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Abstract— In this paper we create a framework to model
and characterize the impact of time-varying fading com-
munication links on the performance of a mobile sensor
network. We propose communication-aware motion-planning
strategies, where each node incorporates statistical learning of
communication link qualities, such as Signal to Noise Ratio
(SNR) and correlation characteristics, into its motion-planning
function. We show that while uncorrelated fading channels
can ruin the overall performance, the introduced natural
randomization can potentially help the nodes leave deep fade
spots. We furthermore show that highly correlated deep fades,
on the other hand, can degrade the performance drastically
for a long period of time. We then propose a randomizing
motion-planning strategy that can help the nodes leave highly
correlated deep fades.

I. INTRODUCTION

Mobile intelligent networks can play a key role in emer-

gency response, surveillance and security, and battlefield

operations. The vision of a multi-agent robotic network

cooperatively learning and adapting in harsh unknown

environments to achieve a common goal is closer than

ever. A mobile network that is deployed in an outdoor

environment can experience uncertainty in communication,

navigation and sensing. The objects in the environment

(such as buildings) will attenuate, reflect, and refract the

transmitted waves, degrading the performance of wireless

communication. Furthermore, the environment could be

harsh and uncertain in terms of sensing and navigation

due to rubble, stairs, or blocking objects. Then, high-level

decision-making and control at every agent would not only

affect its sensing quality but also impact the overall com-

munication link qualities and the useful data rate exchanged

through the network. This will create a multi-objective

optimization problem in which optimum motion-planning

decisions considering only sensing and navigation may not

be the best for communication, resulting in communication

and sensing tradeoffs.

Decentralized control of sensor motions has gotten con-

siderable attention in recent years [1]-[3]. Most of the

current research in this area, however, assumes ideal com-

munication links, considering only sensing objectives. For

instance, it is common to assume either perfect links or

links that are perfect within a certain radius of a node,

a significant over-simplification of communication links.

Communication plays a key role in the overall performance

of mobile networks as each sensor relies on improving

its estimate by processing the information received from

others. Considering the impact of communication chan-

nels on wireless estimation/control is an emerging area

of research. The impact of distance-dependent path loss

(no fading) on decentralized motion-planning has been

characterized and a communication-aware decision-making

strategy has been proposed [4]. In this paper, we will

extend that work to embrace the effect of fading, the key

performance degradation factor in mobile networks. The

main challenge of motion-planning in fading environments

is the introduced uncertainty. A link can change drastically

by traveling a very short distance or can stay correlated

for a long period of time, depending on the makeup of

the environment, positions of the nodes and communication

parameters. To address this, we first provide a probabilistic

modeling framework for realistic characterization of mobile

communication links, including uncertainties such as fading

and shadowing. We then propose a probabilistic decision-

making and control framework that integrates both com-

munication and sensing objectives based on the statistical

learning of link qualities. We show that for uncorrelated

channels, the natural randomization can help nodes leave

deep fades (locations with very low SNR). Highly correlated

deep fades, on the other hand, can degrade the performance

considerably for a long period of time. We then propose

a randomizing motion-planning strategy to improve link

qualities in such cases.

II. SYSTEM MODEL

Consider N mobile sensors that are cooperatively esti-

mating the state of a target with the following dynamics:

x[k +1] = Ax[k]+w[k]. We consider a target moving in a

plane, with its state defined as its position.1 Then x[k] ∈ ℜ2

is a vector representing the state of the target at time k

and w[k] is the process noise. w[k] is assumed zero mean,

Gaussian and white with Q representing its covariance

matrix. Let yj [k] represent the observation of the jth mobile

node at time k: yj[k] = x[k]+vj[k]. The observation noise,

vj [k], is zero mean Gaussian with Rj [k] representing its

covariance matrix: Rj [k] = vj [k]vT
j [k] and “superscript T”

representing the transpose of a vector/matrix. We take Rj [k]
to be a function of the positions of both the sensor and

the target (as opposed to the distance between the two),

1The results of this paper are applicable to 3D as well.
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as it will be the case in realistic scenarios. Each node

may use a local filter such as a Kalman filter to get a

better estimate of the target position. Let xKF,j [k], ej [k]
and Zj[k] represent the local estimate of the jth sensor,

