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Abstract— By controlling complex robotic systems one often
has to cope with the situation that different sub-systems are
interfaced and controlled by different computers. In this paper
the problem of coordinated control of such a system with
distributed control structure is addressed. In particular one
must handle the transmission delays in the communication
between the different computers, which can be considered small
but not negligible, since also small delays in the transmission
of power variables violate the passivity and therefore may
lead to instability. In this paper the wave variables concept is
applied to handle the delays and is used in combination with a
virtual inertia for designing a Cartesian compliance controller.
Therefore, in particular the steady state properties of the wave
variable based communication is of interest and leads for the
case of small delays to the analogy with a flexible joint robot.
In a second step the virtual inertia is eliminated in order to
approximate the desired closed loop behavior better. Finally,

some simple planar simulations are presented which validate
the proposed approach.

I. INTRODUCTION

For the design of real-time controllers one usually assumes

that all the control algorithms can be implemented in one

computer. If the computation is sufficiently fast such that

the used sampling rates are much faster than the relevant

modes of the system, one can design the controller as a

continuous system and can ignore the time-discrete nature

of the controller implementation in practice.

But in reality one often has to cope with the situation that

some sub-systems are interfaced and controlled by different

computers (Figure 1). One example would be a humanoid

robot in which the upper body is controlled by one computer

and the lower body is controlled by a second computer.

As a second common example one can think of a mobile

manipulator in which the robotic arm is controlled by one

computer while the mobile part is controlled by a second

one. For designing a coordinated control law one then has to

establish some kind of communication between the different

computers which consequently introduces small time delays

in the control system. If the communication is designed with

care these delays should be quite small, i.e. in the range of

a few ms, and can be considered as constant. But since a

delay jeopardized the passivity of the sub-systems, also small

delays may lead to instability and should be considered by

the control engineer [1].

The effect of time delay has extensively been studied in

the realm of teleoperation, where one has two robots, a

master and a slave, and the goal is to control the slave robot

τ 1

τ 2

q1

q2

Fig. 1. Considered control architecture: Two computers C#1 and C#2 are
interfaced with different subsystems.

remotely via the master [2]. Scattering approaches allow to

incorporate the time delay in a passivity based analysis [3],

[4]. This lead to the concept of wave variables which have

been introduced by Niemeyer and Slotine [5], [6]. Extensions

to variable delays are treated in [7]. Another connection

between teleoperation and passivity is given in [8], [9] in

which the ”Time Domain Passivity Control” from Hannaford

and Ryu [10] is applied.

In the robotics literature on decentralized control of multiple

manipulators [11], [12] on the other hand the issues of time

delay are often neglected.

In this paper we show how to apply the wave variables con-

cept in the design of a coordinated control law for a system

with distributed architecture. The wave variables approach

has been chosen because of its close relation to passivity

for constant time delay. This allows to design the complete

closed loop system based on a passivity based approach

which guarantees advantageous robustness properties with

respect to a large class of model uncertainties.

The motivation of this work is an application for a robotic

wheelchair robot. For this robot the mobile part including an

articulated seat will be interfaced to one real-time computer

and an on-board arm will be controlled by a second real-time

computer.

The paper is organized as follows. In Section II we first

formulate the considered control problem. Then, after pre-

senting the main design idea in Section III a short review

of the wave variables concept is given in Section IV. The

controller design using a virtual inertia and the analogy to
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the dynamics of a flexible joint robot is presented in Section

V. In Section VI it will be shown how to the additional

virtual inertia can be avoided. Some simulation results are

presented in Section VII. Finally, Section VIII concludes the

paper with a short summary.

II. PROBLEM FORMULATION

The general model of a robot with n joints can be written

in the form

M(q)q̈ + h(q, q̇) + g(q) = τ c + τ ext, (1)

with the generalized coordinates denoted as q ∈ R
n. The

matrix M(q) ∈ R
n×n is the symmetric and positive def-

inite inertia matrix, h(q, q̇) contains the centrifugal and

Coriolis forces, and g(q) represents the gravity torques

which are related to the gravity potential Vg(q) via g(q) =
(∂Vg(q)/∂q)T . The control torques are given by τ c, while

τ ext contains external forces and torques between the robot

and the environment. Notice that motor friction is not ex-

plicitly considered in this work. However, in practice an

additional friction compensation in the control action clearly

will improve the performance.

