
From Crystals to Lattice Robots

Nicolas Brener, Faiz Ben Amar, Philippe Bidaud
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Abstract—We identify three fundamental proper-
ties of lattice robots such as (1) discreteness (2) trans-
lational symmetry and (3) composition, and explain
the analogy of lattice robots kinematics and crystal
symmetry described by space groups. Then we give
the possible connectors symmetries and orientations
compatible with space groups, and the possible sliding
and hinge joints locations and orientations compatible
with the displacements in such groups. We present a
framework for the design of lattice robots by assem-
bling compatible joints and connectors into a space
group and give a 3D example.

I. Introduction

A modular robotic system (MRS) is composed of mul-
tiple building blocks (i.e. mechatronic modules) having
docking interfaces to connect them together. Structure
and operating modes of such a system depend on the
way the modules are connected together. It is possible to
reconfigure the MRS topology by adding/removing one
or several modules to the system, or by changing the
way the modules are connected together. A reconfigu-
ration is a sequence of connections, disconnections, and
displacements of modules. Moreover, self-reconfigurable
MRS can change their structure by themselves and must
be able to control the state of their connectors and
move their modules. The advantages of such systems are
several. They are rapidly deployable, reusable, versatile
and robust. Applications can be locomotion on hazardous
terrain for planetary exploration, modular manipulation,
self assembly, and others. A detailed review of these
systems can be found in [1].
One can distinguish chain type systems such as Poly-
bot [2], Conro [3], and lattice systems such as I-Cube
[4], Telecube [5], Molecule [6], Microunit [7], Stochastic
Modular Robots [8], []. In lattice systems, connections
and disconnections occurs at discrete coordinates in a
virtual lattice at each step of a reconfiguration, this is
not the case in chain type systems. Other systems can
have both lattice and chain type configurations, such as
Atron [9], Molecube [10], M-Tran [11] and Superbot [12].
This paper proposes a framework for the design of lattice
systems. It relies on the discretization of the module rep-
resentation on two levels. In the first one, the symmetries
of the connectors are represented by discrete rotation
groups and in the second one the discrete configurations

which can be produced on the connectors by the MRS ac-
tuators are represented by discrete displacements groups.
For representing the different kinematical structures of
the system we use special discrete displacement groups,
the chiral space groups provided by the crystallography
science. First we explain the analogy of lattice robots
and crystal, then we propose a framework for the kine-
matical design of lattice robots using chiral space groups,
third we explain the advantages of this method, before
concluding.

II. Analogy between crystals and lattice
robots

In the following, mathematical concept of crystallog-
raphy such as space group, lattice group, Bravais lattice,
point group, orbit, Wyckoff position, site symmetry and
plane group are used. An introducing of these concepts
can be found in [13]. Complete theory is available in [14],
complete data about the 230 space groups is available in
[14] and [15].

We explain the role of chiral space groups in the
design of lattice robot in an example. Fig.2 shows a set
of equivalent coordinates (orbit) into the plane group
p4. We note G the set of displacement of p4 and X
the orbit. The figure shows also a set of 2 coordinates
for black and white connectors with same positions but
opposite orientations. The orbit of the black connectors
is X, and the orbit of the white connectors is X̄. X̄ is
such that for each x̄ in X̄ and for each x in X, x̄ has
the same position than x but opposite orientation. By
convention two connectors can be connected only if they
have the same position and opposite orientations (see
Fig. 1. We may use these sets of positions to construct a

Fig. 1. In (a) the coordinates of a + connector, in (b) the
coordinates of a − connector, in (c) the + and − connectors are
connected

2008 IEEE International Conference on
Robotics and Automation
Pasadena, CA, USA, May 19-23, 2008

978-1-4244-1647-9/08/$25.00 ©2008 IEEE. 3514



Fig. 2. The frames represent equivalent coordinates of an orbit into
the 2-dimensional space group p4. The 4-fold and 2-fold rotation
axes are represented by squares and rhombus. The unit translations
corresponds to the edges of the unit cell in dotted lines.

