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Abstract—Hopping sensors are a class of mobile sensors
whose mobility design are inspired by creatures such as
grasshoppers. Such sensors are able to maintain mobility in
harsh terrains but may lack movement accuracy of those
sensors that are powered by wheels. We examine the op-
portunities and challenges for utilizing the mobility of low
cost hopping sensors to ensure coverage and maintain energy
efficiency within a sensing field. We focus on the problem
of transporting a number of hopping sensors from multiple
sources to a destination. Probabilistic methods are used to
contain the movement inaccuracies along the hopping course.
We also consider the impact of wind under an aerodynamic
setting. Two transport schemes are designed to minimize the
number of hops needed while considering other constraints,
such as sustaining the capability of relocating sensors within
the whole network. In one scheme we use upper and lower
hopping limits to apply the network mobility constraints. The
other scheme uses a balancing coefficient to construct a new
optimization target to meet the requirement of path optimality
and network mobility dynamically. Simulation results show that
both schemes work well regardless of the wind factors, while
the dynamic scheme is also shown to be resilient to topological
changes of the network.
Index Terms—Hopping sensors, Sensor relocation, Sensor

networks, Energy efficiency

I. INTRODUCTION

Large scale sensor networks call for automatic deploy-
ment and maintenance. Mobile sensors are important for
facilitating sensor deployment and maintaining coverage and
communication during runtime. Hopping sensors are a class
of mobile sensors with a bionic mobility design that is
inspired by creatures, such as grasshoppers. In order to move
to a different location, a hopping sensor throws itself high
and toward the destination direction. Hopping sensors are
capable of maintaining mobility in terrains where wheeled
mobility is not possible. Mobility powered by the concepts
of hopping are widely discussed in the area of planetary
exploration [1], [2]. Bergbreiter et al., proposed to use rubber
bands to power small jumping sensors [3]. The work of
Feddema, et al. [4] described a prototype minefield hopping
robot.

In this paper, we assume that the hopping sensors are
capable of adjusting the hopping direction. A fixed propelling
force for hopping is also assumed. In reality, the hopping
range may vary due to the physical load of the sensor,
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different terrain conditions, and local aerodynamic settings.
In order to facilitate routing, the sensors are also assumed to
have a localization capability.

Hopping enabled mobility can be used to facilitate the
sensor network deployment and maintain coverage and con-
nectivity during runtime. In the lifetime of a sensor network,
it often happens that the sensors in a certain area are depleted
faster than other areas. Those areas that have depleted sensors
are called sensing holes or sensing wells. A well planned
deployment may allocate redundant sensors in the field, thus
when sensing wells are detected, sensors can be migrated
from those regions that have redundant sensors (referred
as suppliers or sources) to sensing wells. We consider the
problem of transporting a certain number of hopping sensors
from multiple sources to a detected sensing well.

To facilitate sensing well detection and the matching of
sources to the well, we organize the sensor network field as
a set of clusters. Quorum or broadcast based approaches can
be used to match the supplier and consumer clusters. We
model the hopping inaccuracy using a multivariate normal
distribution. In the transporting stage we employ cascaded
movement to speed the migration and argue the distance
between relay clusters is crucial in determining the routing
path length. We propose two schemes to minimize the total
number of hops needed to fill a certain sensing well, while
at the same time maintaining the relocation capability of the
whole network. One scheme uses upper and lower relay edge
hop limits, while the other uses a balancing coefficient to
construct a new optimization target dynamically. Simulation
results indicate that both algorithms are effective in balancing
the requirement of path optimality and maintaining the
relocation capability of the network. The dynamic algorithm
is also shown to be resilient to topological changes of the
network.

The paper is organized as follows. Section II briefly covers
related work. In section III, we study the multi-hop landing
of the sensors under a multivariate normal distribution model.
Under such premises we present two route planning schemes
in section IV. We evaluate the performance of the route
planning schemes using Matlab simulation and the results are
presented in section V. Section VI provides the conclusions.

