainty is reached, after which it is reacquired.

A new assignment metric is described that encodes the ability

of each robot to reach a target before a prespecified limit is

reached. This metric is used to activate targets for tracking

and to assign robots to targets. Simulation results verify the

new integrated search and tracking architecture.
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II. SYSTEM MODELS

A robot sensor network is defined as a set R of au-

tonomous robots that are mobile, can sense information from

the environment or targets, and are capable of wireless multi-

hop communication with other robots in the network. Let

ri ∈ R denote the ith robot with state (position and ve-

locity) xi = [xi, yi, ẋi, ẏi]
T

whose dynamics are governed

by ẋi = fi (xi,ui,wi) where ui is the control input and

wi is process noise. This work considers the nonholonomic

kinematic model which is often used to describe the guidance

layer behavior of many types of vehicles including mobile

ground robots, underwater vehicles, and unmanned aircraft:

[ ẋi

ẏi

ψ̇i

]

=

[

u1,icos(ψi)
u1,isin(ψi)

u2,i

]

vmin ≤ u1,i ≤ vmax

|u2,i| ≤ ωmax.
(1)

The target set T is defined to contain all targets tj in the

environment that could be sensed by the network R. Targets

are described by the state vector xj = [xj , yj , ẋj , ẏj ]
T

with

dynamics ẋj = fj (xj ,uj ,wj). Target state estimates xj with

covariance matrices Pj are maintained by some sensor fusion

system.

For this work we consider the field of view or coverage

area of the sensor and the relative position and/or velocity

measurements that can be taken. Sensor coverage is modeled

as the geometric area within which a sensor can receive a mea-

surement from an object. We define the function Fs(xi) as the

sensor footprint, i.e. the area of the environment from which

a sensor can receive a (position or velocity) measurement zij

of some target tj . The specific form of the function Fs(xi)
depends on the type of sensor being used

Typical sensors on mobile robots measure the range and

bearing to target objects. These measurements come from a

variety of sensors including monocular computer vision, sonar,

radar, and time-of-arrival systems. Given a target located at

position pj the measurement obtained by a UA at position pi

is:

zij = h(pi,pj ,v) =
[

r, β, ṙ, β̇
]T

+ v (2)

where r =
√

(xi − xj)2 + (yi − yj)2 is the range to the

target, β = arctan
(

yi−yj

xi−xj

)

is the target bearing, and v is

zero-mean Gaussian noise with covariance

E[vvT ] = R = diag
[

σ2
r , σ

2
β , σ

2
ṙ , σ

2

β̇

]

. (3)

Different sensors can be modeled by taking different values of

the variance terms. For instance, bearings-only sensing occurs

when σ−2
r = σ−2

ṙ = σ−2

β̇
= 0.

The overall motivation of this work is development of a

hierarchical control system to perform cooperative search, ac-

quisition, and tracking. In particular, the motivating application

is the use of a robot sensor network to patrol a region of

interest in order to provide a given level of sensor coverage

or to guarantee deterministic detection of target objects; to

coordinate coverage and tracking data between robots in order

to improve team performance; to assign robots to track new

targets or to re-acquire old targets that have not been sensed

over a finite amount of time; and to track and geo-locate

ground targets to some specified level of performance. This

work presented here focuses on a centralized target assignment

process that achieves these goals.

III. ASSIGNMENT FOR INTEGRATED SEARCH AND

TRACKING

The key feature of the algorithm described here is inte-

gration of search and tracking into a single task assignment

framework. We assume the goal of the robot sensor network is

to search a given region in order to detect moving targets and

to track the targets in order to maintain a specified level of

geo-localization error. Since robot sensing is limited, a tradeoff

exists between the goals of area search and target localization.

The steps presented in this section include 1.) determination

of targets to track; 2.) assignment of active targets to available

robots; and 3.) search by the remaining robots.

A. Tracking Metric

The target assignment problem presented here varies from

traditional problems in several important ways. First, target

tracking is not the only mode of behavior for the vehicles

since they may also be in search mode. Second, targets are not

removed from consideration once they are visited. The goal

of the tracking system is to maintain the target position error

within bounds so targets must be repeatedly visited. Finally,

travel distance is not an appropriate assignment metric since

we wish to maintain uncertainty below a specified limit.

In order to formulate the assignment problem a new per-

formance metric is developed that incorporates the growth of

the target position uncertainty when targets are not in view.