module with 4 configurations and two connectors shown
on Fig.3. To do this we select a white coordinate x̄0 for a
white connector, and four black coordinates x0..3 for the
black connectors. In this example the mechanism can be
implemented by two hinge joints: one has its axis aligned
with a 4-fold axis of the space groups, and can have two
configurations of 0 degree and 90 degrees, the other one
has its axis aligned with a 2-fold axis of the space group,
and can have two configurations of 0 degree and 180
degrees. The combinations of the configurations of the
two hinges yield the 4 configurations of the module. The
Fig.3 shows that when several modules are connected in
various configurations, the black connectors have their
coordinates into X, and the white connectors have their
coordinates into X̄. We denote T the lattice subgroup of
G. The orbit X and X̄ have a translation symmetry:

∀x ∈ X,∀t ∈ T, t(x) ∈ X

∀x̄ ∈ X̄,∀t ∈ T, t(x̄) ∈ X̄

In this example we have three fundamental properties:
1) Discretness: The connectors of the modules are in

discrete positions into a set of coordinate called or-
bit. Different type of connectors can have different
orbits (in the example there are a black orbit and
a white orbit).

2) Translation symmetry: The orbits have a discrete
translational symmetry.

3) Composition : any set of interconnected modules in
any configurations have their connectors into their
orbit.

This three properties correspond to the three proper-
ties of space groups: a space group (1) has a discrete
topology, (2) contains translations, and (3) has a group
structure, ie. any composition of transformations is in the
group.

These three properties are found in lattice systems
such as M-Tran [11], Molecube [10], Molecule [6], I-
Cube [4], Telecube [5] and Atron [9]. Moreover, it is not
possible to have these properties if the set of positions

Fig. 3. On the left: a lattice module is built in plane group p4
by selecting a set of positions for its connectors. In this example
the module has two connectors, one position is chosen for the white
connector into the white orbit, and four positions are chosen for the
black connector into the black orbit. Therefore the module has 4
configurations. The mechanism is implemented by two hinge joints
having their axes coincident with the 4-fold and 2-fold rotation axes
of the group. On the right: 3 modules are interconnected in various
configurations. In each of these configurations the white connectors
have their positions into the white orbit and the black connector
have their positions into the black orbit. It is easy to see that for any
configuration of interconnected modules the connectors have their
positions into their orbit. This is due to the space group symmetry.

for connectors are not into orbits of a space group.
Therefore all lattice systems with these properties can
be designed by using displacements of space group and
corresponding orbits for the connectors.

Space groups allow to describe the symmetries of
crystals by giving the transformations between the atoms
of the crystal (considered as infinite at nanoscale). The
analogies between crystals and lattice robots are the
following:

In a crystal each type of atom has an infinite set of
equivalent positions called orbit. In a lattice robot each
type of connector has its coordinate into a set of possible
positions corresponding to an orbit.

The space group corresponding to a crystal gives the
set of transformation between the positions of the atoms
of same orbit (for atoms of other orbits the set of trans-
formation is the same). The space group corresponding
to a lattice robot gives the set of transformations between
the coordinates of connectors of same orbit (for connector
of other orbits the set of transformation is the same).

The Wyckoff sites locate and orient the invariants of
symmetry operations into the euclidean space, such as
rotation axes, reflexion planes or inversion points. These
Wyckoff sites give the possible rotation axes of the hinge
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joint of a lattice robots, and the rotation axes for the
symmetries of the connectors.

The differences are: (1) for crystals the symmetries
apply to existing positions of the atoms while for lattice
robots the symmetries apply to the possible positions
for the connectors, (2) for crystals an atom has only
a position while for a lattice robot a connector has a
position and an orientation, (3) for crystals any isometry
can occur while for lattice robots only displacements
are involved, (4) for crystals the transformations are
symmetries on motionless atoms while for lattice robots
the transformations move the connectors.

