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Abstract— In this paper we address the problem of formation
control of a group of robots that exchange information over a
delayed communication network. We consider the Virtual Body
Artificial Potential approach for stabilizing a group of robots
at a desired formation. We show that it is possible to model
the controlled system as a set of elements exchanging energy
along a power preserving interconnection structure. We exploit
the scattering framework to stabilize the robots in the desired
formation independently of any delay in the communication of
the information.

I. INTRODUCTION

A central problem in the coordination of multi-robot
systems is the formation control. An example is in the
framework of mobile sensor networks where it is desirable
to control the disposition of the sensors in such a way to
maximize the amount of information that they are able to
detect. Several approaches for solving the formation control
problem have been proposed in the literature [1], [2], [3],
[4], [5], [6], [7].

In most of the current approaches for formation control, it
is assumed that the information is instantaneously exchanged
among the robots and this can be quite restrictive. In fact, in
real applications, it is necessary to choose a medium over
which the robots exchange information. Packets switched
networks are very good candidate to play this role, as
noted in [5]. Nevertheless, the use of this kind of medium
introduces some problems that need to be addressed. First
of all the information is exchanged among the robots with a
certain communication delay which tends to destabilize the
controlled system. Moreover, some packets can get lost and
the communication delay can be variable.

In [7], [8] the virtual body artificial potential (VBAP) ap-
proach has been introduced. Artificial potentials are exploited
for reproducing the social forces, a concept deduced from
biological studies of animal aggregations [9], in a group
of mobile robots.The goal of this work is to extend the
VBAP approach in order to take into account a possible non
negligible delay in the communication among the robots and
between the robots and the virtual leaders. We will exploit
the scattering framework in the VBAP formation control
strategy in order to stabilize a group of robots at a desired
formation when the information is exchanged over a de-
layed communication channel. First of all we will formulate
the VBAP strategy within the port-Hamiltonian framework
[10], [11] in order to put into evidence the interconnection
structure through which energy is exchanged, namely, the
communication protocol through which the robots and the

elements associated to the artificial potentials exchange the
information for obtaining the desired formation. We will then
reformulate this communication protocol in terms of scatter-
ing variables and we will prove that the new communication
strategy allows to stabilize the robots in the desired formation
independently of any communication delay.

The paper is organized as follows: in Sec. II we will
give some background on the VBAP approach, on port-
Hamiltonian systems and on the scattering framework. In
Sec. III we will interpret the VBAP control strategy within
the port-Hamiltonian framework. In Sec. IV we will exploit
the scattering framework for implementing the VBAP for-
mation control over a delayed network. In Sec. V we will
provide some simulations to validate the results proposed
in the paper and, finally, in Sec. VI we will give some
concluding remarks and we will address some future work.

II. BACKGROUND

A. The VBAP approach for formation control

Consider a group of N agents (that can be mobile robots,
UAV, etc.) that we want to take in a desired formation. We
will indicate with xai ∈ R

3, the position of the ith agent with
respect to an inertial frame. Furthermore, we will indicate
with ui ∈ R

3 the control input of the ith vehicle. We consider
fully actuated, point mass agent models whose dynamics is
represented by:

ẍai(t) = ui(t) i = 1, . . . , N (1)

In the space where the agents are moving, a set of L
reference points, called virtual leaders, are introduced. The
position of the kth virtual leaders is denoted by xlk ∈ R

3.
In this paper we consider the case in which all the leaders
are at rest. This means that we are focusing on the problem
of taking all the agents in the desired formation and not on
the problem of moving the formation.

Let xaij = xai − xaj be the relative position of agent
i with respect to agent j. Between each pair of agents, an
artificial potential VI(xaij ), that we call interagent potential,
is defined. This potential depends on the distance between
the ith and the jth agents and its role is to produce a radial
force fI(xaij ) that regulates the distance between the agents.
Similarly let xailk = xai − xlk be the relative position of
agent i with respect to leader k. Between each agent and
each virtual leader a potential Vh(xailk), that we call leader
potential, is defined. This potential depends on the distance
between the ith agent and the kth leader and its role is to
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produce a radial force fh(xailk) that regulates the distance
between the agent and the leader.