II. RELATED WORK

Much work has utilized the mobility of general mobile
sensors to facilitate deployment, coverage maintenance and
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improving energy efficiency [5], [6], [7], [8], [9], [10].
The use of hopping or flipping based sensors in sensor

network deployment is also studied in [9]. However, the
work in [9] does not explicitly consider the characteristics
of hopping sensors we investigate in this paper, and more
importantly does not build the relocation scheme based on
the understanding of the movement of large number of multi-
hop sensors. The work of Wang, et al. [8] also comes close to
our paper in terms of the objectives and system settings. They
follow a similar approach for migrating multiple wheeled
sensors between a single source and destination within the
sensor network. In contrast, we focus on the problem of relo-
cating hopping based sensors, which have a different mobile
and dynamical model compared with wheeled sensors. In
addition, we consider the case where a single source cannot
provide sufficient sensors and multiple sources are needed.

III. SYSTEM MODEL

Hierarchical models are widely used in sensor network
design. The work of Zou, et al. [11] assumed that a cluster
head was available to coordinate the sensor deployment
based on virtual forces. Wang, et al. [8] also used a grid based
quorum method to match the source and destination grids.
In our hopping sensor network model, we assume that the
sensors are organized into clusters. A cluster head assumes
the responsibility of evenly distributing the sensors, detecting
sensor deficiency, and detecting redundant sensors within the
cluster.

There are well established methods to detect redundant
sensors in a sensor network based on computing Voronoi
diagrams [12]. The clusters that are detected to have re-
dundant sensors mark themselves as sources and identify
themselves through the cluster head over the sensor network.
The problem of detecting sensing holes or sensing wells
are also studied [5], [13], [14]. Matching the sources and
holes could be complicated in the presence of multiple
sources and holes. The work of Chellapan, et al. reduces
the matching problem in the sensor deployment stage as a
multi-commodity maximum flow problem [9]. We take the
approach of filling the sensing holes one by one and consider
the problem of migrating hopping sensors from multiple
sources to one destination.

A. Normal Distribution Model of Inaccurate Hopping
Compared with wheeled mobile sensors, hopping sensors

lack the accuracy of movement. We use a multivariate normal
distribution model to determine the landing accuracy of
multiple sensors that hop together. Based on the model, we
derive the upper bound of the number of hops needed to
migrate a number of sensors to a target location. The result
is also used to derive the number of sensors that can reach
the consumer from the sources for a given demand when
astray sensors are considered. A sensor is regarded as astray
when its landing point is outside a range of the projected
point.

In a two dimensional case, the landing accuracy is char-
acterized by the displacement between the targeted location,

represented by vector T, and the actual landing location
represented by vector L. The displacement vector D can
be represented as D = T− L. D is modeled by a two
dimensional normal distribution with mean (0, 0), standard
deviation (σ,σ), and correlation ρ. Note that we used a
nondiscriminating standard deviation vector for the two
dimensions. The probability density function of D in terms
of (x, y) can be given as

f(x, y) =
1

2πσ2
√

1 − ρ2
exp (−x2 + y2 − 2ρxy

2σ2(1 − ρ2)
). (1)

In order to model the uncertainty of the landing location,
we define an acceptable landing area as a disk S around the
targeted location. As shown in Figure 1, the radius of the disk
nσ is determined by multiplying a factor n to the standard
deviation σ. For the migration distance that requires one
hop only, the acceptable landing area lies within the target
location of the sensor. For migrations that need more than
one hop, if the sensor lands within the acceptable landing
area, the sensor is recharged for another hop towards the
target; otherwise the sensor is deemed as astray and will
seek to join a local cluster.

Source

nσ

Hop 1 Hop 2

SUpper bound point

Fig. 1. Modeling the Hopping Accuracy Using Normal Distribution

The probability that the hopping sensor lands in the
acceptable landing area S can be represented as

P (S ) =
!

S

f(x, y)dx dy. (2)

It is known that Equation (2) does not have a closed form
solution. Numerical methods can be used to calculate the
probability [15].