III. Design of lattice robots

We propose a framework for the preliminary design
of lattice modules. The design concerns here only their
kinematical structure, and the symmetries of the connec-
tors, the geometric shape of the module is not considered.
From a kinematical point of view, a module is defined
by a set of connectors and a set of configurations of the
connectors. In our framework the displacements between
the configurations of the connectors are elements of a
chiral space groupwhich are space groups having only dis-
placements. Moreover, the connectors are also described
by symmetries of the chiral space groups. There are 65
types of such groups (see Table I). Since the set of the
space groups has a hierarchical structure, it is possible
to design all lattice systems in only 2 chiral space groups
which contain the symmetries of all the other chiral space
groups. These are the groups P622 and P432 (see tables
A2 and A3 in [16]).

A. Connectors

1) Connector orbit: In space groups the sets of equiv-
alent positions are called orbits. The connectors have
a position but are also oriented. Therefore we consider
that the coordinate x of a connector is a a position and
an orientation. The orbit X of a connector is the set of
coordinates having equivalent positions and orientations
as in Fig.2.
By convention, two connectors can connect together only
if they have same position and opposite orientations. We
define by opposite coordinate a coordinate x̄ which has
same position than x but opposite orientation. Likewise,
we define by opposite orbit the orbit X̄ such that for
∀x ∈ X,∀x̄ ∈ X̄, x̄ and x are opposite coordinates. For
example, in section II, x and x̄ are opposite coordinates
and X and X̄ are opposite orbits.
In what follows, we will see what are the possible symme-
tries for the connectors in space groups, and the relation
between their positions, orientation and symmetry.

2) Connector type: We consider only connexion plates
and not punctual connectors. The set of contact points
of a connector may have symmetries. We distinguish
two types of connector symmetries: (1) if the connector
has a 2-fold tangential rotation symmetry then it is
hermaphrodite (see Fig.4) else it is male or female, (2) it

Fig. 4. Connector plate symmetries. The figures show the sym-
metries of a two fold hermaphrodite connector (type 22). We
distinguish tangential and normal symmetries. Dashed line and
rhombus represent 2-fold rotation axes in profile and face view. Left
: a normal two fold rotation leaves the connector unchanged. Right
: a tangential two fold rotation leaves the surface of the connector
unchanged.

may have an normal rotation symmetry which allow to
connect it with several orientation to another fixed con-
nector, it may be a 2-fold, 3-fold 4-fold or 6-fold rotation.
Combining both types of symmetry yields nine types of
possible point groups (in Hermann-Mauguin notation): 1,
2, 3, 4, 6, 222, 32, 422, 622. Connectors with point group
having only one rotation axis (such as groups 1, 2, 3, 4,
6) have only one symmetry type; else they have both
types of symmetry. Nevertheless, this is not sufficient
to distinguish all possible connector symmetries because
symmetry group 2 can be a tangential 2-fold rotation or
a normal 2-fold rotation, therefore a connector type must
be added and we get 10 types. We propose another way
to denote the connector symmetry using two digits AB,
where A is the normal symmetry and can be 1, 2, 3, 4
or 6, and B is 2 if the connector is hermaphrodite, else it
is 1 for identity. Moreover connectors without tangential
symmetry can have two gender + or -. Therefore we can

Fig. 5. Connector plates symmetries. The 10 possible symme-
tries for connector plates compatible with space groups are listed.
Dashed line are two-fold tangential rotations. Rhombus, triangle,
square and hexagon are, respectively, 2, 3, 4 and 6-fold normal
rotation axes. On the top, connectors do not have tangential
symmetry, therefore two male/female versions exist for each con-
nector. On the bottom, connectors have 2-fold tangential symmetry
(hermaphrodite connectors).
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denote A+ and A- connectors of type A1 with gender +
and -. The different types of connector are represented
in Fig.5.