Most geolocalization systems use recursive filters to maintain

an estimate of the target state and its uncertainty in the form

of a covariance matrix [9]. When not in view of any sensors

the covariance matrix grows according to

Pk+1 = Φ · Pk · ΦT + Q (4)

where Pk is the covariance matrix at discrete time k, Φ is the

state transition matrix, and Q is the process noise covariance

matrix. The square root of the spectral norm (the maximum

singular value) of the position component of the estimate error

covariance matrix is used as a measure of the uncertainty in

the target’s position, i.e. we define ρ(Pp) =
√

σmax(Pp).
The desired level of target uncertainty is specified by the

limit ρ∗ on the allowable magnitude of ρ, effectively limiting

the radius of a circle that contains the target with some

confidence defined by ρ∗. Given the current measure of target

position uncertainty ρk, the time remaining before the desired

uncertainty level is reached is

∆tρ∗ =
∆ρ

ρ̇ave(Pk)
=

(ρ∗ − ρk)

ρ̇ave(Pk)
(5)

where

ρ̇ave(Pk) =
1

∆tρ∗
·

∫ τ=k+∆tρ∗

τ=k

ρ̇(τ)dτ (6)
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is the average time rate of change of ρ over the time interval

∆tρ∗ .

The ability of robot ri to reach target tj before it violates

the desired uncertainty bound can be determined by comparing

Eq. 5 to the time ∆ti,j needed by the robot to reach the target.

As long as the constraint

∆tρ∗ > ∆ti,j (7)

is satisfied the target can be reached before the uncertainty

limit is violated. This constraint can be turned into an assign-

ment metric by considering the time remaining to perform

other tasks, e.g. searching, before ri must head toward the

target

e1(xi,k,pt,Pk) = ∆tρ∗ − ∆ti,j =
(ρ∗ − ρk)

ρ̇ave(Pk)
− ∆ti,j . (8)

Equation 8 can be simplified by making assumptions on

the robot motion. For example, assuming robot ri moves at a

constant speed in a straight line to the target, it would take

∆ti,j = di,j/vi to reach the target estimate where di,j =
‖pi − pj‖ and vi is the robot speed. Substituting this time

into Eq. 7 and rearranging terms gives a new constraint on

the distance the robot can be from the target while still being

able to reach it before the specified limit ρ∗ is reached

di,j ≤
vi

ρ̇ave(Pk)
· (ρ∗ − ρk). (9)

In general, the constraint on the distance a robot can be

from a target and still reach the target in time is

di,j ≤
vi,ave

ρ̇ave(Pk)
· (ρ∗ − ρk) (10)

where

vi,ave =
1

∆ti,j
·

∫ τ=k+∆ti,j

τ=k

√

‖ẋj(τ) − ẋi(τ)‖2dτ (11)

is the average relative speed between the robot and the target

over the time interval ∆ti,j . The constraint of Eq. 10 is turned

into a performance metric by re-arranging terms

e2(xi,k,pt,Pk) =
vi,ave

ρ̇ave(Pk)
· (ρ∗ − ρk) − di,j . (12)

Interception of the jth target by the ith robot is then possible

as long as e2 ≥ 0.

B. Approximate Tracking Metric

In some cases vi,ave and ρ̇ave(Pk) can be calculated ana-

lytically based on the robot guidance laws or target estimation

process. Even when these terms cannot be determined analyt-

ically, they can be calculated by simulating the robot motion

and target estimation processes forward in time. In practice

this simulation can require significant computational resources

that may not available. Thus, an approximation of Eq. 10 or

Eq. 12 is helpful.

Let vi ≤ vi,ave and ρ̇ ≥ ρ̇j,ave(Pj,k) be under- and over-

approximations, respectively, of the average speed of the robot

and average time rate of change of ρj . Given these new

variables it is easy to see that

vi

ρ̇
· (ρ∗ − ρk) ≤

vi,ave

ρ̇ave(Pk)
· (ρ∗ − ρk). (13)

Consider the new constraint

di,j ≤
vi

ρ̇
· (ρ∗ − ρk). (14)

It is straightforward to see that Eq. 14 implies Eq. 10 and

that imposing the new constraint gives a conservative bound

on the distance the robot is allowed to move away from the

target. Likewise, a new metric can now be derived from the

new constraint

e3(xi,k,pt,Pk) =
vi

ρ̇
· (ρ∗ − ρk) − di,j . (15)

It is also straightforward to see that e3 ≤ e2, i.e. the new metric

is conservative. Note that for the nonholonomic kinematic

model used here vi ≥ vi,ave since the robots cannot change

direction instantaneously, thus setting vi = vi as in Eq. 9 is

not a conservative approximation.