Based on the probability that the hopping sensor lands in
the acceptable landing area, we derive the upper bound of the
number of hops needed for a migration distance l. Assuming
the distance covered by one sensor hop is r, the lower bound
of the number of hops N needed to cover distance l is N =
l
r . The upper bound of N , however, is determined by the
situation when, for every hop, the sensor lands at the farthest
point from the target and on the direct line segment between
the source and the target location, as indicated in Figure 1.
This is equivalent to reducing the hopping range of the sensor
from r to r − nσ. Thus the upper bound of the number of
hops given distance l and hopping range r can be given by

Nu =
l

r − nσ
. (3)

Assume we know the number of sensors demanded by the
target cluster and the number of sensors that are tasked to
the current source is Et. As will be discussed in section IV-
A, the consumer estimates the number of astray sensors and
demands some additional sensors to cover those sensors. For
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each hop, the number of hopping sensors will decrease due
to straying. For the first hop, the number of hopping sensors
is Et. For the second hop, the number is EtP (S ), etc. Thus
the total number of hops needed for all sensors is

H =
Nu−1∑

i=0

EtP
i(S ) = Et

Nu−1∑

i=0

P i(S ) =
1 − PNu(S )
1 − P (S )

Et.

(4)

B. Aerodynamical Model of Hopping under Air Disturbance
Unlike wheeled movement, the motion of hopping is

more susceptible to air disturbance. We need to estimate the
impact of air disturbance so that we can adjust the hopping
orientation properly when wind is detected. We also model
the influence of air disturbance on the hopping range of the
sensors so that we can obtain an accurate estimation of the
number of hops needed to traverse a certain path.

We assume the hopping sensor has a fixed propelling
impetus. In order for the sensor to have the longest horizontal
hopping range, the sensor should jump towards a tilted
upward direction. When there is no air disturbance, the
optimal upward angle that provides the longest horizontal
range is α = 45◦. Assuming a flat terrain, the horizontal
distance traveled by the sensor in the air is

r = t|vh| = t|v| cosα =
|v|2 sin 2α

g
. (5)

We assume that the air disturbance only influences the
horizontal velocity of the sensor. If the velocity of the wind
in the horizontal direction is vw, the real velocity of the
hopping sensor in the horizontal direction is vhreal = vh +
vw. If the direction of the targeted location is given in vhreal,
the hopping direction of the sensor can be given as

vh = vhreal − vw. (6)

Under the influence of air disturbance, the number of hops
needed for a certain distance will also change. When there
is no wind, the hopping range of the sensor can be given in
Equation (5). Since the wind only influences the horizontal
velocity of the sensor, the flying time of the sensor remains
the same when there is air disturbance. Thus the hopping
range of the sensor with wind can be represented as

rw = t|vhreal|. (7)

In practice, we use the proportion of the hopping range
under air disturbance to the normal hopping range to facili-
tate calculation of the number of hops needed. According to
Equation (5) and Equation (7), we have

rw

r
=

|vhreal|
|vh|

. (8)

Assuming the number of hops needed for a trip of length l
under the normal condition is N , the number of hops needed
under air disturbance Nw can be obtained through

Nw

N
=

l
rw

l
r

=
r

rw
=

|vh|
|vhreal|

=
|vh|

|vh + vw| . (9)

In conclusion, when the air disturbance generates a hor-
izontal velocity of vw, the hopping direction of the sensor
can be given using Equation (6), while the number of hops
needed for a fixed range compared with the normal case can
be given using Equation (9). When considering the upper
bound of the number of hops needed (denoted as Nwu and
Nu), Equation (9) is modified to

Nwu

Nu
=

l
rw−nσ

l
r−nσ

=
r − nσ

rw − nσ
=

|vh|t − nσ

|vhreal|t − nσ
. (10)

Similar to Equation (4), the upper bound of the total number
of hops for all sensors Hwwith air disturbance can be given
by

Hw =
1 − PNwu(S )

1 − P (S )
Et, (11)

where Et is the number of sensors that are tasked to the
current source.

In order to obtain the wind information needed by the
model, anemometers are deployed within the sensor network.
The model implied in Equation (11) is only applicable to the
situations where the wind flow has a predictable and relative
stable nature. For settings where the air flow follows random
changes, a pre-deployment can be used to measure the air
flow impacts.

IV. ROUTE PLANNING IN HOPPING SENSOR MIGRATIONS

Route planning involves migrating the required number of
sensors from multiple sources to the destination cluster. The
process includes identifying supplying and consuming sensor
clusters, matching those clusters and selecting the optimal
route to migrate the sensors.