The control of each agent is defined as the sum of the
forces induced by the potentials and of a damping term,
namely as

ui = −
N∑

i=1

∂VI(xaij )
∂xaij

−
L∑

k=1

∂Vh(xailk)
∂xailk

− Riẋai =

= −
N∑

i=1

fI(xaij )
‖xaij‖

xaij −
L∑

k=1

fh(xailk)
‖xailk‖

xailk − Riẋai (2)

where Ri is a positive definite matrix.
The shape of the potential VI has to be such to produce a

repulsive force when two agents are too close, namely when
‖xaij‖ < d0, an attractive force when two agents are far,
namely when ‖xaij‖ > d0 and a null force when the agents
are too far, namely when ‖xaij‖ > d1 > d0; d1 and d0 are
design parameters. The shape of the potential Vh is similar
and it depends on possibly different design parameters h0

and h1 which play the same role as d0 and d1.
The group of agents is immersed in a potential field which

is given by the sum of all the artificial potentials. The
minimum of this potential is given by a configuration where
all the agents are at a distance d0 from the neighboring agents
and at a distance h0 from the neighboring leaders. Choosing
properly the position of the virtual leaders and the parameters
h0, d0, h1 and d1 it is possible to shape the overall potential
in such a way that its minimum corresponds to a desired
formation.

Defining the state of the agents group as x =
(xa1 , . . . , xaN , ẋa1 , . . . , ẋaN )T and using as a candidate Lya-
punov function

V (x) =
1
2

N∑
i=1

(ẋT
ai

ẋai +
N∑

j �=i

VI(xaij )+2
L∑

k=1

Vh(xailk) (3)

it is possible to prove that the configuration x = (x̄, 0), where
x̄ is the minimum of the sum of the artificial potentials, is
asymptotically stable. For further information see [7], [8]

B. Port-Hamiltonian systems and the scattering framework

The port-Hamiltonian modeling framework is the mathemat-
ical formalization of the bond-graph strategy for representing
physical systems. Loosely speaking, a port-Hamiltonian sys-
tem is made up of a set of energy processing elements that
exchange energy through a power preserving interconnection.
More formally, port-Hamiltonian systems are defined on the
state manifold of energy variables X and they are charac-
terized by a lower bounded Hamiltonian energy function
H : X �→ R, expressing the amount of stored energy, and
by a Dirac structure D, representing the internal energetic
interconnections. Using coordinates, in their simplest form,
they are represented by the following equations{

ẋ(t) = (J(x) − R(x))∂H
∂x + g(x)u(t)

y(t) = gT (x)∂H
∂x

(4)

where x ∈ R
n is the coordinate vector of the energy

variables J(x) is a skew-symmetric matrix representing the
Dirac structure, R(x) is a positive semidefinite function
representing the energy dissipated by the system, H is
the Hamiltonian function, u is the time dependent input
vector, g(x) is the input matrix and y is time dependent the
conjugated output variable. The dependence on time of the
state has been omitted in order to keep the notation simple.
The pair of dual power variables (u, y) forms the power
port through which the port-Hamiltonian system exchanges
energy with the rest of the world. The power provided to the
system at the instant t is given by P (t) = uT (t)y(t). It can
be easily seen that the following power balance holds:

Ḣ(t) = yT (t)u(t) − ∂T H

∂x
R(x)

∂H

∂x
≤ yT (t)u(t) (5)

The scattering framework allows to interpret the power
flowing through a power port as the difference of incoming
power wave and outgoing power wave rather than as a prod-
uct of power variables. More formally, given a power port
(e(t), f(t)), the power flowing through it can be decomposed
into an incoming power wave s+(t) and an outgoing power
wave s−(t) in such a way that

eT (t)f(t) =
1
2
‖s+(t)‖2 − 1

2
‖s−(t)‖2 (6)

where ‖ · ‖ is the standard Euclidean norm and the pair of
scattering variables (s+(t), s−(t)) is defined as{

s+(t) = 1√
2b

(e(t) + bf(t))
s−(t) = 1√

2b
(e(t) − bf(t)) (7)

where b > 0 is the impedance of the scattering transforma-
tion. The relation in Eq.(7) is bijective and, consequently, a
power port can be equivalently represented both as a pair
of conjugated power variables or as a pair of scattering
variables. For further information see [10], [11].

