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Abstract— A key problem in the deployment of sensor
networks is that of determining the location of each sensor
such that subsequent data gathered can be registered. We would
also like the network to provide localization for mobile entities,
allowing them to navigate and explore the environment. In this
paper, we present a robust decentralized algorithm for mapping
the nodes in a sparsely connected sensor network using range-
only measurements and odometry from a mobile robot. Our ap-
proach utilizes an Extended Kalman Filter (EKF) in polar space
allowing us to model the nonlinearities within the range-only
measurements using Gaussian distributions. We also extend
this unimodal centralized EKF to a multi-modal decentralized
framework enabling us to accurately model the ambiguities in
range-based position estimation. Each node within the network
estimates its position along with its neighbor’s position and
uses a message-passing algorithm to propagate its belief to
its neighbors. Thus, the global network localization problem
is solved in pieces, by each node independently estimating its
local network, greatly reducing the computation done by each
node. We demonstrate the effectiveness of our approach using
simulated and real-world experiments with little to no prior
information about the node locations.

I. INTRODUCTION

The recent growth in wireless communication and sensing

technologies have emphasized the importance and applica-

bility of sensor networks for a wide variety of application

domains. Within this growing field, the need for collaborative

networks that consist of large numbers of low-cost, low-

power, and self-maintaining sensor nodes is rapidly increas-

ing. While these networks and nodes vary in their modal-

ities, they all share the common need of self-localization.

Sensor localization, the task of obtaining the estimate of

each sensor’s position as well as accurately representing the

uncertainty of that estimate, is a critical step for effective

application of large sensor networks to almost all subsequent

tasks (such as target tracking, surveillance, control, planning

and coordination). Manually surveying the node locations

might not always be practical or even possible. Additionally,

the use of GPS or other equivalent technologies is restrictive

to outdoor environments. Consequently, methods of self-

localization that can exploit relative position information

between the nodes and estimate the location and uncertainty

of the network, with respect to a global or local reference

frame, are desirable. However, the in context of WSNs, the

process of localization is further complicated by the need to

minimize the inter-node communication and the computation

performed at each node to minimize power consumption.
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Here we present a localization algorithm in which each

node has available noisy distance measurements to several

of its neighboring nodes. Our goal is to recover the pose of

the nodes given inter-node range measurements. However,

in many real world scenarios only sparse measurement con-

nectivity is available. In such scenarios, achieving an unique

globally (or even locally) accurate localization solution is im-

possible. We can improve network localization with the addi-

tion of a few mobile nodes that can maintain an approximate

estimate of their motion via odometry. This information can

be coupled with the existing inter-node distances to produce

a solution to an otherwise under-constrained network.

In this paper we present a localization method that

incorporates information from mobile and stationary nodes.

Our method requires little or no prior information about the

location of any of the nodes in the network. In addition,

we present extensions that allow this problem to be solved

in a decentralized fashion – each node can create a map

of the other nodes with minimal communication to its

neighbors. The mapping problem is then solved in pieces,

by each node, independently, though the use of a message

passing algorithm that propagates every node’s local belief

to its neighbors. Additionally, we present a control scheme,

which can be used to control mobile nodes such that the

network uncertainty estimate is minimized. In our system

these mobile nodes are mobile robots with odometry, thus

in the context of this paper the terms “mobile node” and

“robot” will be used interchangeably. Our approach is able

to efficiently estimate the locations of the nodes even in a

sparsely connected network where other existing methods

of self-location fail. Furthermore, while our approach is

designed for the task of mapping the node locations, it can be

easily applied to solve the simpler target tracking/localization

problem given the locations of a few stationary nodes.

II. RELATED WORK

In sensor networks the problem of mapping the locations

of all the nodes in the network is also known as self-

calibration or self-localization. Most sensor networks are

capable of measuring relative bearing, range or in some cases

both range and bearing between nodes within the environ-

ment. Of particular interest to us are those that use range

to localize the network. For instance, the RADAR system,

developed by Bahl and Padmanabhan, utilizes signal strength

of packets in the commonly available 802.11b wireless

networks for localization of network devices [1]. However,

signal strength measurements are often erratic and can be af-

fected by slight changes in the environment. Alternately, the

Cricket system uses fixed ultrasound emitters and embedded
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receivers in the target object to localize the target [2], [3]. Our

system utilizes the Parrot sensors nodes, [4]. These sensors

use radio frequency (RF) signals to communicate data and

ultrasonic measurements to range between each other.