A. Matching of the Consumer and Suppliers
Assume that for supplier i (i = 1 · · ·M ), the number of

sensors it can provide is pi and the distance between supplier
i and the consumer is li, the number of sensors that can reach
the consumer can be estimated as

Eest =
M∑

i=1

piP
li

r−nσ (S ). (12)

In Equation (12), P (S ) is the rate of the sensors that land in
the acceptable range, as defined in Equation (2). li

r−nσ is the
number of hops needed between the consumer and supplier
i, which is similar to Equation (3). When considering the
wind factor, the number of hops estimation can be done
with the aid of Equation (8). It is noted that the number of
hops estimated is based on the assumption that the sensors
migrate from the supplier to the consumer directly, without
using relay clusters. The concept of relaying is explained in
section IV-B. When relay clusters are used, the number of
hops needed might be larger. In the latter case, an augmenting
factor should be applied to Equation (12).

Assuming the number of sensors the consumer needs is d,
we compare d and Eest. If Eest ≥ d the suppliers can satisfy
the consumer and a matching process can be concluded.
Otherwise the consumer has to wait for additional suppliers.
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B. Finding the Optimal Migration Path
In this section we discuss the algorithms to migrate the

hopping sensors from multiple suppliers to the consumer
cluster. We assume the routing planning process is performed
at the supplier clusters. Each cluster has a topological view
of the network.

1
32

4
5
6 7

1 2 3
4 5 6

Source Destination

Source Destination

Relay
Relay

Relay

(b) Hopping with Relays

(a) Direct Hopping

Fig. 2. Two Hopping Strategies

Two possible migration strategies can be used. The first
strategy is to migrate the sensors directly from the supplier to
the consumer, as shown in Figure 2(a). The second strategy,
however, uses intermediate clusters as relay clusters. Sensors
can hop simultaneously starting from the supplier and the
relay clusters, as illustrated by Figure 2(b). Although sensors
can be assumed to be able to make multiple hops, the number
of hops one sensor can make (denoted as khard) is not
unlimited before refueling or recharging. For example, the
prototype proposed by Feddema, et al [4] has a limit of 100
hops before refueling.

Direct hopping can always guarantee a straight route but
hopping with relays cannot. Furthermore, direct hopping
gives sensors more freedom to adjust their hopping direction
on the fly if the landing point is off the route, which
will ultimately save the number of hops. For example, in
Figure 2(b), hop number 5 and 6 could have been combined
into one hop if the relay is not used. Thus it is desirable
to use straight hopping for relatively short migration paths
but using relay hopping for longer paths. For relay hopping,
the tradeoffs require us to set a limit on both the maximum
and minimum distance between the relay clusters. We set
the upper limit k to maintain the relocation ability of the
network. A lower limit j is set to avoid unnecessary hops
introduced by excessive number of relays.

We use the topology and availability information of the
clusters to construct a graph. The vertices set is composed
of the clusters. Initially, all the available clusters, including
the suppliers and the consumer, are connected with edges.
The weight of the edges are set to be the estimated number
of hops needed, as indicated in Equations (3) and (10). Our
objective is to find an optimal path to migrate the sensors
from the suppliers to the consumer. In the first route planning
algorithm, we first apply the upper and lower limits of
the edge weights by deleting the edges whose weights fall
outside the range of [j, k]. Then Dijkstra algorithm is called
for the sources to find the shortest paths from the suppliers.
If the shortest path still cannot be found for some suppliers,
we conclude the supplier is separated from the consumer and
the consumer is informed to search for new suppliers.

The algorithm stated above tries to maintain even mobility
consumption among clusters and minimal number of hops
using manually set limits. However, for the clusters whose
edges are within the limits, the mobility consumption and
number of hops of the edges can still vary from edge to
edge. In order to migrate the sensors from the suppliers to
the destination optimally, and at the same time maintain even
mobility throughout the clusters, we modify the path search-
ing algorithm by adding an additional adjusting process. In
the adjusting process, we try to minimize a fraction of the
sum of the weights along the path and a fraction of the
difference of the maximum and minimum weights of the
edges along the path.