III. A PORT-HAMILTONIAN INTERPRETATION OF VBAP
APPROACH

In this section we will show that a group of agents whose
formation is controlled by means of the VBAP strategy
can be interpreted as a set of energy processing elements
exchanging energy along a power preserving interconnection,
that is as a port-Hamiltonian system. First of all, let us
consider the main actors in the VBAP approach: the agents,
the interagent potentials and leader potentials.

Each agent can be modeled as a kinetic energy storing
element, namely as a mass characterized by a certain inertia.
Thus, the energy variable describing the state of the agent
i is the momentum pai and the kinetic energy function
associated to agent i is given by Hai = 1

2M−1
i pT

ai
pai ,

where Mi is the inertia matrix of the agent. In order to
take into account the damping effect introduced by the
VBAP strategy for asymptotically stabilizing the formation,
we embed a dissipative effect to the dynamics of each agent.
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Thus, indicating with (eai , fai) the power port associated to
agent i we have that a generic agent can be described by{

ṗai = −RiM
−1
i pi + eai

fai = M−1
i pi

(8)

where pai = Miẋai ∈ R
3 is the momentum of the agent and

Ri is a symmetric positive definite matrix representing the
damping imposed by the VBAP control strategy on the ith

agent. The effort eai corresponds to the input ui in Eq.(1).
We can easily see that eT

ai
fai = Ḣai + pT

ai
M−T

i RiM
−1pai ,

namely that the power incoming through the power port is
either stored in form of kinetic energy or dissipated. Both
the interagent potentials and the leader potentials necessary
for regulating the relative distance between the agents and
between the agents and the leaders can be modeled as a set
of potential energy storing elements which can be interpreted
as virtual springs. The energy variables representing the
state of the virtual spring between agent i and agent j
is given by xaij ∈ R

3, namely by the relative position
of agent i with respect to agent j. The energy variable
representing the state of the virtual spring between agent i
and leader k is given by xailk ∈ R

3, namely by the relative
position of agent i with respect to leader k. The potential
energy function representing the amount of energy stored
in a given configuration for the elements associated to the
interagent potentials and to the leader potentials are VI(·) and
Vh(·) respectively. The elements representing the interagent
potential between agent i and agent j and to the potential
between the agent i and leader k are described by{

ẋaij = faij

eaij =
∂VI (xaij

)

∂xaij

{
ẋailk = failk

eailk = ∂Vh(xailk
)

∂xailk

(9)

where (eaij , faij ) and (eailk , failk) are the the power ports
associated to the elements representing the interagent po-
tential and the leader respectively. The efforts eaij and eailk

represent the forces that have to be applied to agent i because
of the interagent potential regulating the distance from agent
j and of the leader potential regulating the distance from
leader k respectively. It follows directly from Eq.(9) that
eT

aij
faij = V̇I and eT

ailk
failk = V̇h, namely the power

incoming through the power ports is stored in form of
potential energy.

Thus, all the main actors in the VBAP framework can
be modeled as energy storing elements. The dynamics of
the state variables and, consequently, the evolution of the
agents, depend on the way in which the energy processing
elements are interconnected, namely, by the way in which
they exchange energy. The VBAP control strategy induces
an interconnection structure along which all the elements
that we have just defined exchange energy through their
power ports. The interconnection structure represents a rela-
tionship between the power variables and it expresses the
way in which the output variables have to be combined
to form the input variables. In other words, it represents
a communication protocol that defines how input/output
information is exchanged among the energy processing el-
ements. In order to make the notation compact, let us

define fa = (fa1 , . . . , faN ), faa = (fa12 , . . . , faN−1N ),
fal = (fa1l1 , . . . , faN lL) and ea = (ea1 , . . . , eaN ), eaa =
(ea12 , . . . , eaN−1N ), eal = (ea1l1 , . . . , eaN lL).