In this paper we assume a distributed control architecture

using two computers C#1 and C#2 which are associated with

two sub-systems of the robot, see Fig. (1). We assume that

on each computer we can measure a subset q1 ∈ R
n1 and

q2 ∈ R
n2 of the n = n1 + n2 coordinates q = (qT

1 , qT
2 )T .

Accordingly, the control torques are split up into τ 1 ∈ R
n1

and τ 2 ∈ R
n2 , i.e. τ c = (τT

1 , τT
2 )T . Any feedback path

of the joint angles q2 to the joint torque τ 1, as well as

feedback from q1 to τ 2, will be affected by the constant

communication delay Td between the two computers.

As a control problem we consider the achievement of a

desired Cartesian compliance behavior. Therefore, we define

some Cartesian coordinates describing the pose of the end-

effector via

r = f(q1, q2) ∈ R
6 . (2)

The Jacobian matrix of the forward kinematics map with

respect to q1 and q2 will be denoted by J(q1, q2) =
[

∂(f(q1, q2))/∂q1 ∂(f(q1, q2))/∂q2

]

. The desired com-

pliance shall be given by a symmetric and positive definite

stiffness matrix Kd ∈ R
6×6, a positive definite Cartesian

damping matrix Dd ∈ R
6×6, and by a virtual equilibrium

pose rd ∈ R
6.

By neglecting the time delay in the data transfer between the

computers C#1 and C#2 one could implement a compliance

controller in a straight-forward way as

τ c =

(

τ 1

τ 2

)

= g(q) − D(q1, q2)q̇ + (3)

J(q1, q2)
T Kd(rd − f (q1, q2)) ,

D(q1, q2) := J(q1, q2)
T DdJ(q1, q2)

In the considered case with distributed control architecture

the delay may be considered as small but not negligible

and, thus, the control law (3) can not be implemented in

the present form.

III. BASIC DESIGN IDEA

In order to design a compliance controller similar to (3)

for a system with distributed control architecture, we propose

a procedure as follows:

1.) Introduce some ”virtual” generalized coordinates qv ∈
R

n2 according to a simple second order dynamics of the

form

Mv q̈v = τ v,1 − τ v,2, (4)

with a virtual inertia matrix M v ∈ R
n2×n2 and two virtual

input torques τ v,1 ∈ R
n2 and1 τ v,2 ∈ R

n2 . This dynamics

is to be implemented on computer C#1.

2.) Design a controller for τ 2 and τ v,2 which makes the

virtual coordinates qv and the real coordinates q2 follow

each other as good as possible under consideration of the

communication delay between the computers C#1 and C#2.

3.) Design a compliance control law, to be implemented on

computer C#1 via τ 1 and τ v,1, based on the coordinates

q1(t) and qv(t) instead of using q1(t) and the delayed

variables q2(t − Td).

rd

Fig. 2. Considered control approach: The system is augmented by virtual
coordinates qv which are coupled to the coordinates q2 by means of a
teleoperation controller. The Cartesian compliance is then realized on C#1
without direct feedback of q2.

The whole procedure is illustrated in Figure 2. The idea

behind introducing additional virtual coordinates qv (and

their dynamics (4)) in step 1 is that these coordinates

shall serve as a ”substitute” for the coordinates q2 in the

computation of the compliance control law implemented on

computer C#1 (step 3). Moreover, the second order dynamics

(4) allows for a simple physical interpretation in terms of a

mechanical system which will facilitate the design of the

compliance controller in section V by utilizing an analogy

with another type of underactuated mechanical systems.

However, in section VI it will be shown that the introduction

of these additional dynamics is not strictly necessary and can

indeed be avoided in a modified controller design.

With regard to the stability properties of the closed loop

system all the controller parts will be designed by utilizing

1The negative sign for τv,2 was chosen at this point such that the
presentation in section IV fits better to the usual sign convention for two-
ports in the teleoperation literature.
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passivity based control approaches. This facilitates the in-

terconnection of the controllers from step 2 and step 3 in a

robust way.

IV. WAVE VARIABLES

In this section we briefly review the concept of wave

variables as it was introduced and discussed in [5], [6].