its corresponding error and its error covariance matrix

after Kalman filtering at time step k (in the absence of

a local filter, the original measurement will be used). Each

node then transmits its local measurement and measurement

error covariance to other nodes. Let x̂KF,j,i[k] and Ẑj,i[k]
represent the reception of the ith node from the transmission

of xKF,j [k] and Zj [k] respectively. We will have,

x̂KF,j,i[k] = xKF,j [k] + cj,i[k] cj,j [k] = 02×1

Ẑj,i[k] = Zj [k] + Lj,i[k] Lj,j[k] = 02×2, 1 ≤ i, j ≤ N ,
(1)

where cj,i[k] ∈ ℜ2 and Lj,i[k] ∈ ℜ2×2 contain communi-

cation noises occurred in the transmission of each element

of xKF,j [k] and Zj [k] respectively and 02×1 and 02×2

represent the zero vector and matrix respectively. Let Uj,i[k]
represent covariance matrix of cj,i[k]:

Uj,i[k] = cj,i[k]cT
j,i[k]. (2)

Due to the impact of fading, communication noise covari-

ance will not merely be a function of the distance between

the two nodes, as we shall address in this paper.

Each sensor then fuses its own measurement with the

received ones to reduce its measurement uncertainty. We

assume that each sensor uses a Best Linear Unbiased Es-

timator (BLUE) to process local and received information.

It then makes a local decision about where to move next to

minimize its local fused estimation error covariance.

A. Observation Model

To characterize the observation noise of each sensor,

we follow the same model used in [4] and [5]: Rj =

T (θj)Dj(rj)T
T (θj), T (θj) =

[

cos(θj) sin(θj)
−sin(θj) cos(θj)

]

and Dj(rj) =

[

fj(rj) 0
0 γfj(rj)

]

, where rj is the

distance of the jth sensor to the target and θj is the

corresponding angle in the global reference frame with

target at the origin (see Fig. 1 of [4]). The function fj ,

the model for the range noise variance of the jth sensor,

depends on rj and γ is a scaling constant. A common model

for f is quadratic, with the minimum achieved at a particular

distance from the target, i.e. the “sweet spot” radius [1].

B. Physical Layer: Mobile Communications [6]

1) Mobile Fading Channels: One of the major perfor-

mance degradation factors of mobile communication is

fading. Fading is a stochastic attenuation of the transmitted

signal. It can be caused, for instance, by multiple paths

arriving at the receiver (multipath fading) or blocking by

objects such as a building (shadowing). This is in addi-

tion to the distance-dependent attenuation (path loss), and

necessitates a probabilistic approach to motion-planning.

Depending on the environment, communication parameters

and speed of the mobile unit, fading can have different

correlation properties. For instance, small changes in the

transmission paths, caused by the movements of the receiver

or transmitter, can introduce rapid and drastic changes in

the received signal quality (small-scale fading) and affect

the overall performance of cooperative target tracking con-

siderably. On the other hand, if a mobile node’s reception

is blocked by a building, the attenuation caused by it can

stay highly correlated for as long as the node is shadowed

by the building (large-scale fading).

2) Channel Signal to Noise Ratio: A fundamental pa-

rameter that characterizes the performance of a communi-

cation channel is the received Signal to Noise Ratio, which

is defined as the ratio of the instantaneous received signal

power divided by the receiver thermal noise power. Let

Υj,i[k] represent the instantaneous received Signal to Noise

Ratio at kth transmission from node j to node i. We will

have

Υj,i[k] =
|hj,i[k]|2σ2

s

σ2
T

, (3)

where σ2
s = E(|s|2) is the transmitted signal power, σ2

T =
E(|nthermal|

2) is the power of the receiver thermal noise and

hj,i[k] ∈ C represents time-varying fading coefficient of the

baseband equivalent channel during the kth transmission

from node j to node i. Υj,i[k] determines how well the

transmitted bits of the kth transmission can be retrieved.

As a node moves, it will experience different channels

and therefore different received Signal to Noise Ratios.