Let us consider the interconnection between the agents
and the elements representing interagent potentials. Given N
agents, there are N(N −1)/2 interagent potentials elements,
one per each pair of agents. The effort generated by each
interagent potential element is applied to the pair of agents
that it interconnects with opposite signs, as it happens for
two masses connected by a spring. The effort acting on each
agent is given by the sum of all the efforts generated by
the interagent potential elements that interconnect it with the
other agents. A possible interconnection between the agents
and the interagent potential elements leads to the following
efforts:

ea1 = ea12 + · · · + ea1N

ea2 = −ea12 + ea23 + · · · + ea2N

. . .
eaN = −ea1N − ea2N + · · · − eaN−1N

(10)

The flow to be given as an input to each interagent potential
element is given by the difference between the flows of the
agents that the elements interconnect. The sign convention
chosen for composing the efforts produced by the interagent
potential elements to form the efforts to apply to the agents
and the power continuity of the interconnection between
the agents and the interagent potential elements, induces the
sign convention through which composing the flows of the
agents in order to form those of the interagent potentials. In
summary, the interconnection structure that joins the agents
and the interagent potential elements is given by(

ea

faa

)
=
(

O1 J1

−JT
1 O2

)(
fa

eaa

)
(11)

where O1 and O2 represent square null matrices of order 3N
and 3N(N−1)/2 respectively and J1 is a 3N×3N(N−1)/2
matrix given by

J1 =




N-1 columns N-2 columns
1 1 1 ... 1
0 −1 0 ... 0
0 0 −1 ... 0

...
...

...
...

...
0 0 0 ... −1

0 0 0 ... 0
1 1 1 ... 1
0 −1 0 ... 0

...
...

...
...

...
0 0 0 ... −1

. . .

0
0
...
1−1




(12)
where 1 and 0 represent the 3 × 3 identity and null matrix
respectively.

Let us now consider the energetic interconnection between
the agents and the leaders. Each leader influences all the
agents and, therefore, for each agent there are L energy
storing elements yielding the action that each leader exerts on
the agent. Thus, in a system with N agents and L leaders,
there are NL potential energy storing elements acting on
the agents. The effort acting on each agent because of the
interaction with the virtual leaders is given by

eai = −
L∑

k=1

∂Vh(xailk)
∂xailk

= −
L∑

k=1

eailk (13)

The flow the element associated to the action of a leader on
the agent i is given by the difference between the velocity
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of agent i and the velocity of the leader. Since we are
considering the case in which the leaders are not moving, the
latter flow is zero. The sign convention chosen for the efforts
and the power continuity of the interconnection between the
agents and the potential elements induce the sum convention
for the flows. Thus, the interconnection structure that joins
the agents and the leader potential elements is given by(

ea

fal

)
=
(

O1 J2

−JT
2 O3

)(
fa

eal

)
(14)

where O3 represents a square null matrix of order 3NL and
J2 is a 3N × 3NL matrix given by

J2 =


N columns N columns N columns
−1 −1 ... 1
0 0 ... 0
...

...
...

...
0 0 ... 0

0 0 ... 0−1 −1 ... −1

...
...

...
...

0 0 ... 0

. . .

0 0 ... 0
0 0 ... 0
...

...
...

...
−1 −1 ... −1



(15)

where 1 and 0 represent the 3 × 3 identity and null matrix
respectively.