Approximating the average robot speed is difficult because

of the nonholonomic kinematics of the motion model and the

fact that the target may moving. If we let vrel,ij be the average

speed of the optimal straight-line intercept course between ri
and tj , we take vi,j = γ · vrel,ij where γ < 1.
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Fig. 1. Time rate of change ρ̇k of uncertainty norm versus time for constant
velocity target model with no process noise.

In order to derive the bound ρ̇, recall the recursive rela-

tionship (Eq. 4) for the covariance of the target state. Let the

covariance matrix be written in block diagonal form

Pk =

[

Pxx,k Pxv,k

Pvx,k Pvv,k

]

(16)

where Pxx,k is the position component of the covariance

matrix, Pvv,k is the velocity component, and Pxv,k = PT
xv,k

contains cross-correlations. We are interested in the position

component of the covariance and are using ρ(Pxx,k) to define

the desired target bound. For the case of a constant velocity

target model with no process noise, e.g. Q = 0, the position

component of the covariance is updated only by the velocity

and cross-correlation terms in Eq. 16 and it can be shown (see

Fig. 1) that ρ̇(Pxx,k) → ρ(Pvv,k) as k → ∞ so we can take

ρ̇ = ρ(Pvv,k). When Q 6= 0, ρ̇(Pxx,k) grows as k → ∞ and

a bound on ρ̇(Pxx,k) cannot be computed easily.

Figure 1 shows ρ̇(Pxx,k) versus time for a constant velocity

target with no process noise. The initial covariance matrix is

P0 = diag
[

502, 202, 42, 22
]

. (17)

The plot shows that ρ̇(Pxx,k) → ρ(Pvv,k) = 4 m/s.
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C. Tracking Assignment

The next step in the assignment process is determining

which targets need to be active. As long as e3,ij > 0 for

some robot at pi the target tj can be reached before it

surpasses the specified uncertainty bound. Ideally the system

only ”activates” a target when e3,ij ≤ 0 for all pi. However,

any delay would cause the target to violate the uncertainty

limit and only one robot (the last for which e3,ij = 0) would

be capable of reaching the target in time. In order to add

margin to the assignment process and insure that all robots

could reach the active targets, we set a limit ǫ > 0 and define

the active target set

Tactive = {tj |min
i

(e3,ij) ≤ ǫ} (18)

Robot target assignment is performed using binary integer

programming to minimize

f =
n

∑

i=1

∑

tj∈Tactive

ei,j · bi,j (19)

subject to the constraint that every target is assigned to only

one UA when there are more UA than targets, or every UA is

assigned to only one target when there are more targets.

D. Search Assignment

In addition to assigning robots to targets for tracking, the

task assignment process also coordinates area search by the

robots. A non-empty subset S ⊆ R of the robot sensor

network will be designated as search robots only and will not

be considered in the target assignment process. Additionally,

robots not assigned to track a specific target will be included

in the area search process.

Area search is coordinated through a discretized coverage

map. A cellular decomposition is used to divide the world W
into a finite set of nc non-overlapping cells Ac ⊂ W . For

this work we assume an open, i.e obstacle-free, environment

decomposed into a simple grid. Each cell Ac is denoted by

its center position pc and represented by a single coverage

variable ac that represents the probability of the presence of

a target in that cell. Let Nc (or N(pc)) be the neighbor set of

cells adjacent to Ac. The coverage variable is updated by the

rule

ac,k+1 = f(ac,k, Nc, R). (20)

When the footprint of a robot overlaps a cell, the coverage

variable is decreased by a set amount. For most examples we

consider ideal detection and thus reset the coverage variable

to zero. An important aspect of the coverage map is that it is

updated by all robot sensors, even ones in other task modes.