Some of the early work in localizing a sensor network

with range-only information relied on solving a least-squares

optimization problem. Methods such as Multi-dimensional

Scaling (MDS) provide a good solution if the network is

fully connected [5]. For a less connected network with

sufficient connections to provide “rigidity” to the network, it

is still possible to determine the map of the network. Moore

et al. introduced the idea of the robust quadrilaterals as a

way to avoid ambiguities in the solution [6]. In practice,

however, rigidity is not easy to achieve and a high degree

of connectivity between nodes of the network. However,

we present a probabilistic approach that can model the

uncertainty of the estimate and provide solutions even when

network rigidity is not available.

Recently Ihler et al. present an approach to the sensor

self-calibration problem with a non-parametric message-

passing algorithm in a graphical model framework to solve

the ensuing inference problem [7]. While their approach

lends itself to a distributed implementation and maintains

an estimate of the uncertainty, it represents the state, (x, y),
with samples from the true distribution, which could lead

to divergence in the absence of sufficient samples. Their

approach assumes a negative information model to reduce

the uncertainty and improve estimation. However, in most

real-world applications, the lack of a measurement could be

due to a variety of reasons, making it difficult to accurately

model negative information. In contrast, our approach scales

well to large uncertainty distributions without the need to

use negative information.

While most research in sensor networks has focused

on static nodes (network localization), work in SLAM

has focused on the incorporation of motion from mobile

robots into the estimation of static and mobile nodes. In

[8], T.L. Song examined the observability of the system

in the presence of motion and limited connectivity, where

it was revealed that a nonzero jerk/acceleration motion is

necessary for accurate localization with range-only sensors.

Previously we have presented a method based on an EKF

that jointly estimates location of the static and mobile nodes

but this method is prone to the problems of linearization and

multi-modality [9]. This means that poor initialization, large

measurement error and sparse data all hurt performance.

Furthermore, these methods scale poorly to larger networks

due to their centralized processing formulation. In this article

we present a decentralized formulation of our approach that

scales well to large networks.

Stump et al., in [10], present a set-valued approach to

estimation that overcomes limitations due to nonlinearities.

While their method provides an accurate estimate of the

true distribution by processing measurements in a high

dimensional space, the complexity involved with projecting

the filter’s state into the xy-space. This makes it difficult

to incorporate even a simple motion model into the filter.

Another parametric approach that also works in a high

dimensional space, called the ROP parametrization (or Polar

parametrization), is presented by Funiak et al., in [11]. The

authors model their state using polar coordinates, making the

back projection into the Cartesian xy-space a much simpler

task. Our approach presented in this paper borrows from this

work and extends it to better deal with the non-linearities

and multi-modalities encountered within the range-only

measurement domain. In addition, we present a decentralized

implementation that reduces the computational and memory

requirements placed on each individual node in the network.

III. POLAR PARAMETERIZATION IN AN EKF

We model the network localization problem as a linear

dynamical system. At each time step, t, the state of node

i is represented by Xi,t = [cx
i , c

y
i , ri, θi]

T . Each node’s

estimate is represented in a polar coordinates (similar to

[11]), where (cx
i , c

y
i ) are the center of the polar coordinate

frame and (ri, θi) are the corresponding range and angle

values. The use of this parameterization derives motivation

from the polar coordinate system, where annuli, crescents

and other ring-like shapes can be easily modeled. In addition

four variable polar parameterization, for each mobile node

(robot) within the system, an addition term that represents

the current heading of the node, φi, is maintained. Thus,

the complete state vector at time t is represented as:

Xt = [X1,t, φ1, ..., XM,t, φM , XM+1,t, XM+2,t, ..., XN,t]
T .

where M is the number of mobile nodes and N is the

total number of nodes. At each time step, we get some set

of motion and range observations, ut and zt respectively.