In teleoperation one has to cope with transmission delays

between a master and a slave robot. These delays obstruct the

application of passivity based control approaches and must

be treated carefully. Based on the scattering approach it was

shown in [5] that one can transform the input and output

variables force and velocity, which are related to physical

power, into another set of variables which describe the power

flow in and out of the system.

The notation of passivity as used in nonlinear control theory

is related to an input and an output of the system2. Let us

assume that we have a system which is passive with respect

to some input forces F and collocated output velocities

ẋ such that the physical energy stored in the system can

be considered as the storage function [13]. Then, the wave

variables are defined by

u =
bẋ + F√

2b
, (5)

v =
bẋ − F√

2b
, (6)

where the scalar parameter b > 0 is the so-called wave

impedance [6]. In the new coordinates the physical power

is given by P = F T ẋ = 1
2uT u − 1

2vT v, from which one

can see that the terms 1
2uT u and 1

2uT u correspond to the

ingoing and outgoing power. The inverse mapping, i.e. the

computation of the power variables from the wave variables

can be performed by

ẋ =
1√
2b

(u + v) , (7)

F =

√

b

2
(u − v) . (8)

The use of wave variables for teleoperation originates from

the fact that by using these transformations time delay

becomes a passive operation, i.e. the 2-port block depicted

in Figure 3 is passive. By connecting this ”passivated”

transmission delay with passive systems on the right and

left handed side one thus automatically achieves a passive

closed loop dynamics.

Besides the passivity property, two other advantageous prop-

erties of the wave variable based communication will be

important in the following. Firstly, it does not assume

impedance or admittance causality on either sides of the

transmission line and thus is compatible with both force

and position controllers. Secondly, in steady state, i.e. with

zero velocities and the forces equal on both sides of the

transmission, the wave communication behaves statically like

2A system ż = f(z, u) with input u and output y is said to be passive
if there exists a non-negative function S(z), the so-called storage function,

such that S(z(t))−S(z(0)) ≤
∫ t

0
y(s)T u(s)ds holds for all t > 0 [13].

a spring with stiffness Kt = b
Td

such that for small delays

the communication looks like a rigid connection [6]. Clearly,

this physical analogy to the behavior of a spring holds only in

the sense of a steady state result as pointed out by Niemeyer

in [6]. Furthermore, a more detailed analysis reveals that the

wave communication also takes characteristics of an inertia

Mt = bTd in certain situations [14]. Therefore, the above

analogy with a static spring should not be used as the only

design criterion for choosing b.

Step 2 from Section III, i.e. the coupling of the virtual

coordinates qv and the coordinates q2, can then be solved by

applying the ”basic wave teleoperator” from [6]. Therefore,

τ 2 is chosen as a PD controller of the form

τ 2 = −K(q2 − q2,d) − B(q̇2 − q̇2,d) , (9)

where q̇2,d is the output of the wave transmission and can

be derived via (5) and (9) as

q̇2,d = (b + B)−1
(√

2bu2 + Bq̇2 + K(q2 − q2,d)
)

. (10)

According to (6) the virtual control input τ v,2 is given by

τ v,2 = bq̇v −
√

2bvv (11)

and the transmitted wave signals u2(t) = uv(t − Td) and

vv(t) = v2(t − Td) are computed based on (5) and (6) via

uv = (bq̇v + τ v,2)/
√

2b , (12)

v2 = (bq̇2 − τ 2)/
√

2b . (13)

In the telerobotic literature it is well known that the inte-

gration of q̇2,d may lead to position drift due to numerical

errors. Due to lack of space these issues are not discussed

in detail in this paper. Instead the reader may refer to [6]

for some extensions of the basic wave teleoperator by which

one can counteract the numerical drift.

τ v,2 τ 2

uv u2

vv v2

q̇2q̇v

bb

Td

Td

(9)

q̇2,d

passivated communication

Fig. 3. Basic wave teleoperator consisting of the passivated communication
as well as a PD controller for coupling the coordinates on both sides of the
transmission.