Using Eq.(12) and Eq.(15) we have that the interconnec-
tion structure along which all the energy processing elements
exchange energy is given by

 ea

faa

eal


 =


 O1 J1 J2
−JT

1 O2 O4

−JT
2 OT

4 O3




︸ ︷︷ ︸
J


 fa

eaa

fal


 (16)

where O4 denotes the 3N(N−1)/2×NL null matrix. Agents
and elements associated to the artificial potentials exchange
efforts and flows, namely energy, along an interconnection
structure that is represented by J .

Thanks to the skew-symmetry of J it can be immediately
seen that the following balance holds:

eT
a fa + eT

aafaa + eT
alfal = 0 (17)

which means that energy is neither produced nor dissipated
but simply exchanged along the interconnection. This means
that J describes a power preserving interconnection that can
be represented by a Dirac structure. Using Eq.(8) and Eq.(9)
with Eq.(16) we can model a group of agents controlled
through the VBAP strategy as a port-Hamiltonian system. In
fact we have that(

ṗa

ẋaa

ẋal

)
=
[(

O1 J1 J2

−JT
1 O2 O4

−JT
2 OT

4 O3

)
−
(

R O5 O6

OT
5 O2 O4

OT
6 OT

4 O3

)]( ∂H
∂pa
∂H

∂xaa
∂H

∂xal

)
(18)

where O5 and O6 are null matrices of proper dimensions
and pa = (pa1 , . . . , paN ), xaa = (xa12 , . . . , xaN−1N ), xal =
(xa1l1 , . . . , xaN lL) The Hamiltonian function is given by

H(pa, xaa, xal) = Ha(pa) + Haa(xaa) + Hla(xla) =

=
N∑

i=1

Hai(pai) +
N∑

i=1

∑
j �=i

VI(xaij ) +
N∑

i=1

L∑
k=1

Vh(xailk)

(19)

and R is the positive definite block diagonal matrices whose
diagonal elements are the damping matrices Ri of the agents.
The Hamiltonian function represents the total energy of the
controlled group of agents, which is the same candidate func-
tion used in [7] and, therefore, it has minimum corresponding
to the desired configuration of the vehicles. Using the power
balance reported in Eq.(5) with Eq.(18) we obtain that

Ḣ = −∂T H

∂pa
R

∂H

∂pa
≤ 0 (20)

which, using LaSalle’s invariance principle, proves that the
minimum configuration of H is asymptotically stable. This
is an alternative way to prove the stability results obtained
in [7] using the port-Hamiltonian framework. Nevertheless,
the advantage of the port-Hamiltonian representation of
the VBAP formation control strategy is the fact that the
interconnection structure along which the energy processing
elements exchange information is evident and this will be the
starting point for extending the VBAP approach over delayed
networks.

IV. THE EFFECT OF COMMUNICATION DELAY

The interconnection structure reported in Eq.(16) tells how
to build the inputs of each element by combining the outputs
of the others, namely it provides a communication protocol
between the energy processing elements. In case the ex-
change of information among the energy processing elements
takes place over a communication channel characterized by
a delay T , we have that the communication protocol is
described by:
 ea(t)

faa(t)
eal(t)


 =


 O1 J1 J2
−JT

1 O2 O4

−JT
2 OT

4 O3




 fa(t − T )

eaa(t − T )
fal(t − T )


 (21)

The way in which the energy processing elements are inter-
connected and, in particular, the fact that the interconnection
structure is power preserving plays a fundamental role in
the formation stabilization process. Because of the commu-
nication delay, the balance reported in Eq.(17) doesn’t hold
anymore and thus, the interconnection structure is no more
power preserving. This leads to a production of extra energy
associated to the delayed exchange of information which
invalidates the inequality reported in Eq.(20) and which
prevents from stabilizing the agents in the desired formation.
In case of formation control, we have several elements
exchanging energy along a power preserving interconnection
through their power ports. The main idea for achieving the
desired formation control over a delayed network is to rep-
resent the power port of each energy processing element in
terms of scattering variables. We will find the communication
strategy that is equivalent to Eq.(16) in terms of scattering
variables and we will see that no regenerative effects due
to the communication delay take place and that the agents
are stabilized in the desired formation independently of the
communication delay.
In the following, for a given power port (ei(t), fi(t)), where
i ∈ {a, aa, al}, we will denote with (s+

i (t), s−i (t) the
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Fig. 1. The overall controlled system

corresponding pair of scattering variables. Using Eq.(7),
we can express the efforts and flows in Eq.(16) in terms
of scattering variable and, after simple computations we
obtain the scattering based expression of the interconnection
structure joining the energy processing elements which is
given by:


s+

a (t)
s+

aa(t)
s+

al(t)