The second algorithm is described in Algorithm 1. The
algorithm takes the graph G, edge weight set W , source node
set S, destination node t and the hard limit khard as inputs.
For each source node, the algorithm first runs the Dijkstra
algorithm to get a shortest path solution where the only
constraint is the hard limit. After that, the solution is refined
through several iterations. The minimization target becomes
a fraction of the sum of the weights along the path and a
fraction of the difference of the maximum and minimum
weight of the edges along the path, which is expressed as
(1− γ)wsum + γ(wmax −wmin) as shown in line 11. Here
γ (0 ≤ γ ≤ 1) is a coefficient to determine the fraction
of the difference of the maximum and minimum weight of
the edges to be considered in the algorithm. The algorithm
terminates when it cannot find a better solution given the
constraints and the last known good solution is taken as the
final solution.

V. PERFORMANCE EVALUATIONS

In order to validate the proposed models and algorithms,
we simulated a hopping sensor network environment under
Matlab. A topology generator is used to generate the simu-
lation environment in a 1000m × 1000m rectangular area.
The simulation environment can be regarded as a sensor
network where some clusters are available to serve as relays,
while others are not. The available clusters, as well as the
source and destination clusters, are plotted. Two clusters are
connected if the number of hops needed to migrate between
them is less than khard.

The parameters regarding hopping sensor dynamics and
sensor distribution are shown in Table I. We derive the
hopping range, initial velocity and hops capacity based on
the Feddema prototype minefield hopping sensor model [4].
We assume zero correlation of the X and Y direction in the
landing model.

We first evaluated the performance of Algorithm 1 where
the path optimality and remaining network mobility are
controlled through the setting of soft hop limits. Considering
the fact that most clusters may be involved in sensing
tasks and not available as relays, the simulation topology
is generated as a sparse graph. In a sparse environment, it is
safe to use a small lower hop limit j without jeopardizing
the optimality of the path since the degree of each node is
small.
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Algorithm 1 MinHopsExt(G,W,S, t, khard)
1: p′ ← ∅, (w′

sum, w′
max, w′

min) ← (+∞,+∞, 0)
2: W ′ ← Delete edges whose weights are larger than khard

in W
3: for all s in S do
4: (G1,W ′

1) ← (G,W ′)
5: loop
6: p ← Dijkstra(G1,W ′

1, s, t)
7: if p (= ∅ then
8: wsum ← Get the sum of edge weights using p
9: (emax, emin) ← Get the edges with maximum

and minimum weight using p
10: (wmax, wmin) ← Get the weights of

(emax, emin)
11: if (1 − γ)wsum + γ(wmax − wmin) < (1 −

γ)w′
sum + γ(w′

max − w′
min) then

12: (w′
sum, w′

max, w′
min) ← (wsum, wmax, wmin)

13: p′ ← p
14: Delete edges emax and emin in W ′

1 and G1

15: else
16: Use the solution in p′ and break loop
17: end if
18: else
19: Use the solution in p′ and break loop
20: end if
21: end loop
22: end for

Parameter Value
Number of Total Hops Capable without Refueling (khard) 100
Hops Capable per Sensor Initially 100
Magnitude of Initial Horizontal Velocity (|vh|) 7m/s
Hopping Range (r) 3m
Sensors per Cluster Initially Deployed 200
Acceptable Landing Area Radius (nσ) 0.6m
Acceleration due to Gravity (g) 9.8m/s2

TABLE I
PARAMETERS USED IN HOPPING SENSOR SIMULATION

In the first simulation we fixed the lower limit j to be 1
and evaluated the number of hops needed to migrate a group
of sensors and the mobility capacity of the network after the
migration when the upper hop limit k changes (Figure 3).

The path optimality is measured using the average number
of hops consumed by each migrated sensor (referred as
H̄m, Figure 3(a)). In the simulation, a group of 10 sensors
(Et = 10) are requested by the consumer. Thus EtH̄m

is the total number of hops needed in the migration. The
remaining mobility of the network is measured using two
metrics (Figure 3(b) and (c)), the standard deviation (STD)
of the number of remaining hops per sensor throughout the
network, and the minimum of the number of remaining hops
per sensor throughout the network.