V. COMPLIANCE CONTROL

In this section a Cartesian compliance controller (to be

implemented on computer C#1) is designed which assumes

that the virtual coordinates qv and the physical coordinates

q2 are coupled via the basic wave teleoperator from Figure

3. The design approach will aim at a passive controller,

which does not require delayed feedback of q2, but can be

implemented via feedback of q1 and qv only. The system

structure for this situation is shown in Figure 4.
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Fig. 4. System interconnection for the design of the Cartesian compliance
control law (VI ... virtual inertia, COM ... wave communication).

In the following the steady state behavior of the wave trans-

mission will be of particular importance. When a constant

external torque τ v,2 = τ 2 acts, the steady state difference

between the virtual and the physical coordinates must be

equal to qv − q2 = (Td

b
I + K−1)τ 2 according to the

interconnection of the passivated communication and the PD

controller, which corresponds to an overall effective stiffness

of Kc := (Td

b
I + K−1)−1. For small time delays the

system therefore resembles a robot with flexible joints q2,

in which M v corresponds to the matrix of motor inertias

and (Td

b
I + K−1)−1 corresponds to the joint stiffness.

This motivates the application of the passivity based control

approach developed in [15], [16] for the implementation of

the Cartesian compliance. It should be mentioned in advance

that the passivity property of the resulting controller will

not rely on this analogy to a flexible joint robot. While the

analogy can give an intuitive physical interpretation for the

control law developed in this section, it will be less useful

for the discussion of a modified control law in Section VI.

The goal of the compliance control is to achieve a given

stiffness and damping behavior. In the following we aim

at a controller structure similar to (3) consisting of gravity

compensation as well as implementation of stiffness and

damping, but without requiring feedback of the delayed (and

thus noncollocated) variable q2. For the gravity compensa-

tion we use the design presented in [15] with regard to the

above mentioned analogy to robots with flexible joints.

A. Gravity compensation

The basic idea for the gravity compensation in [15] was to

use the steady state equation of the free (i.e. for τ ext = 0)

dynamics in order to compute a ”quasi-static” estimate of the

underactuated coordinates. In the present case the free steady

state conditions follow from (1) and (4) and are given by

g(q) = τ c =

(

τ 1

τ 2

)

, (14)

τ v,1 = τ v,2 . (15)

By using the static condition τ v,2 = τ 2 = Kc(qv−q2) from

the basic wave teleoperator, with Kc = (Td

b
I + K−1)−1 as

the effective steady state stiffness, one gets

g1(q1, q2) = τ 1 , (16)

g2(q1, q2) = τ 2 = Kc(qv − q2) , (17)

τ v,1 = τ 2 , (18)

where the gravity torque g(q) has been split up into the

components g1(q1, q2) and g2(q1, q2) which act on q1 and

q2, respectively. The goal is now to find a feedback law

for τ v,1 which exactly counterbalances the gravity term

g2(q1, q2) in steady state without requiring measurement of

the (noncollocated) variable q2. Following the design idea

presented in [15] we solve (17) for q2 and use the resulting

function q̄2(q1, qv) as a quasi-static estimate of q2. This

quasi-static estimate can further be applied for constructing

a gravity compensation term of the form

ḡ(q1, qv) := g(q)|q
2
=q̄

2
(q

1
,qv) .

Remark 1: Solution of (17): In order to be able to ensure

existence and uniqueness of the solution q̄2(q1, qv) from (17)

one needs an additional requirement. Namely, the virtual

stiffness Kc must dominate the Hessian H(q1, q2) :=
∂g2(q)/∂q2 of the gravity potential with respect to q2, i.e.

||Kc|| > ||H(q1, q2)||. For a moderately large controller

gain K and small communication delay3 Td this, however,

is not a critical assumption. This assumption in particular

ensures that the function T (q2) := qv − K−1
c g2(q1, q2) is

a contraction mapping and thus can be used for computing

q̄2(q1, qv) by iteration (see [15] for more details).

Notice that while (17) stems from a static analysis we use it

as a general definition of the quasi-static estimate which is

used for the gravity compensation also in the dynamic case.