In order to simplify use of the coverage map for task

assignment and to guarantee exploration of the entire world

we require the following conditions:

C 1: xi ∈ Ac → Ac ⊆ Fs(pi)
C 2: f(ac,k, Nc, R) = 0 iff ∃i such that xi,k ∈ Ac,k,

otherwise f(ac,k, Nc, R) ≥ ac,k > 0
C 3: if ai,k ≤ aj,k and neither cell is visited at time k, then

ai,k+1 ≤ aj,k+1

The first condition insures that once a robot enters a cell

it can sense the entire cell. This allows the coverage map

to be updated by considering only the position of the robots

without worrying about their geometric footprints. The second

condition states that the coverage variable is reset to zero if

and only if a cell is occupied (and from C1, sensed entirely) by

a robot. Otherwise the coverage variable is always increased

after each update. Combined with the second condition, the

final condition insures that the coverage variable in one cell

cannot increase fast enough to overtake the coverage variable

of another cell with greater value. A result of this condition is

that the cell with the maximum coverage variable will always

have the maximum coverage variable until it is entered by a

robot and the variable is reset to zero.

If there are ns robots in search mode, area search is con-

verted into an assignment process by identifying the ns cells

with the largest probability of containing the target. A standard

binary integer program is then used to assign the robots to the

cells based on straight line distances. This type of assignment

process does not consider the area coverage that occurs enroute

to the destinations. However, it encourages the robot sensor

network to explore the entire space without getting stuck in

locally flat regions typical of gradient-based approaches. As

long as nc > 2ns then there will always be ns cells with

non-zero (positive) coverage variables to serve as destina-

tions for the robots. Conditions C1-C3 insure that the entire

world is visited periodically. If am,k = maxi=1,···,nc
ai,k and

am,k+1 = 0, i.e. it is visited at time k, then C1-C3 imply

that every other cell that was unoccupied at time k must be

visited before am,k+T = maxi=1,···,nc
ai,k+T again. Since this

applies to all cells for all k, this implies that every cell must

eventually become the maximum cell or be visited again while

a robot is enroute to another cell. In either case, every cell

is repeatedly visited with a maximum time interval between

visits determined by the size and shape of the world.

In order to consider moving targets, the coverage variable

ac,k+1(pc) for the cell with center position pc is recursively

updated as a function of the previous value ac,k(pc) and the

values of the 8-connected neighbor N8
k (pc) variables

ac,k+1(pc) = f(ac,k(pc), N
8
k (pc), R). (21)

In this work we fix the coverage variables of the perimeter to

a value of one. This simulates the continued possibility that

a target enters the world. The remaining cells in the grid are

updated using a simple linear combination of the values of the

8-connected neighbors. For a grid decomposition represented

by a 2-D matrix Ak where aij,k is the coverage variable for

the grid location (i, j) at time k, the update step is realized

as convolution the matrix of Ak with the kernel

K =





0.25 0.5 0.25
0.5 1 0.5
0.25 0.5 0.25



 . (22)

IV. SIMULATIONS

This section presents simulation results for 9 aerial robots

searching an area that contains 4 moving targets. The aerial
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robots move with a nominal airspeed of v0 = 20 m/s, have

a maximum turn rate ωmax = 0.2 rad/sec, and are allowed

deviations of ∆v = 5 m/s for coordination. The environment is

5000 meters wide and 8000 meters long. Initial positions of the

9 aircraft and 4 targets are randomly selected. Ground targets

move with constant velocity with speed randomly chosen on

the interval [4, 10] and random initial headings. Targets change

direction only upon reaching the boundary of the environment.

Estimation of a target occurs once it it detected by moving into

the sensor footprint of one of the robots.

For estimation, target motion is modeled as constant veloc-

ity with accelerations acting as process noise with variance

0.05m/s2. In this work we assume each robot measures the

bearing to the target with error covariance σθ = 5 rad.

A two stage approach is used for the measurement update

step. First, measurements for the two robots are combined

to form an instantaneous estimate of the target position. The

measurement function is inverted (assuming some maximum

range rmax) to obtain a local estimate of the target position

p̂ij,k = h−1(zij,k,xi,k) and approximate the error covariance

matrix of that local estimate as

Pj,k = (HT
j,k · σθ · Hj,k)−1 (23)

where Hj,k is the derivative of the measurement function

with respect to the target position. If more than one robot

senses the target their local estimates are combined to give

the instantaneous position estimate

p̂j,k = P̂j,k ·
n

∑

i=1

P−1

j,k · p̂ij,k (24)

with new error covariance matrix

P̂j,k = (
n

∑

i=1

P−1

j,k)−1 (25)

where n is the number of robots sensing the target. Second,

the full target state is estimated using p̂j,k as the measurement

vector with noise covariance P̂j,k in a Kalman filter.