 = (It − J)−1(It + J)I︸ ︷︷ ︸

Q


s−a (t)

s−aa(t)
s−al(t)


 (22)

where It is the identity matrix of the same size of J and I =
diag(−I1, I2, I3), where I1, I2 and I3 are identity matrices
of proper dimensions.

It can be easily proven that Q is orthogonal. In fact
we have that the matrix (It − J)−1(It + J) is orthogonal
because it is the Cayley transform of the skew symmetric
matrix J . Furthermore, it can be immediately seen that
IT = I−1 and that therefore I is orthogonal. Since the
product of orthogonal matrices is orthogonal, it follows that
Q is orthogonal. The overall controlled system is reported
in Fig. 1. Each energy storing element receives a scattering
variable from the communication network and it uses it
together with its output power variable to compute both the
incoming power variable and the outgoing scattering variable
to transmit over the network.

Consider now that a delay is present in the communication
between the elements joined through the interconnection. We
have that Eq.(22) becomes

s+
a (t)

s+
aa(t)

s+
al(t)


 = Q


s−a (t − T )

s−aa(t − T )
s−al(t − T )


 (23)

The power flowing through the interconnection structure is
given by

P (t) =
1
2
‖s−a (t)‖2 +

1
2
‖s−aa(t)‖2 +

1
2
‖s−al(t)‖2−

− 1
2
‖s+

a (t)‖2 − 1
2
‖s+

aa(t)‖2 − 1
2
‖s+

al(t)‖2 =

1
2
(
s−a (t) s−aa(t) s−al(t)

)s−a (t)
s−aa(t)
s−al(t)


−

− 1
2
(
s+

a (t) s+
aa(t) s+

al(t)
)s+

a (t)
s+

aa(t)
s+

al(t)


 (24)

using Eq.(23) with Eq.(24), we have that

P (t) =
1
2

( s−
a (t) s−

aa(t) s−
al(t) )

(
s−

a (t)

s−
aa(t)

s−
al(t)

)
−

− 1
2

( s−
a (t−T ) s−

aa(t−T ) s−
al(t−T ) )QT Q

(
s−

a (t−T )

s−
aa(t−T )

s−
al(t−T )

)
(25)

Since Q is orthogonal, we have that

P (t) =
1
2
‖s−a (t)‖2 +

1
2
‖s−aa(t)‖2 +

1
2
‖s−al(t)‖2−

− 1
2
‖s−a (t − T )‖2 − 1

2
‖s−aa(t − T )‖2 − 1

2
‖s−al(t − T )‖2 =

=
d

dt

∫ t

t−T

(
1
2
‖s−a (τ)‖2 +

1
2
‖s−aa(τ)‖2 +

1
2
‖s−al(τ)‖2)dτ =

= Ḣch(t) (26)

All the power injected into the interconnection structure is
simply stored and, therefore, using the scattering variable,
the delayed network used by the agents for exchanging
information is characterized by a lossless behavior. Thus, we
have that the power exchanged by the actors of the VBAP
approach is stored in the communication channel until it
is not delivered and that the delay doesn’t introduce any
regenerative effects in the interconnection.

We are now ready to prove that the agents are stabilized
in the desired formation. Consider as a candidate Lyapunov
function the total energy of the controlled system namely

H = H(pa, xaa, xla) + Hch(t) =
= Ha(pa) + Haa(xaa) + Hla(xla) + Hch(t) (27)

From the definition of Hch, we can see that minimum
configuration of H is the same as that the total energy of the
non delayed system defined in Eq.(19). Thus, if we prove that
the minimum of H is asymptotically stable, we ensure that
agents are controlled in the desired formation independently
of the communication delay.