3) Connector position: A simple way to define the
coordinates of a connector is to consider that it is inside
a Wyckoff site matching its symmetry. For example a
connector having a 4-fold symmetry axis must be on a
4-fold rotation axis of the space group. To define the
position of the connector it is only necessary to set the
values of its corresponding wyckoff site. The number of
parameters of a site depends of its symmetry. Therefore
a connector without symmetry (but identity) can be
anywhere: three parameters are needed to define its
position. If its symmetry is one rotation axis, its site
symmetry is a line, one parameter must be set. If it has
two or more symmetry axes, its site symmetry is a point,
no parameter must be set, only one position is possible.
There exists 11 possible point groups for the site sym-
metry: 1, 2, 3, 4, 6, 222, 23, 32, 422, 432, 622 (see
Table I) and 9 possible point groups for the connector
symmetry: 1,2,3,4,6,222,32,422,622. The connectors must
also be oriented. Below we explain how connectors are
oriented in chiral space groups.

4) Connector orientation: At a position the connector
may have several possible orientations but some orienta-
tions can be equivalent because of the normal symmetry
of the connector. Since a connector is invariant by its
normal symmetry point group, the number of possible
orientations of the connector at a position is equal to the
order of the point group of its Wyckoff position divided
by the order of its normal point group. For instance a
connector of type 42 on a Wyckoff position c in P432 has
4 rotations in its normal symmetry point group and the
Wyckoff position c point group is 422 and has 8 elements;
therefore the connector has 8/4 = 2 possible orientations
at this position.

a) Connector without symmetry: The connector has
type 11, its coordinate has three free parameters which
must be set by three constants (for instance in the first
entry of table A2 in [16]). Its orientation depends only
on its position.

b) Connector with a normal symmetry only: Such
a connector has type 21, 31, 41 or 61. The connector is
on a line and its Wyckoff site has one free parameter.
To locate the connector along the line, one parameter
must be set. The connector normal symmetry axis is
aligned with the line of its Wyckoff site. When it rotates
along its normal symmetry it is invariant if the rotation
is an element of its normal symmetry point group. For
example a connector with a 4-fold normal axis is invariant
when it rotates with 90 degrees along its normal axis. A
connector with a 2-fold normal axis has its orientation
changed when it rotates 90 degrees along its normal axis,
but it is invariant by a 180 degrees rotation. Thus a 4-fold
connector has only one possible orientation on a 4-fold
axis, and a 2-fold axis has two possible orientations on a
4-fold axis.

c) Hermaphrodite connector without normal symme-
try: Only connectors with type 12 has this symmetry.
The connector is on a line and its Wyckoff site has one
free parameter. To locate the connector along a line, one
parameter must be set. The connector tangential axis is
aligned with the line of its Wyckoff site. Moreover, the
Wyckoff site must have a 2-fold, 4-fold or 6-fold rotation
symmetry because a 3-fold axis is not compatible with
the 2-fold rotation of the tangential axis.

d) Hermaphrodite connector with normal symmetry:
This concern connectors of type 22, 32, 42 and 62. This
is possible only on Wyckoff sites where several rotation
axes intersect. The Wyckoff site no free paramter. The
connector is at a point of the Wyckoff site. The two
symmetry axes of the connector are orthogonal and
the axis of its tangential symmetry can not be a 3-
fold axis. Therefore the Wyckoff site must have an axis
different to a 3-fold rotation axis, and another rotation
axis orthogonal to it. The connector has its tangential
axis aligned with a non 3-fold axis of the Wyckoff site,
and its normal axis aligned with another axis of the
Wyckoff site, orthogonal to the first. When the connector
rotates along its normal symmetry axis it is invariant if
the rotation is an element of its normal symmetry point
group.