The belief state at time t is defined as p(Xt|z1:t, u1:t).
Our filtering algorithm iteratively computes the belief

state at time t + 1 using the previous belief state at time

t. Specifically, in our implementation the belief state is

represented by a mean vector µt and a covariance matrix Σt,

and it is computed using an Extended Kalman Filter (EKF).

A. Motion Model

Motion of a given node can be modeled as Brownian

motion ([11]) or when odometry is available, the dynamics

of the mobile node can be described as:

Xi,t = Xi,t−1 +





∆Di,t cos(φi,t−1)
∆Di,t sin(φi,t−1)

0
0



 + νt. (1)

φi,t = φi,t−1 + ∆Ti,t + ν
φ
t .

where νt and ν
φ
t are zero-mean Gaussian noise vectors,

∆Di,t is the odometric distance traveled, and ∆Ti,t is the

orientation change. For every new control input vector,

ui,t = [∆Di,t, ∆Ti,t]
T , that is received, the belief state can

be updated by computing:

p(Xt+1|z1:t, u1:t+1) =

∫
p(Xt|z1:t, u1:t)

·p(Xt+1|Xt, ut+1)dXt.

(2)
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p(Xt+1|Xt, ut) =

M∏

i=1

p(Xi,t+1|Xi,t, ui,t). (3)

In Eq.2, the first term of the r.h.s is the posterior estimate

from the previous iteration and the second term is the

motion model for any mobile nodes, which can be acquired

from Eq.3. Assuming that the motion of each mobile node is

independent of the other nodes’ motion, we can decompose

the likelihood as depicted in Eq.3. In implementation,

the motion observations are treated as control inputs and

standard EKF prediction is performed.

B. Measurement Model

When two nodes, i and j, are within a given range and

sensor F.O.V. to each other, a range observation is generated

which is represented by, z
i,j
t . This observation depends on

the position of the two nodes i and j:

z
i,j
t = ẑ

i,j
t (Xi,t, Xj,t) + δ.

ẑ
i,j
t =

√
(mx

i,t − mx
j,t)

2 + (my
i,t − m

y
j,t)

2.

mx
k,t = cx

k,t + rk,t · cos(θk,t).

m
y
k,t = c

y
k,t + rk,t · sin(θk,t).

(4)

where δ is zero-mean Gaussian noise and (mx
k,t, m

y
k,t) is

the projection of the estimate for node k from the polar

parameterization into Cartesian xy-space. The belief state

is then conditioned on the observations of the current time

step by computing:

p(Xt+1|z1:t+1, u1:t+1) = ηp(Xt+1|z1:t, u1:t+1)

·p(zt+1|Xt+1).
(5)

p(zt+1|Xt+1) =
∏

k

p(zk
t+1|Xi∈g(zk

t+1
),t+1). (6)

where η is the normalization constant. The second term in

the r.h.s of Eq.5 is the likelihood of the current observations.

Eq.6 shows how this likelihood can be decomposed under

the assumption that observations are independent given the

locations of the nodes that made the observation. Note that

each observation depends only upon the locations of the

nodes in the set g(zk
t+1), which is the set of nodes that made

the observation, and not the joint state vector. The range ob-

servations are augmented into the belief state by multiplying

into the belief state a likelihood for each observation.