In any case, due to its particular construction it is ensured

that q̄2(q1, qv) fulfills the equation

g2(q1, q̄2(q1, qv)) = Kc(qv − q̄2(q1, qv)) (19)

everywhere, i.e. ∀q1 ∈ R
1, qv ∈ R

2. Finally, it should be

mentioned that the application of the term q̄2(q1, qv) for

gravity compensation in the dynamic case is justified by the

fact that it is associated with a lower bounded4 potential

function Vḡ(q1, qv) which guarantees the passivity. Without

going into the detail about its derivation (see [15] for this

result) this potential function is written as

Vḡ(q1, qv) = Vg(q1, q2(q1, qv)) +
1

2
(qv − q̄2(q1, qv))

T Kc(qv − q̄2(q1, qv))

for which one can verify the desired condition ḡ(q1, qv) =
∂Vḡ(q

1
,qv)

∂(q
1
,qv) by straight-forward calculation and utilization of

the property (19).

From a practical point one can expect that the difference

between q2 and its quasi-static estimate q̄2(q1, qv) will be

quite small as long as Kc is large, which corresponds to a

small time delay Td.

3remember Kc = (Td
b

I + K−1)−1

4It is lower bounded if the gravity potential Vg(q) is lower bounded
which holds for all robots with only rotational joints. For a robot with
prismatic joints this holds only within a limited workspace.
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B. Controller formulation

The gravity compensation of the last sub-section is then

augmented by a Cartesian stiffness and damping term which

is evaluated by simply replacing q2 by qv in (3). This results

in the control law for τ 1 and τ v,1:
(

τ 1

τ v,1

)

= ḡ(q1, qv) − D(q1, qv)

(

q̇1

q̇v

)

+ (20)

J(q1, qv)T Kd(rd − f(q1, qv)) ,

D(q1, qv) := J(q1, qv)T DdJ(q1, qv)

Finally, let us summarize the complete control law. On

computer C#1 one must implement the virtual dynamics (4),

the feedback laws (11) and (20), as well as the computation

of the wave signal (12) which is transmitted to computer C#2.

On computer C#2 one must implement (10), the PD control

law (9), as well as the computation of the wave signal (13)

which is transmitted to computer C#1.

Notice that all the controller parts shown in Figure 4 have

been designed as passive subsystems. Therefore, also the

passivity of their interconnection is assured which guarantees

robust interaction with unknown passive environments.

In order to get a good approximation of (3) for small

time delays one should choose a small virtual inertia M v

and a high PD gain K . The parameters b and B give

additional freedom for adjusting the damping. However, one

important remark must be made about the resulting Cartesian

stiffness. By considering the control law (20) one implements

a Cartesian spring with stiffness Kd in series to the joint

level spring Kc. The achieved Cartesian stiffness Kext as

seen from the tip of the robot is locally given by

Kext =

(

K−1
d + J(q1, q2)

[

0 0

0 K−1
c

]

J(q1, q2)
T

)−1

(21)

instead. However, (21) clearly can be utilized in the design

of Kd according to some desired external stiffness Kext.

The introduction of the virtual inertia Mv allows to give

a simple physical analogy for small delays between the

application of the basic wave teleoperator and the physical

spring of a flexible joint robot. This was the main design idea

followed in the controller design so far. However, the inertia

also affects the closed loop dynamics. In the next section it

will therefore be shown how this additional virtual inertia

can be avoided.

VI. ELIMINATION OF THE VIRTUAL INERTIA

The idea how to eliminate the virtual inertia from the pre-

sented control concept emerges from the fact that the wave-

based communication a priori does not assume impedance or

admittance causality on either sides of the transmission. In

the previous approach (Figure 2) the wave-based communi-

cation gives at the power port on the left hand side the torque

τ v,2 as an output which is applied to the virtual inertia, while

the velocity of the virtual coordinates q̇v is the corresponding

input. In the following we revert this scheme in order to

connect the compliance controller from (20) directly to the

wave-based communication (see Figure 5).

1/s

1/s

1/s

rd

Fig. 5. Modified control approach: By changing the causality for the port
on the left hand side of the wave communication the virtual inertia can be
avoided.