B. Joints

In our framework, mechanical parts have to produce
displacements which are elements of the space group G in
which the system is designed. To implement such mobil-
ities any suitable mechanism can be used. Nevertheless,
the rotations of G have their axes on Wyckoff sites, there-
fore, to produce a rotation of G it is convenient to use
hinge a joint whose axis is aligned with its corresponding
Wyckoff site. For instance in the space group P432, a 120
degrees rotation is in a Wyckoff site having 3-fold axis,
with Wyckoff letter g (see table A2 in [16]), for example
on an line (x, x, x). Therefore it can be implemented by
using a hinge joint with its axis aligned with (x, x, x).
Combinations of rotations of G can be implemented by
using several hinge joints with their axes aligned with
their corresponding Wyckoff site (as in Fig.3). When
the rotations have coincident axes, the Wyckoff site is
a the point where the axes intersect. To produce such
rotations it is possible to use universal joints or ball
joints. Translations of G can be implemented by sliding
joints and can have their axis anywhere. The tables A2
and A3 in [16] give the lists of the possible joints at the
different Wyckoff sites in P432 and P622. The screw axes
are not given by Wyckoff sites but they are represented
in [14] by geometric elements representation.

C. Building modules

A module can be built by putting together several
connectors and joints. In our framework, the joints must
produce displacements of the space group G and the con-
nectors must have their types and coordinates compatible
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Fig. 6. An example of conception of a lattice module designed in
space group P432 within an unique primitive cubic unit cell. It has
1 symmetry type for its connectors, 2 orbits for its connectors, 3
rotations axes, 4 bodies, and 5 connectors. The design process has
several stages: in (a) 2 coordinates are selected for connectors with
letter a and four coordinates are selected for connectors with letter
c, in (b) 3 rotation axes are selected, in (c) 4 bodies are attached
to connectors and rotations, in (d) the resulting lattice module.

with the Wyckoff sites of the group G. First a set of
connectors and a set of displacement are selected, then
a set of bodies is associated to the displacements and
connectors. This defines the structure of the module. The
following section illustrates the design of a module in the
space group P432.

D. Example

We give an example of construction of a module in
space group P432, illustrated in Fig.6. In this example
the module component are embedded into an unique
primitive cubic unit cell, with parameter a = 1. The
design process can be decomposed in three steps:

In the first step we choose the connector types and
coordinates. First we select two orbits X and Y for the
connectors: For the orbit X we choose a Wyckoff site
with letter a (at the vertices of the unit cell, see table
A2 in [16]), for the orbit Y we choose letter c (at the
center of the faces of the unit cell). For both orbits we
choose connector type 42 which is compatible with sites
a and c. Two connectors are selected in orbit X and
four connectors are selected in orbit Y . The positions are
selected into the entry ”coordinates” in table A2 in [16]
possibly incremented with lattice translations; we denote
(x, y, z) + (a, b, c) the position (x, y, z) incremented with
the lattice translation (k1, k2, k3), the resulting position
is (x + k1, y + k2, z + k3).
For the two connectors in orbit X we choose (1) position
(0, 0, 0)+(1, 1, 0) and orientation [1, 0, 0] and (2) position
(0, 0, 0) + (1, 1, 1) and orientation [0, 1, 0]. For the four
connectors in orbit Y we choose (1) position (1/2, 1/2, 0)
and orientation [0, 0,−1], (2) position (1/2, 0, 1/2) and
orientation [0,−1, 0], (3) position (0, 1/2, 1/2) and orien-

tation [−1, 0, 0], and (4) position (1/2, 1/2, 0) + (0, 0, 1)
and orientation [0, 0, 1].

In the second step we choose a set of displacements.
We choose to produce displacements by hinge joints.
Three Wyckoff sites compatible with hinge joints are
selected for the rotations (see table A2 in [16]): (1) a 4-
fold rotation axis into site with letter f with coordinates
(1/2, 1/2, x), (2) a 3-fold axis into site with letter g with
coordinates (x, x,−x), (3) a-2 fold axis into site with
letter i with coordinates (y, y, 0) + (0, 0, 1). Together the
three hinges provide 4∗3∗2 = 24 displacements of P432.