Upon the first observation of a particular node, the true

distribution of the node is best represented as an annulus,

see Figure 1(a). While an annulus is extremely non-Gaussian

and difficult to model within the Cartesian xy-space, using

the polar parameterization it is possible to approximate the

annulus by an elongated Gaussian in polar coordinates (rθ-

space). This Gaussian approximation is given an arbitrary

mean in θ (within the range [0, 2π)) with a large variance

term, such that the probability along the θ dimension is near

uniform, see Figure 1(b). Figure 1(c) shows the Gaussian

ellipse (blue ellipse) overlaid on top of the true distribution

(green shaded rectangle) in polar coordinates. By using this

polar parameterization, a simple ellipse in polar coordinates

Fig. 1. Blue squares represent observing nodes, whose location is known.
Red diamonds represent the true location of the observed node, whose
position is being estimated and green circles represent the mean(s) for
each mode of the estimated node. Green shaded regions (in (a),(b),(d),(e))
represent the true uncertainty distribution and blue ellipses (in (b),(c),(e),(f))
represent the estimated uncertainty distribution. The dashed gray lines and
circles (in (c),(f)) represent the observed range measurements. (a) The
true distribution (an annulus) of a single range observation. (b) The true
distribution of an annulus (shaded rectangle), shown in polar coordinates,
along with the unimodal Gaussian approximation (ellipse) of the true
distribution. (c) The projection of the unimodal Gaussian ellipse from polar
coordinates, shown in (b), to Cartesian xy-space. Note that the elongated
Gaussian in polar coordinates, when project into the xy-space maintains
a tail (curled up within itself), which helps make the distribution uniform
along θ (in the range [0, 2π)). (d) The true (dual mode) distribution of two
unique range observations. (e) The true multi-modal distribution (shaded
region) and its multi-modal Gaussian approximation (ellipse), shown in its
native polar coordinates. (f) The projection of the multi-modal Gaussian
approximation, shown in (e), into the xy-space.

transforms into an nonlinear annulus when projected into

the xy-space. It must also be noted that the elongated ellipse

in the polar coordinate extends past the range of the true

distribution. This extended tail of the Gaussian ellipse,

when projected into the xy-space appears curled up within

the estimated annulus, as can be seen in Figure 1(b).

C. Extending to a Multi-Modal Representation

Thus far, we have assumed an unimodal Gaussian model,

capable of approximating the non-linearities within single

range observations. We have also presented a probabilistic

filtering method that is well suited for an EKF-based network

localization system. While this approach deals with non-

linearities of an annulus, it fails to adequately deal with the

multi-modal distribution of the system ((Figure 1(d))). With-

out a proper model to account for these naturally occurring

ambiguities, the filter could pick the incorrect mode causing

it to diverge when begin to disagree with the estimate. In

order to properly deal with multi-modal distributions, we

extend our approach to a multi-hypothesis representation,

[12]. While particle filters are typically used to achieve multi-

modal distributions, our approach uses the multi-hypothesis

representation of the EKF to achieve similar performance.

Given an annulus-like prior distribution, a new range ob-

servation that intersects the annulus at two distinct locations

leads to a multi-modal distribution with two distinct modes

(peaks/local maxima in the distribution). We model these

dual modes using separate filters/hypotheses for each mode.
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To elaborate, whenever an annulus is split into separate

modes, we simply duplicate the filter and adjust the mean of

each filter to represent the two distinct intersection points.

Then, by performing a measurement update using the new

mean, we are able to appropriately update the covariance

terms within the filter. The simple case of splitting a single

annulus into two separate modes given a new range observa-

tion is shown in Figure 1(d) and (e). Figure 1(f) shows the

Gaussian ellipses (blue ellipses) for the dual-modes overlaid

on top of the true distribution (green shaded rectangles)

in polar coordinates. The mean of the two modes can be

determined easily using triangulation, given the location of

the two observing nodes, as described in [13]. While this

illustration demonstrates the case where each observing node

has a single mode, in the case where each observer has

Ω1 and Ω2 number of modes respectively, the number of

modes the observed node can have is at most 2 · Ω1 · Ω2. If

a given node has more than two observers, then the number

of modes the observed node can grow by the product of

the number of modes for each of its observers. As might be

expected, in an under-constrained system, when only sparse

connectivity exists between nodes, the combinatorial of each

node’s modes will explode quickly.

While this solution doesn’t scale well to the addition

more nodes with sparse connectivity, intelligently deciding

when to add new hypotheses and delete duplicate or unlikely

ones could help limit the excessive growth of hypothesis

count. In our implementation, at each iteration when the

belief state is updated, we remove any duplicate hypotheses.

A hypothesis is considered duplicate, when it has a mean

and covariance similar to another hypothesis. This can be

checked using a distribution comparison metric such as the

Kullback-Leibler distance (KL-distance). In addition, at the

end of each update, we check the (normalized) likelihood

of each hypothesis, given all the measurements, and retain

hypotheses with likelihoods above a certain threshold

(relative to the likelihoods of all existing hypotheses), thus

greatly reducing the number of hypotheses.