From (6) applied to the power port on the left hand side of

the wave-based communication in Figure 3, i.e. with u=̂q̇v

and F =̂τ v,2, we get

bq̇v =
√

2bvv + τ v,2 (22)

Furthermore, since we want to eliminate the virtual inertia,

we set τ v,2 = τ v,1 (cf. (4)). Using (20) and the abbrevia-

tions5

ḡ1 := g1(q1, q̄2(q1, qv)) ,

ḡ2 := g2(q1, q̄2(q1, qv)) ,

f̄ := f (q1, qv) ,

J̄1 :=
∂f(q1, qv)

∂q1

,

J̄2 :=
∂f(q1, qv)

∂qv

,

D̄11 := J̄
T

1 DdJ̄1 ,

D̄12 := J̄
T

1 DdJ̄2 ,

D̄21 := J̄
T

2 DdJ̄1 ,

D̄22 := J̄
T

2 DdJ̄2 ,

we get

τ 1 = ḡ1 + J̄
T

1 Kd(rd − f̄) − D̄11q̇1 − D̄12q̇v , (23)

τ v,2 = ḡ2 + J̄
T

2 Kd(rd − f̄) − D̄21q̇1 − D̄22q̇v . (24)

From (22) and (24) we finally get

q̇v = (b + D̄22)
−1

(√
2bvv + ḡ2+ (25)

J̄
T

2 Kd(rd − f̄) − D̄21q̇1

)

.

Instead of using the second order integration from (4) we thus

integrate (25) and implement the control law (23)-(24) to get

τ 1 and τ v,1 = τ v,2. Apart from these changes the controller

is the same as the one discussed in the last section.

Notice that the closed loop system still consists of a feedback

interconnection of passive sub-systems and thus the overall

5suppressing dependence on q1 and qv for better readability
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system will be passive. The only change between the previ-

ous controller and the modified one is that the inertia M v

has been eliminated by changing the causality for the port

on the left hand side of the wave-based communication.

VII. SIMULATION

In order to evaluate the proposed method for applying

the wave variables concept to the control of a robot with

distributed control structure, a simple planar simulation of a

three degrees-of-freedom robot is presented. Figure 6 shows

a sketch of the simulated model in the starting configuration

for the simulations. It is assumed that the computer C#1 is

interfaced to the upper two joints while the lower joint is

interfaced to a different computer C#2.

y

x

0.5kg

0.5kg

0.5kg

0.5m

Fig. 6. Simple planar simulation model with 3 degrees-of-freedom. The
computer C#1 is interfaced to the upper two joints and the computer C#2
is interfaced to the lower two joints.

As Cartesian coordinates the end-effector position and orien-

tation are chosen. The desired Cartesian stiffness matrix used

in the controller Kd has been chosen as a diagonal matrix

with values of 1000N/m for the translational components

and 100Nm/rad for the orientation. Notice that Kd is re-

lated to the effective stiffness at the end-effector via equation

(21). The damping was also chosen as a diagonal matrix

with 100Ns/m and 10Nms/rad for the translational and

rotational components, respectively. In the simulations the

response for a stepwise command of 10cm in x−direction

is evaluated. All controllers were implemented with a high

sampling rate of 0.1ms in order to avoid numerical errors in

the velocity integration.

As a reference for the controllers from Section V and

Section VI the control law (3) has been simulated for a

system without communication delays. The corresponding

step response of the Cartesian error is shown in Figure 7.

Since the compliance control law (3) implements stiffness

and damping without inertia decoupling one also sees some

transient error for the translation in y− direction and for the

orientation.

Then, a simulation of the same control law but with a

communication delay of Td = 6ms has been performed. For

this communication delay the original control law (3) led to

an unstable behavior as can be seen in Figure 3.

Next, the control law described in the sections IV and V is

evaluated for the same situation. The wave impedance was
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Fig. 7. Cartesian error of the reference controller (3) for a system without
communication delay. The solid black and dashed blue line show the
translational error in x− and y−direction [m], while the dotted red line
shows the orientation error [rad].
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Fig. 8. Cartesian error of the reference controller (3) for a system with
a communication delay of Td = 6ms. The simulation was stopped after
0.5s. The solid black and dashed blue line show the translational error in
x− and y−direction [m], while the dotted red line shows the orientation
error [rad].

chosen as b = 10Nms/rad. Therefore, the virtual stiffness

of the transmission is given by Kt = b/Td = 1667Nm/rad.