Therefore, we model Υj,i[k] as a stochastic process whose

average, Υj,i,ave[k], changes as a function of the distance

between the transmitter and receiver (Υj,i[k] is a non-

stationary process in general). The distribution of Υj,i[k] is

a function of the transmission environment and the level of

mobility. A common model for outdoor environments (with

no Line-of-Sight path) is to take Υj,i to be exponentially

distributed, which is the model we will adopt (without loss

of generality) in order to generate fading channels.

3) Channel Correlation Characteristics: As was dis-

cussed earlier, correlation properties of the channel play a

key role in the overall performance. In this paper, we are in-

terested in learning channel correlation characteristics in or-

der to move to locations that are better for communication.

For instance, if a node has measured a highly correlated

but poor quality channel for the past few receptions, it may

need to change its direction. In rich scattering environments,

channel can change drastically due to multipath small-scale

fading and can get uncorrelated rapidly. In such cases, a

small movement of the node can result in a better channel

(or a worse one). When the received signal is attenuated

due to a blocking object or is experiencing a small angle

of arrival spread, on the other hand, it can take longer for

the channel to get uncorrelated. Deep fades refer to the

instants of a severe drop in channel quality. For highly

correlated channels, experiencing deep fades can pose a

challenge as the channel can have a poor quality over an
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extended period of time with high probability. To address

this, we characterize the impact of channel correlation on

the overall performance. We furthermore propose to learn

the correlation characteristics of the channel statistically

for the purpose of motion-planning. As channel correlation

increases, we can learn and predict the channel and design

better motion-planning algorithms that are aware of their

impact on link qualities, as we shall explore in the next

section.

4) Communication Noise Variance: Poor link quality can

result in some of the transmitted bits to be flipped. This will

then result in the noisy reception of the transmitted positions

and covariances (see Eq. 1). Let c
(1)
j,i [k] and U

(1,1)
j,i [k]

represent the communication noise in the reception of the

position along x-axis and its corresponding variance respec-

tively. We have U
(1,1)
j,i [k] = E(|c

(1)
j,i [k]|2|hj,i[k]), which will

be a function of Υj,i[k]: U
(1,1)
j,i [k] = Ξ(Υj,i[k]), where

Υj,i[k] is the instantaneous received Signal to Noise Ratio

(see Section II-B-2) in the transmission from the jth agent

to the ith one. Ξ is a non-increasing function that depends

on the transmitter and receiver design principles as well as

the transmission environment. Υj,i[k] is a random process

whose average changes with distance:

Υj,i,ave[k] =
αj,i[k]

d
np,j,i[k]
j,i [k]

, (4)

where dj,i[k] is the distance between the ith and jth agents

at time k and np,i,j [k] > 0 is the path loss exponent which

depends on the environment. αj,i[k] ≥ 0 is a function of

the transmitted signal power, receiver noise, frequency of

operation and the communication environment [6].

Example: Consider a scenario where the observation is

quantized using a uniform quantizer. The quantized bits are

then transmitted using binary modulation and Gray coding

[6]. Let ∆ and Nb represent the quantization step size and

number of quantization bits respectively. Then we have

shown that the communication noise variance will be [7]:

U
(1,1)
j,i [k] =

∆2

12
+

4Nb − 1

3
∆2 × Ω(

√

Υj,i[k]), (5)

where Ω(η) = 1√
2π

∫ ∞
η e−z2/2dz. Similar expressions can

be written for the transmission of the position along y-axis

and other elements of the error covariance matrix of Eq. 1.

The models of this section provide the abstraction necessary

to characterize mobile fading channels for the purpose of

motion-planning, and will be adopted in this paper.

C. Cross-Layer Information Path

Since motion-planning affects communication link quali-

ties, the impact of motion-planning on link qualities should

be taken into account when each agent plans where to move

next. While knowledge of the link qualities is available

in the physical layer, the application layer is in charge

of estimation and control. In order to optimize the per-

formance of the network in outdoor environments that are

harsh in terms of sensing and communication, a cross-layer

information path is needed, i.e. a path from the physical

layer (which is the layer in charge of communication) to

the application layer that carries information on the quality

of the link (Signal to Noise Ratio or communication noise

variance in this case). In other words, the physical layer

can let the application layer know, using a cross-layer path,

how much it trusts the accuracy of each received packet.