D. Decentralization

The model we have developed so far does not scale well to

large networks for two reasons. First, as we had mentioned

above, the representation of the multiple hypotheses grows

exponentially as additional nodes are added without resolv-

ing existing ambiguities. Second, the computation require-

ment also grows as more and more nodes are added, making

it difficult for a real-time implementation of the method on

low-end processors typically available on sensor network

nodes. Here we propose a very simple scheme for distributing

the estimation algorithm in a decentralized manner. Deriving

motivation from the non-parametric belief propagation work

by Ihler et al., [7], we propose that each node be able to share

a message to its immediate neighbors (nodes that have con-

nectivity to this node). In these messages, each node shares

the part of its belief state that encodes information about its

own estimate that is novel to each of its neighbors. For exam-

ple, a message from node i to node j at time t is of the form:

m
i,j
t = p(Xi,t|z1:t, u1:t, m

k,i
t−1); k ∈ Γo

i \j (7)

where, Γo
i \j is the set of observed neighbors to node i

excluding node j. Upon receiving each such message,

the node updates its estimate based on the message prior

to performing any measurement updates. This allows for

proper flow of information along the network.

The key difference in our approach compared to that of Ih-

ler et al., [7], is that each node shares its own estimate rather

than its marginalized estimate of its neighbor’s position. The

particular benefit Ihler et al. gain in not sharing each node’s

own estimate is that each node does not have to maintain

an estimate of its neighbors, which is particularly difficult

within the particle filter representation they utilize. However,

since we use an EKF the cost of maintaining your neighbor’s

estimate is considerably low. Furthermore, by maintaining

all neighbor’s estimate within each node’s state vector, the

information encoded within cross-correlation terms of the

covariance matrix in the EKF is not lost (providing an

improved estimate of the true distribution). The inherent

distributed nature of this message-passing algorithm, lends

itself to a decentralized implementation where the problem

of global network localization is solved independently, in

small parts, by each individual node.

Another change we enforce in our decentralized imple-

mentation, is to limit the state vector of each node to only

maintain an estimate of its immediate neighbors. This implies

that node i does not maintain an estimate of node j if there

is no connectivity (equivalent to observing a measurement)

between node i and node j. By enforcing this constraint,

we not only gain a benefit in computation cost (due to the

reduced state vector size) but each node now also maintains

considerably fewer hypotheses since the combinatorial of

the modes of each node in its state vector will not grow

too large, especially within a sparsely connected network. A

particular drawback of this approach is that in the presence

of loops (as is the case in most sensor network applications)

some information can indeed be counted twice, making it

less likely to accurately recover the exact state representation

as the centralized approach. However, in our experiments,

this approach has shown excellent empirical performance and

deserves mention.

IV. REDUCING UNCERTAINTY WITH MOTION

In this section, we describe a motion planning algorithm

for the mobile nodes that seeks to minimize the uncertainty

of both static and mobile nodes. This approach is similar to

that described by Sim and Roy, [14], except that instead of

using an SEIF, we utilized the EKF described above. We also

think of the problem of reducing uncertainty as the problem

of gathering data efficiently to produce a precise belief state,

which in turn is about selecting new measurements that

are maximally informative. Since the EKF is a generative

Bayesian estimator, we select new data such that it is maxi-

mally informative about the belief state, ξ = p(Xt|z1:t, u1:t).
Decision theory tells us that the gain in information between
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any two distributions is the relative change in entropy [15].

We therefore choose exploration strategies that maximally

reduce the entropy of the belief state.

The entropy of a Gaussian distribution can be computed

directly from its covariance matrix as below:

H(ξ) =

∫

Ξ

ξ · log ξ ∝ log det(Σ). (8)

The maximally informative trajectory must therefore

have the smallest covariance matrix, Σ. Thus the gain in

information from time t to t + 1 is:

∆H = log det(Σt+1) − log det(Σt) (9)

If we find the shortest trajectory that minimizes this

quantity, we should converge to the most accurate estimate

the fastest. If we apply this control scheme while restricting

ourselves to the class of trajectories that avoid recently

visited regions, a gradual exploration strategy that also

minimizes the uncertainty of the belief state is achieved.