Notice that by choosing b one has to make a compromise

between the desire for a large ”stiffness” Kt and a small

”inertia” Mt of the wave communication. For the PD con-

troller of the wave teleoperator values of K = 1000Nm/rad
and B = 40Nms/rad have been chosen. For this setting

two simulations with different values for the virtual inertia

have been performed. First, a simulation with a small value

of M v = 0.1Nms2/rad is shown in Figure 9. One can see

that the system with wave communication now converges and

does not become unstable. However, the dynamical response

is of course not exactly the same as in Figure 7 due to the

communication delay.

Next, the effect of the virtual inertia Mv on the closed loop

dynamics shall be observed. Therefore, the same simulation

was repeated with a large value of M v = 1Nms2/rad for

the virtual inertia. The result can be seen in Figure 10. A

larger virtual inertia considerably influences the closed loop
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Fig. 9. Cartesian error rd−f(q1, q̄2(q1, qv)) of the controller (20) from
Section V for a system with a communication delay of Td = 6ms and the
virtual inertia set to a small value of 0.1Nms2/rad. The solid black and
dashed blue line show the translational error in x− and y−direction [m],
while the dotted red line shows the orientation error [rad].
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Fig. 10. Cartesian error rd − f(q1, q̄2(q1, qv)) of the controller (20)
from Section V for a system with a communication delay of Td = 6ms
and the virtual inertia set to a large value of 1Nms2/rad. The solid black
and dashed blue line show the translational error in x− and y−direction
[m], while the dotted red line shows the orientation error [rad].

dynamics, even if no instability occurs.

This behavior can also be seen by observing the trajectories

for the coordinate q2 and the virtual coordinate qv . The

simulation results of these signals for the case of small

(Mv = 0.1Nms2/rad) and large (Mv = 1Nms2/rad)

virtual inertia are shown in Figure 11 and Figure 12, respec-

tively. In these figures one can observe a similar behavior

as for the Cartesian error. In addition one can see that in

steady state there is a small difference between q2 and qv

according to the virtual stiffness Kc and the gravity load on

the coordinates q2.

Finally, the simulation result for the controller from Section

VI is shown in Figure 13. The advantage of this controller

is that the virtual inertia has been eliminated. One can see

that the performance is similar to the controller from Section

V with small virtual inertia, cf. Figure 9. This can also be

seen by observing the real and virtual coordinates q2 and qv

which are shown in Figure 14.
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Fig. 11. Real joint angle q2 (black solid) and the virtual joint angle qv

(blue dashed) computed at the computer C#1 for the controller (20) from
Section V for a system with a communication delay of Td = 6ms and the
virtual inertia set to a small value of 0.1Nms2/rad.
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Fig. 12. Real joint angle q2 (black solid) and the virtual joint angle qv

(blue dashed) computed at the computer C#1 for the controller (20) from
Section V for a system with a communication delay of Td = 6ms and the
virtual inertia set to a large value of 1Nms2/rad.

VIII. SUMMARY

In this paper the coordinated Cartesian compliance control

of a robot system with distributed control architecture was

treated. The wave variables concept has been utilized for

handling the communication delays between different sub-

systems. In order to interface the basic wave teleoperator

with the Cartesian compliance control law a virtual inertia

was introduced. Furthermore, in the implementation of the

compliance control law one must take the steady state

behavior of the wave teleoperator into account. For this,

some techniques developed in the realm of flexible joint robot

control have been adopted. In a second step it was shown how

the virtual inertia can be avoided such that the compliance

control law is directly interfaced to the wave teleoperator. As

a consequence the desired dynamics is approximated better

and also the parametrization of the controller is simpler.

In both approaches the closed loop dynamics consists of

several passive sub-systems such that also the overall system

is passive. This ensures robust interaction with unknown

but passive environments. For this in particular the passivity
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Fig. 13. Cartesian error (rd − f̄) of the controller from Section VI for
a system with a communication delay of Td = 6ms. The solid black and
dashed blue line show the translational error in x− and y−direction [m],
while the dotted red line shows the orientation error [rad].
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Fig. 14. Real joint angle q2 (black solid) and the virtual joint angle qv

(blue dashed) computed at the computer C#1 for the controller from Section
VI for a system with a communication delay of Td = 6ms.

properties of the wave communication and of the compliance

control law have been utilized. Finally, some simple planar

simulations have been presented which validate the proposed

approach.
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