When multiple robots are assigned to track the same target a

cooperative stand-off tracking algorithm is used to coordinate

their motion. The coordination approach is based on a Lya-

punov guidance vector field that produces essentially globally

stable tracking to a closed loiter pattern [8]. For the work in

this paper the loiter pattern is determined by the uncertainty

ellipsoid associated with the target position covariance matrix.

Three different simulations are used to demonstrate the

utility of the approach presented here. The first scenario uses

the new algorithm presented in this paper. The task assignment

algorithm attempts to keep the position error ρk between 20

and 50 meters. Each active target is assigned to two robots

who track the target until ρ ≤ 20m and all remaining robots

are assigned to search. Since there are more than twice the

number of robots than targets, at least one robot is always in

the SEARCH mode. In order to use the approximate tracking

metric of Eq. 14 the average robot and target error velocities

are set to v = 0.8v0 and ρ̇ = 2
√

ρ(Pv), respectively. Figure 2
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Fig. 2. Paths of 9 UA (solid lines) searching and tracking 4 moving targets
(dashed lines) using the integrated assignment algorithm.
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Fig. 3. Square root of the maximum singular value of the position error
covariance matrix versus time.

shows the paths of the 9 robots and 4 targets over the course

of an 800s simulation and Fig. 3 shows a plot of ρ for each

target as a function of time. The dashed lines denote the upper

and lower bounds of the desired position error.
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Fig. 4. Paths of 9 UA (solid lines) searching and tracking 4 moving targets
(dashed lines) using the original assignment metric.

The second scenario uses a similar approach to the first.

However, instead of using the new metric to activate targets,

tracking is only initiated once the target uncertainty has passed

above the upper bound (still 50 m). Figure 4 shows the paths

of the robots and targets and Fig. 5 shows a plot of ρ for each

target as a function of time.

The final scenario uses an algorithm that always assigns two

robots to track any targets present in the environment. Once

all targets are assigned, one robot is still left to perform area
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Fig. 5. Square root of the maximum singular value of the position error
covariance matrix versus time.
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Fig. 6. Paths of 9 UA (solid lines) searching and tracking 4 moving targets
(dashed lines) by continually orbiting around target once assigned.
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Fig. 7. Square root of the maximum singular value of the position error
covariance matrix versus time.

search. While this approach clearly provides the best tracking

performance, it comes at the expense of area coverage. In fact,

this naive strategy is easily defeated by an intelligent adversary

that introduces more targets than robots into the environment,

drawing their attention away from the coverage task. Figures

6 and Fig. 7 show the paths and target uncertainty versus time,

respectively.

The plots of the robot paths (Fig. 2 and Fig. 4) do not differ

noticeably between the first two scenarios. In either case, the

aerial robot network is able to cover, i.e. search over, a large

percentage of the environment. In contrast, for the third case

all but one of the robots maintain close proximity to their

assigned targets and much of the environment is unexplored

by the end of the simulation (Fig. 6). As expected, the third

scenario provides the best tracking error (Fig. 7), keeping ρ at

approximately 10 meters in steady state, well below the desired

minimum. Likewise, the second approach also performs as

expected; allowing the uncertainty to grow past the desired

bound. This is expected since targets are not reactivated until

they pass this mark. In many cases the target uncertainty grows

up to three times the specified bound before it is finally sensed

again (Fig. 5). The new approach described here is able to

provide significant coverage of the environment while also

keeping the target uncertainty below the specified bound most

of the time (Fig. 3). Since the approximations v and ρ̇ were set

heuristically, they are not always conservative and the target

uncertainty occasionally grows above the given limit.

V. CONCLUSION

This paper presented a new task assignment algorithm that

integrates area search and target tracking. A new tracking

metric encodes the ability of each robot to reach an unsensed

target before the uncertainty in its position passes a given

upper bound. This allows broader participation by tracking

robots in a cooperative surveillance architecture. Simulation

results show that using the new tracking metric to activate

and assign targets enables the robot sensor network to keep

targets within desired uncertainty bounds while still exploring

large portions of the environment.

Future work will consider a hierarchical decomposition of

the robot sensor network. In particular, the assignment process

will be extended for a heterogeneous aerial robot network

consisting of mothership vehicles that carry smaller daugh-

tership micro air vehicles. Hierarchical task assignment that

combines distributed negotiation between mothership vehicles

and centralized coordination between daughtership sub-teams

is under development.
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