This is implemented within a 1-step look ahead planner

which chooses the best next step given a set of simulated

measurements, computed based on the most likely hypothesis

within our multi-hypothesis filter. While the most likely

hypothesis changes over time based on the measurements

(until the node estimates converge), by picking a path that

best fits a specific hypothesis, we are able to avoid the

saddle points (and other such inflection points) within the

planning space cause by the multi-modal distribution.

V. RESULTS

We present a number of example sensor networks, one

simulation and one real-world experiment to demonstrate

the scalability and utility of our methods. In addition,

we present an analysis of our method comparing the

performance of our decentralized implementation with its

centralized counterpart.

A. Large-Scale Simulation

In this example there are 49 static nodes and 1 mobile

node carried by a robot. The nodes are sparsely connected

and clustered into smaller groups, making it difficult to

achieve unimodal localization results without motion. We

corrupt both the odometric and range measurements using

Gaussian noise approximating the real sensors we use in

the real-world example below. Figure 3 (Row 1) shows

the final localization result achieved by our method when

the mobile node moves within the environment using the

control law presented in Section IV. Numerical results of

this experiment are presented in Table I.

B. Real-World Experiment

1) Setup and Hardware: We carried out our real-world

experiment1 on a Pioneer 1 robot from ActivMedia. It was

equipped with a Parrot node ([4]) placed on top of the robot

at about 1 ft. above the floor (See Fig. 2). The robot was

1An extended movie of the real-world experiment is available at
http://www.frc.ri.cmu.edu/projects/emergencyresponse/dsgICRA08ex.mp4

Fig. 2. Robot used for our experiments shown along with a range sensing
node mounted on top. The robot has wheel encoders that measure distance
traveled and estimate heading. Neither estimate is good but the heading
estimate is particularly poor.

driven around within a large indoor office area with partial

clutter. Ground Truth of the robot’s position was estimated

using a SICK laser scanner and the Adaptive Monte Carlo

Localization (AMCL) algorithm within the Player/Stage

([16]) code repository. In addition to the node that was

placed on the robot, 13 other nodes were placed around

the environment on top of stands, 1 ft. above the floor. The

nodes are once again sparsely connected, making it difficult

to achieve unimodal localization results without motion.

The locations of these nodes were accurately surveyed to

allow proper evaluation of the accuracy of our mapping

results. It should also be noted that in addition to the control

law presented in Section IV, the robot was also running a

low level obstacle avoidance scheme that avoided collisions

while attempting its best to keep to the planned trajectories.

This was necessary because the robot was not given a map

of the environment a priori and therefore could not plan

around physical obstacles that blocked its path.

2) Results: Figure 3 (Row 2) shows the final localization

result achieved by our method when the mobile node moves

within the environment using the control law discussed

above. A particular challenge with using real hardware is

the slow rate of range measurements. Since the hardware

doesn’t support instantaneous range observations from

several nodes at once, special considerations must be

made to ensure that sufficient constraints exist to resolve

ambiguities. To do this, we collect measurements over a

period of 1 second and process them together, in order to

retain correlations within the sequential observations.

C. Analysis

Table I presents some numerical results that compare our

decentralized algorithm with its centralized implementation.