Using such information in motion-planning can improve

the performance considerably. In order to do so, however,

a proper abstraction of the physical layer is required for

the purpose of motion planning. Since physical layer is

represented by several parameters, a proper abstraction

is a compression of the physical layer that only keeps

the most relevant information. In Section II-B, our aim

was to provide such abstraction in the form of stochastic

communication noise variance and Signal to Noise Ratio,

which we will use for motion-planning and control.

III. COMMUNICATION-AWARE MOTION-PLANNING

In order to maximize the probability of robust behavior in

harsh uncertain environments, we propose communication-

aware decision-making strategies that utilize statistical

learning of channel characteristics. Fig. 1 shows our envi-

sioned approach for integrating communication and sensing

objectives in fading environments. Every transmitted packet

contains training bits, which every node will utilize to

estimate channel power and correlation function statisti-

cally. Probabilistic models of wireless channels (if available)

could also be used to improve channel prediction. This

information will then be used in high-level motion planning,

as is shown in the figure. For instance, each node can use

this information to predict the impact of its possible motion

movements on link qualities, as we will explore in more

details in this section.

On the sensing side, each agent improves its learning

of the environment through sensing and exploration. This

allows an agent to build a map of the environment, which

could also be used for further enhancing channel prediction,

as is shown in Fig. 1 (if such a map is available). For

instance, this allows an agent to predict the impact of an

already sensed obstacle on its link qualities and plan its

motion accordingly. In a similar manner, learning channel

characteristics can also provide useful information for build-

ing the map of the environment, as is shown in the figure.

Finally each agent builds a cost function that embraces both

sensing and communication costs and chooses a motion

decision that minimizes it. The main challenge in building

an appropriate cost function is the multi-objective nature

of the problem. Each agent’s motion affects the quality of

its communication to all the other agents as well as its

sensing quality, resulting in a multi-objective optimization

problem. We are also interested in decentralized solutions,

where every agent makes a local decision on where to go

next, without having any knowledge of where others would

go. This, along with the uncertainty in channel prediction,
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Fig. 1. Integration of comm. & sensing objectives in decision-making

makes achieving optimal solutions even more challenging.

In the next few subsections, we characterize the impact of

fading channels on the performance of cooperative target

tracking and further discuss our proposed strategy to address

the corresponding challenges.

A. Communication-Aware Data Fusion

Each node constantly receives local estimation informa-

tion of others. The received data is corrupted by process

noise, observation noise and communication noise. We will

have the following for the reception of the jth node from

the transmission of the ith one,

x̂KF,i,j [k] = x[k] + ei[k] + ci,j [k], (6)

where the position of the target is corrupted by both the

Kalman Filter error (which reflects the impact of both

observation and process noises) and the communication

noise. Each node, therefore, should devise the best possible

strategy to combine the received information by taking

into account link and observation qualities. A Best Linear

Unbiased Estimator (BLUE) is the appropriate candidate

since it accounts for noises. We will have,

x̂j [k] = (

N
∑

i=1

P̂−1
i,j [k])−1

N
∑

i=1

P̂−1
i,j [k]x̂KF,i,j [k], (7)

with Pi,j [k] = Zi[k] + Ui,j [k]. Then P̂i,j [k] represents the

estimate of Pi,j [k] based on the received information, i.e.

by replacing Zi[k] by Ẑi,j [k] and estimating Ui,j[k] based

on the measurement of the received SNR. Since the exact

knowledge of Pi,j [k] is not available at the jth node, due

to the corruption of Zi[k] by the communication noise, the

overall fusion performance differs from a typical BLUE

estimator and can be proved to be as follows:

E{(x̂j [k] − x[k])(x̂j [k] − x[k])T } = (
∑N

i=1 P̂−1
i,j [k])−1×

∑N
i=1 P̂−1

i,j [k]Pi,j [k]P̂−1
i,j [k] × (

∑N
i=1 P̂−1

i,j [k])−1.
(8)

It should be noted that the aforementioned fusion process

naturally takes care of information that travels over poor

quality links by giving it less weight. Therefore, there is no

need to assume that a number of links are non-existing as

they will be treated in this manner naturally.

B. Decentralized Motion-planning

We extend the decentralized motion-planning algorithm

that was originally developed in [1], assuming perfect

communication links, to embrace the impact of fading links.