Using Eq.(8) and Eq.(9) we have that

Ḣ(t) = Ḣa(t)+Ḣaa(t)+Ḣla(t)+Ḣch(t) = eT
a (t)fa(t)+

+ eT
aa(t)faa(t) + eT

al(t)f
T
al(t) −

∂T Ha

∂pa
R

∂Ha

∂pa
+ Ḣch(t)

(28)

Using Eq.(6) with Eq.(26) we obtain that

Ḣ(t) = −∂T Ha

∂pa
R

∂Ha

∂pa
(29)

Thus, recalling the R is a positive definite matrix and using
the LaSalle’s invariance principle, we have that the minimum
configuration of H are (locally) asymptotically stable. Thus,
we have proven the following result

Proposition 1: Using the communication strategy pro-
posed in Eq.(23) the agents are stabilized in the desired
formation independently of any constant transmission delay.

Remark 1: Similarly to what happens in bilateral teleop-
eration, the knowledge of the communication delay is not
required for guaranteeing the stabilization of the formation.
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Fig. 2. The positions of the agents when using the VBAP strategy with a
communication delay of 1 s.

The transmission of scattering variables guarantees the
stability but it causes a bad transient behavior because of
the wave reflection phenomenon. This problem is very well
known in telerobotics and the techniques developed in the
literature can be used in our case. A simple solution, widely
used in teleoperation, is to add a feed-through damping
action, with damping coefficient equal to the scattering
impedance b, to the potential energy storing elements; for
more details see [10].

V. SIMULATIONS

The aim of this section is to provide some simulations
in order to validate the results obtained in the paper. We
consider a simple example, treated also in [8], where there
are two agents moving on a xy plane. We want to take the
agents in the xy coordinates (0, 1) and (0,−1). As reported
in [8] this problem can be solved using two leaders set on the
x-axis at the configuration ±√

3/2.The interagent potential
and the leader potential are characterized by the parameters
d0 = h0 = 1 and d1 = h1 = 2 and the shape of the potentials
is the same as in [8]. The initial positions of the agents
are (0.1, 0.1) and (−0.1,−0.1). In the first simulation the
VBAP control strategy has been implemented with a delay
of 1 s. in the exchange of information between the agents
and the artificial potential elements. The results are reported
in Fig. 2. we can see that the delay induces an unstable
behavior. In fact, we have that the forces applied to the
agents grow very quickly and this implies that the agents
are taken at a relative distance and at a distance from the
leaders greater than 2. No force but the damping acts on the
agents at this point and, consequently, the agents stop when
all the energy they have accumulated is dissipated by the
damping. Nevertheless, at steady state, the agents are NOT
in the desired formation because of the instability induced
by the communication delay.

In the next simulation, we have implemented the commu-
nication between the agents and the artificial potential ele-
ments using scattering variables (with scattering impedance
equal to 1) as described in Sec. IV and we have considered
a communication delay of 1 second. The wave reflection
problem has been solved by adding a feed-through dissipative
action to the artificial potential elements. The results are
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Fig. 3. The positions of the agents when using the VBAP strategy and
scattering variables

reported in Fig. 3. We can see that, despite of the communi-
cation delay, the agents are taken to the desired formation.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have considered the VBAP approach for
the stabilization of a formation of a group of point mass
agents. We have shown that the controlled group of agents
can be modeled as a set of elements exchanging energy over
a power preserving interconnection. We have proven that,
using the scattering framework, it is possible to keep on
stabilizing the agents in the desired formation independently
of any communication delay in the exchange of information.

In our future work we aim at extending the proposed
framework to the cases in which the communication delay
is variable and some information can be lost in the com-
munication, as it often happens when using packet switched
networks.
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