Note that the centralized results are run offline using the

logs recorded during the online run of our decentralized

implementation. These results reveal that while the

decentralized approach does not fully converge to the

centralized approach, it still achieves reasonable accuracy

in our experiments. In particular, while the final mapped

locations of the nodes are similar, the estimated path of the

robot in centralized approach is a little more accurate.
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Fig. 3. Top row shows results from a simulation experiment (50 nodes) while the bottom row shows results from a real world experiment in an office
building (14 nodes). Note that in both these experiments, the nodes are placed such that some nodes are isolated, making it impossible to accurately
localize the full network without the presence of a mobile node. The map of the environment for the real-world example is overlaid on top of the true
node locations and path. Left Column: Shows the true locations of the nodes (∗), all the inter-node measurements received (dashed black line) and the
true path the robot (ID #1) took (dotted green line). Right Column: Shows the error lines connecting true and estimated positions of the nodes along with
the estimated path of the robot (solid gray line). The red cross marks (×) the estimated location of a node and the error lines (solid red) connect the
estimates to the true location of the nodes (black dots). Our approach achieves a path error of 1.1927m and mapping error of 1.5161m for the simulation
experiment and 0.6198m and 0.4467m respectively for the real-world experiment.
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Fig. 4. Mean position error of all the nodes in the real-world experiment
for both the centralized (dashed red line) and decentralized (solid blue line)
implementations. In the decentralized approach, the estimates of the isolated
nodes drift at the start in the absence of sufficient measurements, increasing
its mean error.
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Fig. 5. Mean uncertainty (i.e. mean variance) in the position of the nodes
for both centralized and decentralized implementations corresponding to
the real-world experiment. The centralized method has to deal with more
ambiguities at the start when few measurements are available but eventually
produces a better result.
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TABLE I

ROBOT PATH AND NODE MAPPING ERRORS (IN METERS) FOR BOTH

SIMULATED AND REAL-WORLD EXPERIMENTS WITH CENTRALIZED AND

DECENTRALIZED IMPLEMENTATIONS.

Method
Simulation Real-World

Path Err. Map Err. Path Err. Map Err.

Centralized 0.99m 1.48m 0.55m 0.45m

Decentralized 1.19m 1.52m 0.62m 0.45m

For the real-world data set, Figure 4 shows the mean

mapping error of the nodes over time as the mobile node

produces more data. Figure 5 shows mean uncertainty in

the position estimate of the nodes over time. We see that

with the decentralized implementation, initially the mean

uncertainty can be low but error in the solution is high. This

is because the estimates of the isolated nodes, maintained

independently by each node, drift at the start in the absence

of sufficient measurements. It is only after the mobile node

travels within range of the isolated nodes can their estimates

be fixed within the joint coordinate frame (without which

their estimates remain free-floating).

In contrast, the centralized method has to deal with more

ambiguities (multi-modal distributions) at the start when

few measurements are available. And since the method tries

to jointly estimate the positions of all the nodes within

the same coordinate frame, the estimates of the isolated

nodes do not drift. It should be noted here that without

the presence of the mobile node, regardless of the method

used, achieving an accurate estimate of the full network is

impossible due to the lack of rigidity within the network.

VI. CONCLUSIONS AND FUTURE WORK

This paper has demonstrated an efficient decentralized

algorithm for localizing the nodes in a sparsely connected

sensor network using range-only measurements and motion

from a mobile robot. Our parameterized EKF-based approach

requires little to no prior information about the node loca-

tions. We presented an extension of the EKF that handles

multi-modalities within range-only mapping measurements.

In addition, we formulated a decentralized framework for our

algorithm which is well suited for a real-world implemen-

tation, reducing the computation and memory requirements

on each nodes. Finally, we demonstrated the performance of

our method using both simulated and real-world experiments

and comparing the performance of our decentralized method

with its centralized counterpart.

There remain many open directions for continued

research. For example, the multi-modal extension presented

here includes an empirical pruning step to remove unlikely

and similar hypotheses. By changing the parameterization

of the states, one can hope to encode the multi-modalities

within the estimate into a single state representation, similar

in principles to what was proposed by Stump et al., [10].

Also, alternate control strategies for reducing self and

network estimate uncertainties can be explored. While the

current approach provides a reasonable solution for sparsely

cluttered environments, it still has potential to get stuck in

local minima. In particular if the uncertainties of the nodes

are symmetric around the mobile node, the controller will

drive the robot on a sub-optimal path which might cause

the uncertainties to grow. In addition, improvements to the

algorithm that lend themselves to decentralized coordination

of multiple mobile robots could prove to reduce the time

it takes to accurately estimate the entire network, while

providing additional capabilities for subsequent tasks that

require decoupled cooperation of the mobile robots.
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