Incorporating the proposed communication-aware fusion

method of the previous section into the algorithm will result

in the jth sensor taking the following steps to decide on its

next move at time instant k:

• The jth node uses x̂j [k] as well as any information

available on the dynamics of target movement to

predict the next state of the target.

• The jth node has a finite set of possible motion

vectors to choose from. These vectors all have the

same amplitude but different phases equally distributed

between 0 and 2π. For every possible motion vector,

m, the jth node predicts its performance, i.e. its fused

estimation error covariance of Eq. 8. However, since it

does not have access to Pi,js, it uses P̂i,js instead. It

will then have the following cost function,

Costj [k, m] = Γ
[

Z−1
predicted,j[k + 1, m]+

∑

i6=j(Zpredicted,i,j [k + 1] + Upredicted,i,j [k + 1, m])−1]−1,
(9)

where Zpredicted,j [k + 1, m] and Zpredicted,i,j [k + 1] rep-

resent the prediction of the jth sensor of its own local

error covariance and the local error covariance of the

ith node respectively and are obtained by propagat-

ing the corresponding Kalman filters one step ahead.

Upredicted,i,j [k + 1, m] is the jth sensor’s prediction of

the communication noise covariance of the ith sensor’s

transmission, given motion vector m, and is produced

based on the estimates available on the positions of

other nodes, channel correlation and SNR properties.

Function Γ maps the predicted fused error covariance

to a scalar value. Possible choices are determinant,

norm, and trace.

• It chooses the motion vector that minimizes the cost:

m∗ = arg min Costj [k, m].

C. Impact of Fading on Cooperative Target Tracking

To see the impact of fading on mobile cooperative

networks, consider a network of three mobile agents that

are tracking a target. In this part, we will explore the impact

of channel correlation and SNR on the performance.

Uncorrelated Fading: Fig. 2 shows the performance of

the communication-aware motion-planning algorithm when

the channels change rapidly and get uncorrelated from one

transmission to the next. The figure shows the average norm

(Frobenius norm2) of the fused error covariance matrix for

60 time steps for N = 3 and for different αs. The following

system parameters are used: f(r) = 0.0008(r−15.625)2+
0.1528, γ = 5, Q = .01I2, A = I2×2, q = .0018,

Nb = 15 and np = 2. The target is almost stationary in

2similar results are seen with other measures such as determinant or
trace.
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this case. We consider faster target motions later in this

section. The channel is an exponentially distributed random

process (a common distribution in outdoor environments)

whose average is time-varying and distance-dependent as

modeled in Section II-B. The best channel has α = 57000
(see Eq. 4), which corresponds to a fading channel with

the average SNR of 27dB at a distance of 10m, whereas

α = 5700 corresponds to an average SNR of 17dB at the

same distance (all realistic scenarios). For comparison, the

performance for perfect communication is also plotted. It

can be seen that the performance is close to the perfect case

for the high average SNR cases. As the channel quality gets

worse, however, the performance degrades considerably. For

instance, for α = 5700, the performance gets closer to the

N = 1 case, which means that the nodes can not benefit

from networked estimation. It should, however, be noted

that any traditional motion-planning strategy that is not

aware of its impact on link qualities would have performed

considerably worse. Compared to the no fading case, the

network will perform considerably better for channels with

no fading but the same distance-dependent path-loss (see

[4]). It should also be noted that these curves are averaged

over several random sequences of channel realizations. For

one sequence, the performance will lie between the curves

for N = 1 and the perfect N = 3. This is due to the fact

that an uncorrelated channel can change drastically from

one transmission to the next. However, since the channel

gets uncorrelated in the next transmission, there is always

a chance of recovery from deep fades by having a better

channel. This is what we refer to as the natural randomiza-

tion introduced by an uncorrelated channel, which can help

the nodes leave low SNR spots.
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N=3, perfect communication

N=2, perfect communication
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alpha=5700

Fig. 2. Average performance for uncorrelated fading channels for N = 3

Highly Correlated Fading: Highly correlated fading, on

the other hand, has a different impact on the overall perfor-

mance. A highly correlated good quality channel will pose

no problem for a cooperative mobile network. However,

a highly correlated channel in deep fade can pose serious

challenges as the information flow in the network can be

delayed for a long period of time. To see this, Fig. 3

shows one run of the norm of the average estimation error

covariance of all the three nodes. The channels are highly

correlated with different qualities. In particular, channels

from node 2 and 3 to node 1 are experiencing highly

correlated deep fades. It can be seen that the overall

performance is degraded considerably as node 1 can not

reduce its error beyond N = 1 case and has to rely on

itself. Such scenarios can be catastrophic to the robustness

of cooperative mobile networks. To address this, we next

propose an adaptive motion-planning algorithm to mitigate

effects of highly correlated deep fades.