In the third step we choose 4 bodies S1, S2, S3 and
S4 to link the joints and connectors together. As shown
in Fig.6, S1 is attached to a connector with orbit X and
to the 3-fold hinge. S2 is attached to the 3-fold hinge, to
the 4-fold hinge, and to 3 connectors with orbit Y . S3
is attached to the 4-fold hinge, to the 2-fold hinge and
to a connector with orbit Y . S4 is attached to the 2-fold
hinge and to a connector with orbit X.

This module has connectors with 2 different orbits.
Therefore the connectors with orbits X and Y cannot
connect together. But the connectors are hermaphrodite
(type 42) therefore it is possible to connect a module to
another one by using connectors with the same orbit.

E. Constraints on the connectors

The system may have several different modules and
different types of connectors in different orbits. It is
important that the connectors of the modules can con-
nect together. In our framework, connectors can only
connect if they have opposite coordinates (see section
III-A.1), and same type. Hermaphrodite connectors are
on tangential 2-fold rotation axes, therefore their orbits
are equivalent to their opposite orbits, X = X̄, the
system must be equipped with other connectors of same
type and same orbit, in the same module (see Fig.6
and Fig.7b) or in other modules. On the contrary, for
non hermaphrodite connectors, connectors with opposite
orbit and gender and same type must equip the module
(as in Fig. 3) or other modules (see Fig.7a). In example
of Fig.6 the connectors of each orbit are hermaphrodite
therefore no other connectors are needed in this system.

Fig. 7. In (a) a system built in p4 with connectors in the same orbit
as in Fig.2. The connectors have no symmetry, the system must
be equipped with connectors with opposite orientation and gender
(type 1+ and 1-). In (b) the connectors are on 2-fold rotation sites,
the connectors are hermaphrodite (type 12), one type of connector
is sufficient to connect modules together.
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IV. Discussion

Based on our framework one can design in P432 and
P622 any modular system having the three fundamentals
properties seen in section II. Unfortunately it is not
possible to represent existing lattice systems in space
groups without additional criterions, because there are
infinitely many way to do this, due to scaling factors,
different possible choices for Wyckoff letters and differ-
ent possible choices for the space groups. An arbitrary
representation would be more confusing than none. Two
main applications of our framework can be identified
(1) designing lattice robots having joints with discrete
configurations, and (2) designing lattice based modular
robot which can make lattice reconfigurations but may
also make chain type reconfiguration if needed because
their joints can have non discrete configurations and
joint limits compatible with space groups (with rotations
at least higher than 60 degrees). Another interesting
application is that it helps to design system with several
different modules types. Every module build in the same
space group with compatible types and orbits for the
connectors will be compatible together. These modules
may also have different actuators with 2-fold, 3-fold or
4-fold joint, or no joint.

V. Conclusions

Thanks to the crystallography theory, we could find
out what are all possible discrete displacement groups
containing translations. We have identified three funda-
mental properties that characterize lattice robots. We
proposed a framework for the design of the kinematics
of all possible lattice robots by using space groups.
Moreover, the two displacement spaces P622 and P432
where identified as been sufficient to build all possible
systems. We illustrated the method in one example in
space groups P432.
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Appendix
The 65 Chiral Space Groups

The table I lists the 65 chiral space groups types and
the 11 point groups types involved in chiral space groups
by using the Hermann-Mauguin notation.

TABLE I

The point groups involved in chiral space groups, their

order, and their corresponding space groups.

Point group Order Chiral space groups

1 1 P1

2 2 P2, P21, C2,

222 4 P222, P2221, P21212, P212121,
C2221, C222, F222, I222, I212121

4 4 P4, P41, P42, P43, I4, I41

422 8 P422, P4212, P4122, P41212,
P4222, P42212, P4322, P43212,
I422, I4122

3 3 P3, P31, P32, R3

32 6 P312, P321, P3112, P3121, P3212,
P3212, R32

6 6 P6, P61, P65, P63, P62, P64

622 12 P622, P6122, P6522, P6222, P6422,
P6322

23 12 P23, F23, I23, P213, I213

432 24 P432, P4232, F432, F4132, I432,
P4332, P4132, I4132

3519