In the simulation we evaluated the metrics under three
circumstances, the normal condition, the condition with a
positive wind force and the condition with a negative wind
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200

400

600
(a) Number of Consumed Hops per Migrated Sensor (H̄m )

k
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k
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(c) Minimum of Number of Remaining Hops per Sensor

k
With Negative Wind No Wind With Positive Wind

Fig. 3. Number of Consumed Hops per Migrated Sensor and Mobility
Metrics Vs. Upper Soft Limit k

force. In the simulated topology, a positive force is modeled
as a wind velocity that is 45◦ counterclockwise of the
positive X axis. Likewise, a negative force is modeled as a
wind velocity that is 225◦ counterclockwise of the positive X
axis. In either case, the magnitude of the wind velocity |vw|
is set to be 1/10 of the magnitude of the initial horizontal
hopping velocity |vh|.

The simulation results of Figure 3 indicates that the value
of the upper soft limit k has a significant influence on
the path optimality and remaining network mobility. Wind
factors also slightly influence the results, but not as dramatic
as k. The influence of wind factors on the minimum of the
number of remaining hops per sensor (Figure 3(c)) is even
negligible, although we can see that the case with positive
wind has higher number of remaining hops. This is because
that the impact of k is so significant that a larger range of Y
axis has diminished the slight differences of the three cases.

Larger k will yield better paths with fewer hops, but the
STD of the number of remaining hops per sensor is also
larger, which indicates imbalance of the mobility distribution
throughout the network. The number of remaining hops per
sensor also confirms the trend with a steep curve. When k
is over a certain value (50 in this case), the parameters will
not change since the constraints of the topology is reached.
When k is too small, however, a path might not be found
due to the topology constraints.
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Fig. 4. Number of Consumed Hops per Migrated Sensor (H̄m) under
Different Topologies and γ
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In the second simulation we evaluated the performance
of Algorithm 1, where a dynamic approach is used to
balance the need of path optimality and network mobility
distribution. We use scaling coefficient γ to determine the
optimization target (as shown in Line 11 of Algorithm 1). In
this simulation we evaluated the effect of the γ coefficient
over the average number of hops consumed in a path and
the mobility metrics of the network after the migration is
performed.

 0
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Topo3Topo2Topo1
γ = 0.2 γ = 0.5 γ = 0.8

Fig. 5. STD of Number of Remaining Hops per Sensor under Different
Topologies and γ
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Fig. 6. Minimum of Number of Remaining Hops per Sensor under Different
Topologies and γ

Unlike the method with upper and lower hopping limits,
we argue that the dynamic method is more resilient to topo-
logical changes of the network. To validate this, we simulated
the algorithm over three different topologies, namely Topo1
(the same as the topology used in the first simulation), Topo2,
and Topo3, as indicated in the Figures 4, 5 and 6. The
results show that under different topologies, the coefficient
has comparable balancing influences. The results also show
that under different γ values, the minimum of the number
of remaining hops per sensor changes more dramatically
compared with the STD of the number of remaining hops
per sensor. This indicates that the minimum of the number
of remaining hops per sensor is a more sensitive mobility
metric. The same observation is also drawn from the first
simulation, as we see a sharper curve in Figure 3(c) than
Figure 3(b).

VI. CONCLUSIONS

Hopping sensors are more adaptable to harsh terrains
compared with wheeled mobile sensors. We studied the
multi-hop landing of the sensors under a multivariate normal
distribution model and obtained an upper bound of the
number of hops needed given the physical distance of the
source and destination. The bound is further refined by
considering the aerodynamics of air disturbances. Under
such premises we focused on the problem of migrating a

number of hopping sensors from multiple source clusters to a
destination in a sensor network. We argue that cascaded relay
hopping can speed up the migration but frequent relays may
introduce unnecessary hops. We devised two algorithms to
find the best migration plan. One uses upper and lower relay
edge hop limits, while the other uses a balancing coefficient
to construct a new optimization target dynamically. The
two schemes are simulated using the physical and dynamic
parameters of the Feddema prototype minefield hopping
robots [4]. Simulation results indicated that both algorithms
are effective in balancing the requirement of path optimality
and maintaining the relocation capability of the network. The
dynamic algorithm is also shown to be resilient to topological
changes of the network.
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