D. Randomization Through Adaptive Motion-planning

In Fig. 3, we showed how correlated deep fading can ruin

the performance of a cooperative network considerably. If a

channel gets uncorrelated from one transmission to the next,

it naturally creates a randomization in the channel quality.

This can be taken advantage of if the link is currently

in a deep fade. However, for highly correlated channels,

this can be more challenging as the channel can stay in

deep fade for several steps. In such cases, we propose to

introduce a randomization by taking larger steps. Increasing

the step size (i.e. increasing the amplitude of vector m

of Section III-B), in general, has its advantages (potential

higher speed of convergence) and disadvantages (potential

lower search resolution and higher energy cost). Adapting

the step size, on the other hand, can keep the benefits of

both smaller and larger step sizes as it only increases the

step size if needed. In fading environments, adapting the

step size can potentially help mitigate the impact of highly

correlated deep fades. We propose to adapt the step size

when highly correlated deep fades are experienced. If a

node experiences low SNR links from all the other nodes

(or from the majority of them) for a longer than a predefined

period of time, it will then try to enforce randomization of

link qualities by increasing its step size. Increasing its step

size can decrease channel correlation, which can help leave

deep fade spots. It should be noted, however, that due to the

random and complex nature of wave propagation, there is

no guarantee that a considerable performance improvement

will be achieved all the time. The idea of enforcing time-

variations in link qualities has also been used in the context

of Digital Audio Broadcasting when encountering stop signs

that are in deep fade.

To see the performance of our proposed communication-

aware adaptive motion-planning, Fig. 4 shows the per-

formance improvement gained through adaptation for the

system parameters and channel initial conditions of Fig. 3.

In this result, if a node experiences SNR below a threshold

(10dB here) for three consecutive receptions from all the

other nodes, then it will double its step size. It can be

seen that proper adaptation to link qualities can enhance the

performance considerably. Fig. 5 shows similar results when

adapting the step size by tripling it. To see the performance

for a case of a mobile target, Fig. 6 shows the performance

for A =

[

0.7 0
0 0.7

]

and Q = 0.05I2 (target is initialized

3173



far from the origin and the sensors). The figure shows a

case where node 1 is experiencing highly correlated low

SNR channels from nodes 2 and 3 and can not improve its

performance beyond N = 1 case (without adaptation). It

also shows the performance gained through adaptation.
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Fig. 3. Performance for highly correlated low SNR channels
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Fig. 4. Performance of the adaptive algorithm for highly correlated low
SNR channels – step size is doubled in the event of correlated deep fade

IV. SUMMARY

In this paper we considered the impact of mobile fading

channels on decentralized mobile networks. We provided

an abstraction of the physical layer for the purpose of

motion-planning by characterizing communication noise

and its variance as a function of the stochastic Signal to

Noise Ratio. We showed how to incorporate mobile link

quality measures such as SNR and correlation properties

in the estimation and control process. We showed that as

channel correlation decreases from one transmission to the

next, the network can potentially benefit from the natural

randomization of the link qualities to leave low SNR spots.

On the other hand, for highly correlated channels, a node

can be in a deep fade for a long period of time, which

can ruin the performance considerably. To address this, we

proposed a motion-planning strategy that adapts the step

size according to channel correlation properties in order to

enforce randomization of link qualities.
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Fig. 5. Performance of the proposed algorithm for highly correlated low
SNR channels – step size is tripled in the event of correlated deep fade
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Fig. 6. Case of fast moving target – Performance of both non-adaptive
and adaptive algorithms for highly correlated low SNR channels – for the
adaptive case, step size is tripled in the event of correlated deep fade
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